Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.236
Filtrar
Más filtros

Intervalo de año de publicación
1.
Genomics ; 116(2): 110811, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38387766

RESUMEN

Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.


Asunto(s)
Saccharomycetales , Saccharum , Fermentación , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharomycetales/metabolismo , Sistema de Señalización de MAP Quinasas , Melaza , Aminoácidos
2.
Biotechnol Bioeng ; 121(4): 1314-1324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38178588

RESUMEN

The integration of first- (1G) and second-generation (2G) ethanol production by adding sugarcane juice or molasses to lignocellulosic hydrolysates offers the possibility to overcome the problem of inhibitors (acetic acid, furfural, hydroxymethylfurfural and phenolic compounds), and add nutrients (such as salts, sugars and nitrogen sources) to the fermentation medium, allowing the production of higher ethanol titers. In this work, an 1G2G production process was developed with hemicellulosic hydrolysate (HH) from a diluted sulfuric acid pretreatment of sugarcane bagasse and sugarcane molasses. The industrial Saccharomyces cerevisiae CAT-1 was genetically modified for xylose consumption and used for co-fermentation of sucrose, fructose, glucose, and xylose. The fed-batch fermentation with high cell density that mimics an industrial fermentation was performed at bench scale fermenter, achieved high volumetric ethanol productivity of 1.59 g L-1 h-1, 0.39 g g-1 of ethanol yield, and 44.5 g L-1 ethanol titer, and shown that the yeast was able to consume all the sugars present in must simultaneously. With the results, it was possible to establish a mass balance for the global process: from pretreatment to the co-fermentation of molasses and HH, and it was possible to establish an effective integrated process (1G2G) with sugarcane molasses and HH co-fermentation employing a recombinant yeast.


Asunto(s)
Celulosa , Polisacáridos , Saccharum , Celulosa/metabolismo , Fermentación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilosa , Melaza , Saccharum/metabolismo , Azúcares , Etanol
3.
Arch Microbiol ; 206(6): 245, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702537

RESUMEN

Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the ß-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.


Asunto(s)
Fermentación , Melaza , Rhodotorula , Saccharum , beta Caroteno , Rhodotorula/metabolismo , Rhodotorula/genética , Rhodotorula/crecimiento & desarrollo , Rhodotorula/aislamiento & purificación , Rhodotorula/clasificación , Saccharum/metabolismo , beta Caroteno/metabolismo , beta Caroteno/biosíntesis , Carotenoides/metabolismo , Antioxidantes/metabolismo , Biomasa , Medios de Cultivo/química , Filogenia
4.
Microb Cell Fact ; 23(1): 123, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724968

RESUMEN

BACKGROUND: Saccharomyces cerevisiae is an important microorganism in ethanol synthesis, and with sugarcane molasses as the feedstock, ethanol is being synthesized sustainably to meet growing demands. However, high-concentration ethanol fermentation based on high-concentration sugarcane molasses-which is needed for reduced energy consumption of ethanol distillation at industrial scale-is yet to be achieved. RESULTS: In the present study, to identify the main limiting factors of this process, adaptive laboratory evolution and high-throughput screening (Py-Fe3+) based on ARTP (atmospheric and room-temperature plasma) mutagenesis were applied. We identified high osmotic pressure, high temperature, high alcohol levels, and high concentrations of K+, Ca2+, K+ and Ca2+ (K+&Ca2+), and sugarcane molasses as the main limiting factors. The robust S. cerevisiae strains of NGT-F1, NGW-F1, NGC-F1, NGK+, NGCa2+ NGK+&Ca2+-F1, and NGTM-F1 exhibited high tolerance to the respective limiting factor and exhibited increased yield. Subsequently, ethanol synthesis, cell morphology, comparative genomics, and gene ontology (GO) enrichment analysis were performed in a molasses broth containing 250 g/L total fermentable sugars (TFS). Additionally, S. cerevisiae NGTM-F1 was used with 250 g/L (TFS) sugarcane molasses to synthesize ethanol in a 5-L fermenter, giving a yield of 111.65 g/L, the conversion of sugar to alcohol reached 95.53%. It is the highest level of physical mutagenesis yield at present. CONCLUSION: Our results showed that K+ and Ca2+ ions primarily limited the efficient production of ethanol. Then, subsequent comparative transcriptomic GO and pathway analyses showed that the co-presence of K+ and Ca2+ exerted the most prominent limitation on efficient ethanol production. The results of this study might prove useful by promoting the development and utilization of green fuel bio-manufactured from molasses.


Asunto(s)
Calcio , Etanol , Fermentación , Melaza , Potasio , Saccharomyces cerevisiae , Saccharum , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharum/metabolismo , Calcio/metabolismo , Potasio/metabolismo
5.
Environ Res ; 242: 117709, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37993049

RESUMEN

The biological denitrification of high-nitrate wastewater (HNW) is primarily hindered by insufficient carbon sources and excessive nitrite accumulation. In this study, micromagnetic carriers with varying micromagnetic field (MMF) strengths (0.0, 0.3, 0.6, 0.9 mT) were employed to enhance the denitrification of HNW using waste molasses (WMs) as a carbon source. The results revealed that 0.6 mT MMF significantly improved the total nitrogen removal (TN) efficiency at 96.3%. A high nitrate (NO3--N) removal efficiency at 99.3% with a low nitrite (NO2--N) accumulation at 25.5 mg/L was achieved at 0.6 mT MMF. The application of MMF facilitated the synthesis of adenosine triphosphate (ATP) and stimulated denitrifying enzymes (e.g., nitrate reductase (NAR), nitrite reductase (NIR), and nitric oxide reductase (NOR)), which thereby promoting denitrification. Moreover, the effluent chemical oxygen demand (COD), tryptophan and fulvic-like substances exhibited their lowest levels at 0.6 mT MMF. Analysis through 16S ribosomal ribonucleic acid gene sequencing indicated a significant enrichment of denitrifying bacteria including Castellaniella Klebsiella under the influence of MMF. Besides, the proliferation of Acholeplasma, Klebsiella and Proteiniphilum at 0.6 mT MMF promoted the hydrolysis and acidification of WMs. This study offers new insights into the enhanced utilization of WMs and the denitrification of HNW through the application of MMF.


Asunto(s)
Nitratos , Aguas Residuales , Nitritos , Desnitrificación , Electrones , Melaza , Reactores Biológicos/microbiología , Carbono , Nitrógeno
6.
Appl Microbiol Biotechnol ; 108(1): 429, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066896

RESUMEN

Astaxanthin is a red xanthophyll with high economic and industrial value in the pharmaceutical, nutraceutical, cosmetic and food industries. In recent years, the biotechnological production of astaxanthin has attracted much attention as a sustainable alternative to the predominating petrochemical-dependent chemical synthesis. In this regard, Xanthophyllomyces dendrorhous is regarded as a promising microorganism for industrial production of astaxanthin. Unfortunately, biotechnological production of the carotenoid is currently expensive. The present study investigated soy molasses (SM) and residual brewers' yeast as cheap fermentation feedstocks for the cultivation of X. dendrorhous and astaxanthin production. Yeast extract was obtained from residual brewers' yeast using various techniques and then combined with SM to formulate a two-component growth medium which was subsequently used to cultivate X. dendrorhous. Generally, the yeast extract produced from residual brewers' yeast supported X. dendrorhous growth and astaxanthin production at levels comparable to those seen with commercial yeast extract. Overall, cultivating X. dendrorhous in an SM-based medium containing 5% SM and 0.2% yeast extract obtained from residual brewers' yeast resulted in significantly higher (> 20% more) biomass accumulation compared to the control media (YPD). A similar slightly higher astaxanthin output (up to 14% more) was recorded in the SM-based medium compared to YPD. The formulated cultivation medium in this study provides an opportunity to reduce the production cost of astaxanthin from X. dendrorhous while simultaneously reducing the environmental impact related to the disposal of the industrial waste used as feedstock. KEY POINTS: • Cheap culture media were formulated from soy molasses and brewers' spent yeast • The formulated medium resulted in at least 20% more biomass than the control • Up to 14% more astaxanthin was produced in molasses-based medium.


Asunto(s)
Basidiomycota , Medios de Cultivo , Fermentación , Residuos Industriales , Melaza , Xantófilas , Xantófilas/metabolismo , Medios de Cultivo/química , Basidiomycota/metabolismo , Biomasa , Microbiología Industrial/métodos , Glycine max/metabolismo
7.
Biotechnol Appl Biochem ; 71(3): 584-595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38233730

RESUMEN

In this study, a cost-effective complex culture media containing molasses and corn steep liquor (CSL) was developed for the high production of bacterial cellulose (BC) by investigating the effect of four effective factors on BC production at three levels using Taguchi and combined methods. The predicted and actual values of BC production in optimal conditions by Taguchi and combined methods were 8.41 and 14.52 g/L, respectively. These results showed that the combined method was more suitable for predicting the optimal conditions in the optimization of BC production, the cost of developed culture medium was around 94% cost of HS medium preparation, molasses was the most effective factor in both experimental design methods, and initial pH adjustment had little impact on BC production. Then, the effect of inoculation conditions containing three factors of inoculation age, ethanol addition time, and agitation rate on the increase of BC production at three levels was investigated using the response surface methodology with the Box-Behnken design algorithm. Under the optimal conditions including inoculum age of 3 days, ethanol addition time of 10 days, and stirring speed of 100 rpm, the predicted and experimental results of BC production were 21.61 and 20.21 g/L, respectively. This is among the highest ever reported for BC production, which was achieved with a more cost-effective culture medium containing molasses and CSL.


Asunto(s)
Celulosa , Gluconacetobacter xylinus , Celulosa/biosíntesis , Celulosa/metabolismo , Celulosa/química , Gluconacetobacter xylinus/metabolismo , Industria de Alimentos , Residuos Industriales , Medios de Cultivo/química , Melaza
8.
Biotechnol Appl Biochem ; 71(4): 712-720, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38409863

RESUMEN

Organic waste valorization is one of the principal goals of the circular economy. Bioprocesses offer a promising approach to achieve this goal by employing microorganisms to convert organic feedstocks into high value products through their metabolic activities. In this study, a fermentation process for yeast cultivation and extracellular lipase production was developed by utilizing food waste. Lipases are versatile enzymes that can be applied in a wide range of industrial fields, from detergent, leather, and biodiesel production to food and beverage manufacturing. Among several oleaginous yeast species screened, Saitozyma flava was found to exhibit the highest secreted lipase activity on pNP-butyrate, pNP-caproate, and pNP-caprylate. The production medium was composed of molasses, a by-product of the sugar industry, which provided nutrients for yeast biomass formation. At the same time, waste cooking oil was employed to induce and enhance extracellular lipase production. After 48 h of process, 20 g/L of yeast biomass and 150 mU/mgdw of lipase activity were achieved, with a productivity of 3 mU/mgdw/h. The purified lipase from S. flava showed optimal performances at temperature 28°C and pH 8.0, exhibiting a specific activity of 62 U/mg when using p-NPC as substrate.


Asunto(s)
Lipasa , Melaza , Lipasa/metabolismo , Lipasa/biosíntesis , Lipasa/química , Aceites de Plantas/metabolismo , Aceites de Plantas/química , Culinaria , Fermentación , Basidiomycota/enzimología , Basidiomycota/metabolismo
9.
J Environ Manage ; 350: 119627, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38000276

RESUMEN

Single-cell protein (SCP) is a vital supplement for animal protein feed. This study utilized biogas slurry and sugarcane molasses to ferment Nectaromyces rattus for the production of SCP. The optimal batch fermentation conditions were obtained in a 5L jar with a tank pressure of 0.1 MPa, an initial speed of 300 rpm, and an inoculum volume of 30%. The highest cell dry weight concentrations of the fed-batch fermentation without reflux and the fed-batch fermentation with reflux were 46.33 g/L and 29.71 g/L, respectively. The nitrogen conversion rates (47.05% and 44.12%) and the cell yields of total organic carbon (1 g/g and 1.17 g/g) of both fermentation modes were compared. The SCP contained 42.32% amino acids. Its high concentrations of potassium (19859.96 mg/kg) and phosphorus (7310.44 mg/kg) present a novel approach for the extraction of these essential nutrients from biogas slurry. The enrichment of K was related to the H+ efflux and sugar transport.


Asunto(s)
Biocombustibles , Melaza , Potasio , Fermentación
10.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474615

RESUMEN

The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.


Asunto(s)
Saccharomycetales , Saccharum , Fermentación , Saccharum/metabolismo , Melaza/análisis , Carbono , Espectroscopía Infrarroja por Transformada de Fourier , Saccharomyces cerevisiae/metabolismo , Fructanos/química , Sacarosa/metabolismo
11.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1096-1106, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38563274

RESUMEN

This study investigated the effects of sumac and molasses on nutrient composition, in vitro degradability and fermentation quality of alfalfa silage. Alfalfa was ensiled in quadruplicate in vacuum jars untreated group (A) or after the following treatments: sumac group at 10% (AS), molasses group at 5% (AM), and sumac (10%) and molasses (5%) group (ASM). Silos (n = 64) were stored for 0, 21, 45 or 60 days. The results showed that dry matter (DM) contents of the AS, AM and ASM groups were statistically higher than the control group (p < 0.001). Only on the 21st day of fermentation the crude ash content of the AS group was found to be significantly higher than the other groups (p < 0.05). In vitro, DM and organic matter degradation values of the AMS group increased significantly (p < 0.001). A significant decrease in alfalfa silage's pH values was determined with sumac and molasses additives (p < 0.001). The ammonia nitrogen (NH3-N) values of the control, AS, AM and ASM groups at Day 60 were determined as 9.08%, 7.22%, 7.00% and 6.81% respectively (p < 0.05). The water-soluble carbohydrate (WSC) values of all groups on the 60th day were significantly decreased compared to the 0th day (p < 0.001). When the groups were evaluated within themselves, there was a statistically significant difference between the 0th and 60th day lactic acid values. The acetic acid content of the A group on the 60th day was found to be significantly higher than the other groups (p < 0.01). There was a significant decrease in propionic acid levels on Days 21, 45 and 60 compared to Day 0 of fermentation (p < 0.001). The highest butyric acid (BA) level was determined in the A group on the 21st, 45th and 60th days of fermentation (p < 0.05). In conclusion, sumac prevents proteolysis depending on its tannin content. It improves silage fermentation positively thanks to its organic acid content, while the molasses additive is effective in silage fermentation, mainly depending on the WSC level. However, it was determined that neither additive could reduce the silage pH to the appropriate value ranges due to the low doses, and they could not mainly prevent the formation of BA.


Asunto(s)
Fermentación , Medicago sativa , Melaza , Ensilaje , Medicago sativa/química , Ensilaje/análisis , Animales , Digestión/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales
12.
Water Sci Technol ; 90(1): 18-31, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007304

RESUMEN

The demand for new products derived from agro-industrial residues has increased recently. Furthermore, vinasse, a wastewater from ethanol production, needs treatment to be reused in the sugarcane industry, reducing industrial water consumption. This study performed vinasse filtration with charcoal from industrial sugarcane residues and used filtered molasses dilution in ethanolic fermentation. There were five treatments in randomized blocks with three repetitions. The treatments included deionized water and natural vinasse as positive and negative controls, respectively, and filtered vinasse from charcoal made from bamboo, sugarcane bagasse, and straw. Hence, fermentation for ethanol production was performed. Compared with natural vinasse, filtered vinasse with all types of charcoal showed lower soluble solids, total residual reducing sugars, higher ethanol concentrations, and greater fermentative efficiency. Filtered vinasse from bagasse and straw charcoals had efficiencies of 81.14% and 77.98%, respectively, in terms of ethanol production, which are close to those of deionized water (81.49%). In a hypothetical industry, vinasse charcoal filtration and charcoal regeneration should prevent 84.12% of water consumption from environmental resources. This process is feasible because it uses a product of sugarcane residue to treat wastewater and reduce industrial water consumption and vinasse disposal.


Asunto(s)
Carbón Orgánico , Etanol , Fermentación , Melaza , Saccharum , Carbón Orgánico/química , Etanol/química , Saccharum/química , Residuos Industriales , Filtración/métodos , Eliminación de Residuos Líquidos/métodos
13.
Trop Anim Health Prod ; 56(7): 219, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039346

RESUMEN

Soybean molasses (SBMO) is a byproduct derived from the production of soy protein concentrate, obtained through solubilization in water and alcohol. The utilization of SBMO as an animal feed ingredient shows promising potential, primarily due to its low cost and as a potential energy concentrate. This study aimed to assess the intake, digestibility, ruminal parameters (pH and ruminal ammonia - NH3), nitrogen retention (NR) and microbial protein synthesis in grazing beef cattle supplemented with SBMO as a substitute for corn during the rainy season. Five Nellore (10-month-old) bulls with an average initial weight of 246 ± 11.2 kg were utilized in a 5 × 5 Latin square design. The animals were housed in five paddocks, each consisting of 0.34 ha of Marandu grass (Urochloa brizantha). Five isonitrogenous protein-energy supplements (300 g crude protein [CP]/kg supplement) were formulated, with SBMO replacing corn at varying levels (0, 0.25, 0.50, 0.75, or 1.00 g-1 g). The supplements were provided daily at a quantity of 2.0 kg-1 animal. The inclusion of SBMO at any level of corn substitution did not significantly affect the intake of pasture dry matter or total dry matter (P > 0.10). Likewise, the intake of CP and, consequently, the ruminal concentration of NH3 did not differ among the SBMO levels. Increasing the inclusion of SBMO did not have a significant impact on NR (P > 0.10), indicating that animals receiving supplements containing 100% SBMO as a substitute for corn may perform similarly to animals receiving supplements with 100% corn (0% SBMO). Soybean molasses represents a viable alternative energy source for grazing beef cattle during the rainy season and can entirely replace corn without adversely affecting animal nutritional performance.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Digestión , Glycine max , Melaza , Rumen , Estaciones del Año , Animales , Bovinos/fisiología , Alimentación Animal/análisis , Melaza/análisis , Masculino , Glycine max/química , Suplementos Dietéticos/análisis , Rumen/metabolismo , Zea mays/química , Dieta/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales , Lluvia , Nitrógeno/metabolismo
14.
Langmuir ; 39(12): 4394-4405, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36913721

RESUMEN

The development of a highly selective, simple, and rapid detection method for nitrofuran antibiotics (NFs) is of great significance for food safety, environmental protection, and human health. To meet these needs, in this work, cyan-color highly fluorescent N-doped graphene quantum dots (N-GQDs) were synthesized using cane molasses as the carbon source and ethylenediamine as the nitrogen source. The synthesized N-GQDs have an average particle size of 6 nm, a high fluorescence intensity with 9 times that of undoped GQDs, and a high quantum yield (24.4%) which is more than 6 times that of GQDs (3.9%). A fluorescence sensor based on N-GQDs for the detection of NFs was established. The sensor shows advantages of fast detection, high selectivity, and sensitivity. The limit of detection for furazolidone (FRZ) was 0.29 µM, the limit of quantification (LOQ) was 0.97 µM, and the detection range was 5-130 µM. The fluorescence quenching mechanism of the sensor was explored by fluorescence spectroscopy, UV-vis absorption spectroscopy, Stern-Volmer quenching constant, Zeta potential, UV-vis diffuse reflectance spectroscopy, and cyclic voltammetry. A fluorescence quenching mechanism of dynamic quenching synergized with photoinduced electron transfer was revealed. The developed sensor was also successfully applied for detecting FRZ in various real samples, and the results were satisfactory.


Asunto(s)
Grafito , Nitrofuranos , Puntos Cuánticos , Humanos , Grafito/química , Antibacterianos , Puntos Cuánticos/química , Bastones , Electrones , Melaza , Nitrógeno/química
15.
Microb Cell Fact ; 22(1): 202, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803422

RESUMEN

BACKGROUND: The application of exopolysaccharide-producing bacteria (EPS) in dual chamber microbial fuel cells (DCMFC) is critical which can minimize the chemical oxygen demand (COD) of molasses with bioelectricity production. Hence, our study aimed to evaluate the EPS production by the novel strain Bacillus piscis by using molasses waste. Therefore, statistical modeling was used to optimize the EPS production. Its structure was characterized by UV, FTIR, NMR, and monosaccharides compositions. Eventually, to highlight B. piscis' adaptability in energy applications, bioelectricity production by this organism was studied in the BCMFC fed by an optimized molasses medium. RESULTS: B. piscis OK324045 characterized by 16S rRNA is a potent EPS-forming organism and yielded a 6.42-fold increase upon supplementation of molasses (5%), MgSO4 (0.05%), and inoculum size (4%). The novel exopolysaccharide produced by Bacillus sp. (EPS-BP5M) was confirmed by the structural analysis. The findings indicated that the MFC's maximum close circuit voltage (CCV) was 265 mV. The strain enhanced the performance of DCMFC achieving maximum power density (PD) of 31.98 mW m-2, COD removal rate of 90.91%, and color removal of 27.68%. Furthermore, cyclic voltammetry (CV) revealed that anodic biofilms may directly transfer electrons to anodes without the use of external redox mediators. Additionally, CV measurements made at various sweep scan rates to evaluate the kinetic studies showed that the electron charge transfer was irreversible. The SEM images showed the biofilm growth distributed over the electrode's surface. CONCLUSIONS: This study offers a novel B. piscis strain for EPS-BP5M production, COD removal, decolorization, and electricity generation of the optimized molasses medium in MFCs. The biosynthesis of EPS-BP5M by a Bacillus piscis strain and its electrochemical activity has never been documented before. The approach adopted will provide significant benefits to sugar industries by generating bioelectricity using molasses as fuel and providing a viable way to improve molasses wastewater treatment.


Asunto(s)
Bacillus , Fuentes de Energía Bioeléctrica , Melaza , Cinética , ARN Ribosómico 16S , Electricidad , Electrodos
16.
Microb Cell Fact ; 22(1): 37, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829191

RESUMEN

BACKGROUND: Poly-γ-glutamic acid (γ-PGA) is biodegradable, water-soluble, environment-friendly, and edible. Consequently, it has a variety of industrial applications. It is crucial to control production cost and increase output for industrial production γ-PGA. RESULTS: Here γ-PGA production from sugarcane molasses by Bacillus licheniformis CGMCC NO. 23967 was studied in shake-flasks and bioreactors, the results indicate that the yield of γ-PGA could reach 40.668 g/L in a 5L stirred tank fermenter. Further study found that γ-PGA production reached 70.436 g/L, γ-PGA production and cell growth increased by 73.20% and 55.44%, respectively, after FeSO4·7H2O was added. Therefore, we investigated the metabolomic and transcriptomic changes following FeSO4·7H2O addition. This addition resulted in increased abundance of intracellular metabolites, including amino acids, organic acids, and key TCA cycle intermediates, as well as upregulation of the glycolysis pathway and TCA cycle. CONCLUSIONS: These results compare favorably with those obtained from glucose and other forms of biomass feedstock, confirming that sugarcane molasses can be used as an economical substrate without any pretreatment. The addition of FeSO4·7H2O to sugarcane molasses may increase the efficiency of γ-PGA production in intracellular.


Asunto(s)
Bacillus licheniformis , Saccharum , Bacillus licheniformis/metabolismo , Saccharum/metabolismo , Fermentación , Melaza , Ácido Poliglutámico , Ácido Glutámico/metabolismo
17.
Environ Res ; 228: 115849, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37024030

RESUMEN

The application of microbially induced carbonate precipitation (MICP) technology is critical, but many challenges remain. In this paper, a microbial fuel cell (MFC) is used to treat molasses wastewater, and the effluent is used as the substrate to promote the growth of urease-producing bacteria. The results showed that the maximum voltage of MFC was 500 mV, and the maximum power density was 169.86 mW/m2. The mineralization rate reached 100% on the 15th day, and the mineralized product was calcite CaCO3. According to the microbial community analysis, the unclassified_Comamondaceae, Arcobacter, and Aeromonas, which could improve the OH-, signal molecular transmission and small molecular nutrients to promote the urease activity of urease-producing bacteria. The above conclusions provide a new way to reuse molasses wastewater efficiently and to apply MICP technology in dust suppression.


Asunto(s)
Fuentes de Energía Bioeléctrica , Fuentes de Energía Bioeléctrica/microbiología , Aguas Residuales , Melaza , Ureasa , Carbonatos , Bacterias
18.
Biotechnol Appl Biochem ; 70(3): 1149-1161, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36536601

RESUMEN

This study involves the isolation of succinic acid (SA)-producing microorganisms from different samples, including the rumen, sludge, soil, and wastewater. For primary screening, 29 isolates exhibited a zone of clearance around the colony, indicating acid production. For secondary screening using thin-layer chromatography, only two isolates symbolized SA production according to their Rf values. These two isolates were further identified as Bacillus velezensis and Enterococcus gallinarum by phylogenetic analysis using the neighbor-joining method. The high SA concentrations of 50.2 and 66.9 g/L were produced by B. velezensis and E. gallinarum with an SA yield of 0.836 and 1.12 g/g glucose, respectively. The high SA concentration from these newly isolated strains was achieved with a low formation of unwanted acids compared with those from Actinobacillus succinogenes ATCC 55618. Moreover, E. gallinarum was cultured in palm oil mill wastewater (POMW) and molasses, which were cheap substrates. The high SA production of 73.9 g/L with low other acids (the ratio of SA to total acids = 0.917) was achieved using POMW and molasses (80:20) as substrates.


Asunto(s)
Ácido Succínico , Aguas Residuales , Filogenia , Fermentación , Melaza
19.
BMC Vet Res ; 19(1): 149, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684611

RESUMEN

BACKGROUND: The study aimed to investigate the effect of urea molasses mineral blocks (UMMB) on nutrient digestibility, productive performance and blood biochemical profile of indigenous yaks under various feeding systems. A total of sixteen yaks were randomly divided into four groups (n = 4 animal per group) and offered the, following feeding systems: (A) stall feeding, (B), urea molasses mineral block (UMMB) + stall feeding, (C) yard feeding and (D) UMMB + yard feeding. Trial lasted for 40 days. RESULTS: Results showed that nutrients intake (g) and nutrient digestibility (%) of dry matter (DM), organic matter (OM), crude protein (CP), ether extract (EE) and crude fiber (CF) were significantly higher (p < 0.05) in stall and yard feeding groups with UMMB licking. Blood zinc, cobalt, hemoglobin (Hb), red blood cell (RBC), glucose and serum glutamate private transaminase (SGPT) significantly (p < 0.05) increased in stall and yard feeding with UMMB licking. Milk yield, Ca and monounsaturated fatty acid except milk composition improved significantly (p < 0.05) in stall and yard feeding groups with UMMB licking. CONCLUSION: It was concluded that feeding of UMMB improved utilization of low-quality roughages and best results were obtained from stall and yard feedings with UMMB licking as compared to other groups.


Asunto(s)
Melaza , Urea , Animales , Bovinos , Minerales , Nutrientes , Eritrocitos
20.
Tob Control ; 32(5): 627-634, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35241500

RESUMEN

ObjectivesFlavoured products are especially appealing to youth and contribute to the onset of waterpipe smoking and continued use of waterpipe tobacco. The goal of database and chemical analysis was to provide a clear overview of commonly used flavours and flavourings in tobacco and related waterpipe products, that is, herbal molasses and steam stones. METHODS: In 2019, 249 waterpipe tobacco products were registered in the European Common Entry Gate by manufacturers to be marketed in The Netherlands. Flavour categories were assigned to the registered products based on their brand names and product descriptions. Nicotine and eleven 1111 flavourings were identified and quantified in waterpipe tobacco (n=8), herbal molasses (n=7) and steam stones (n=4) by extraction and gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Flavour categories could be assigned to 237 of 249 registered waterpipe tobacco products. Eight flavour main categories and 48 unique subcategories were identified and presented in a flavour wheel. All registered waterpipe tobacco products were flavoured, and the majority (78%) was fruit flavoured. Herbal molasses contained similar median flavouring levels, and steam stones contained lower median levels compared with waterpipe tobacco. Flavourings in waterpipe products were almost exclusively fruity and sweet, often in combination with menthol/mint flavourings. CONCLUSIONS: This study is the first to present a waterpipe tobacco flavour wheel, providing a quick overview of waterpipe tobacco flavours and thereby aiding communication among experts around the globe. GC-MS analysis revealed that the most prevalent flavourings are present in similar levels in herbal and tobacco waterpipe products. Banning flavourings in all waterpipe products would be a good strategy to reduce waterpipe smoking among youth.


Asunto(s)
Productos de Tabaco , Fumar en Pipa de Agua , Adolescente , Humanos , Nicotiana , Productos de Tabaco/análisis , Vapor , Melaza/análisis , Aromatizantes/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA