Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.870
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 31: 107-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516981

RESUMEN

Fibrosis is the production of excessive amounts of connective tissue, i.e., scar formation, in the course of reactive and reparative processes. Fibrosis develops as a consequence of various underlying diseases and presents a major diagnostically and therapeutically unsolved problem. In this review, we postulate that fibrosis is always a sequela of inflammatory processes and that the many different causes of fibrosis all channel into the same final stereotypical pathways. During the inflammatory phase, both innate and adaptive immune mechanisms are operative. This concept is exemplified by fibrotic diseases that develop as a consequence of tissue damage, primary inflammatory diseases, fibrotic alterations induced by foreign body implants, "spontaneous" fibrosis, and tumor-associated fibrotic changes.


Asunto(s)
Fibroblastos/inmunología , Fibroblastos/patología , Miofibroblastos/inmunología , Miofibroblastos/patología , Inmunidad Adaptativa , Animales , Proliferación Celular , Transdiferenciación Celular/inmunología , Fibrosis , Humanos , Inmunidad Innata , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología
2.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32621799

RESUMEN

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Asunto(s)
Cicatriz/metabolismo , Colágeno Tipo V/deficiencia , Colágeno Tipo V/metabolismo , Lesiones Cardíacas/metabolismo , Contracción Miocárdica/genética , Miofibroblastos/metabolismo , Animales , Cicatriz/genética , Cicatriz/fisiopatología , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica/genética , Integrinas/antagonistas & inhibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacología , Masculino , Mecanotransducción Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica/instrumentación , Microscopía Electrónica de Transmisión , Contracción Miocárdica/efectos de los fármacos , Miofibroblastos/citología , Miofibroblastos/patología , Miofibroblastos/ultraestructura , Análisis de Componente Principal , Proteómica , RNA-Seq , Análisis de la Célula Individual
3.
Cell ; 175(2): 372-386.e17, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30270042

RESUMEN

Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cell function. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino/fisiopatología , Mesodermo/fisiología , Animales , Proliferación Celular , Colitis/genética , Colitis/fisiopatología , Colon/fisiología , Células Epiteliales/metabolismo , Fibroblastos/fisiología , Heterogeneidad Genética , Homeostasis , Humanos , Inflamación , Mucosa Intestinal/inmunología , Mucosa Intestinal/fisiología , Intestinos/inmunología , Intestinos/fisiología , Células Madre Mesenquimatosas/fisiología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos , Pericitos , Células RAW 264.7 , Factores de Transcripción SOXD/fisiología , Análisis de la Célula Individual/métodos , Tromboplastina/fisiología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Vía de Señalización Wnt/fisiología
4.
Annu Rev Cell Dev Biol ; 34: 333-355, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30028641

RESUMEN

Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Inflamación/genética , Neoplasias/genética , Células Estrelladas Pancreáticas/metabolismo , Transdiferenciación Celular/genética , Células Estrelladas Hepáticas/patología , Humanos , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Neoplasias/patología , Páncreas/lesiones , Páncreas/metabolismo , Páncreas/patología , Células Estrelladas Pancreáticas/patología , Microambiente Tumoral/genética , Cicatrización de Heridas
5.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34407391

RESUMEN

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Asunto(s)
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular/fisiología , Fibroblastos/patología , Humanos , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Transducción de Señal/fisiología
6.
Cell ; 157(5): 1104-16, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855947

RESUMEN

Downregulation of the miR-143/145 microRNA (miRNA) cluster has been repeatedly reported in colon cancer and other epithelial tumors. In addition, overexpression of these miRNAs inhibits tumorigenesis, leading to broad consensus that they function as cell-autonomous epithelial tumor suppressors. We generated mice with deletion of miR-143/145 to investigate the functions of these miRNAs in intestinal physiology and disease in vivo. Although intestinal development proceeded normally in the absence of these miRNAs, epithelial regeneration after injury was dramatically impaired. Surprisingly, we found that miR-143/145 are expressed and function exclusively within the mesenchymal compartment of intestine. Defective epithelial regeneration in miR-143/145-deficient mice resulted from the dysfunction of smooth muscle and myofibroblasts and was associated with derepression of the miR-143 target Igfbp5, which impaired IGF signaling after epithelial injury. These results provide important insights into the regulation of epithelial wound healing and argue against a cell-autonomous tumor suppressor role for miR-143/145 in colon cancer.


Asunto(s)
Mucosa Intestinal/fisiología , MicroARNs/metabolismo , Animales , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Sulfato de Dextran , Humanos , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Mucosa Intestinal/citología , Mesodermo/metabolismo , Ratones , MicroARNs/genética , Miofibroblastos/metabolismo , Comunicación Paracrina , Regeneración , Somatomedinas/metabolismo
7.
Nature ; 623(7988): 792-802, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968392

RESUMEN

Optimal tissue recovery and organismal survival are achieved by spatiotemporal tuning of tissue inflammation, contraction and scar formation1. Here we identify a multipotent fibroblast progenitor marked by CD201 expression in the fascia, the deepest connective tissue layer of the skin. Using skin injury models in mice, single-cell transcriptomics and genetic lineage tracing, ablation and gene deletion models, we demonstrate that CD201+ progenitors control the pace of wound healing by generating multiple specialized cell types, from proinflammatory fibroblasts to myofibroblasts, in a spatiotemporally tuned sequence. We identified retinoic acid and hypoxia signalling as the entry checkpoints into proinflammatory and myofibroblast states. Modulating CD201+ progenitor differentiation impaired the spatiotemporal appearances of fibroblasts and chronically delayed wound healing. The discovery of proinflammatory and myofibroblast progenitors and their differentiation pathways provide a new roadmap to understand and clinically treat impaired wound healing.


Asunto(s)
Receptor de Proteína C Endotelial , Fascia , Cicatrización de Heridas , Animales , Ratones , Diferenciación Celular , Hipoxia de la Célula , Linaje de la Célula , Modelos Animales de Enfermedad , Receptor de Proteína C Endotelial/metabolismo , Fascia/citología , Fascia/lesiones , Fascia/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Inflamación/metabolismo , Inflamación/patología , Miofibroblastos/citología , Miofibroblastos/metabolismo , Transducción de Señal , Análisis de Expresión Génica de una Sola Célula , Piel/citología , Piel/lesiones , Piel/metabolismo , Tretinoina/metabolismo
8.
Immunity ; 50(3): 645-654.e6, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30770250

RESUMEN

The epidermal growth factor receptor ligand Amphiregulin has a well-documented role in the restoration of tissue homeostasis after injury; however, the mechanism by which Amphiregulin contributes to wound repair remains unknown. Here we show that Amphiregulin functioned by releasing bioactive transforming growth factor beta (TGF-ß) from latent complexes via integrin-αV activation. Using acute injury models in two different tissues, we found that by inducing TGF-ß activation on mesenchymal stromal cells (pericytes), Amphiregulin induced their differentiation into myofibroblasts, thereby selectively contributing to the restoration of vascular barrier function within injured tissue. Furthermore, we identified macrophages as a critical source of Amphiregulin, revealing a direct effector mechanism by which these cells contribute to tissue restoration after acute injury. Combined, these observations expose a so far under-appreciated mechanism of how cells of the immune system selectively control the differentiation of tissue progenitor cells during tissue repair and inflammation.


Asunto(s)
Anfirregulina/metabolismo , Macrófagos/metabolismo , Pericitos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo
9.
Nature ; 611(7934): 148-154, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36171287

RESUMEN

Recent single-cell studies of cancer in both mice and humans have identified the emergence of a myofibroblast population specifically marked by the highly restricted leucine-rich-repeat-containing protein 15 (LRRC15)1-3. However, the molecular signals that underlie the development of LRRC15+ cancer-associated fibroblasts (CAFs) and their direct impact on anti-tumour immunity are uncharacterized. Here in mouse models of pancreatic cancer, we provide in vivo genetic evidence that TGFß receptor type 2 signalling in healthy dermatopontin+ universal fibroblasts is essential for the development of cancer-associated LRRC15+ myofibroblasts. This axis also predominantly drives fibroblast lineage diversity in human cancers. Using newly developed Lrrc15-diphtheria toxin receptor knock-in mice to selectively deplete LRRC15+ CAFs, we show that depletion of this population markedly reduces the total tumour fibroblast content. Moreover, the CAF composition is recalibrated towards universal fibroblasts. This relieves direct suppression of tumour-infiltrating CD8+ T cells to enhance their effector function and augments tumour regression in response to anti-PDL1 immune checkpoint blockade. Collectively, these findings demonstrate that TGFß-dependent LRRC15+ CAFs dictate the tumour-fibroblast setpoint to promote tumour growth. These cells also directly suppress CD8+ T cell function and limit responsiveness to checkpoint blockade. Development of treatments that restore the homeostatic fibroblast setpoint by reducing the population of pro-disease LRRC15+ myofibroblasts may improve patient survival and response to immunotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Proteínas de la Membrana , Miofibroblastos , Neoplasias Pancreáticas , Células del Estroma , Animales , Humanos , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Linfocitos T CD8-positivos/inmunología , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Receptores de Factores de Crecimiento Transformadores beta , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Antígeno B7-H1
10.
Nature ; 608(7921): 174-180, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35732739

RESUMEN

Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function1,2 and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts3,4, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique population of activated fibroblasts that is almost entirely absent from non-failing samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts to evaluate this fibrotic cell state transition; knockout of genes associated with fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon TGFß1 stimulation for a subset of genes. Our results provide insights into the transcriptional diversity of the human heart in health and disease as well as new potential therapeutic targets and biomarkers for heart failure.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Núcleo Celular , Perfilación de la Expresión Génica , Insuficiencia Cardíaca , Análisis de la Célula Individual , Sistemas CRISPR-Cas , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Estudios de Casos y Controles , Núcleo Celular/genética , Células Cultivadas , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , RNA-Seq , Transcripción Genética , Factor de Crecimiento Transformador beta1
11.
Nature ; 610(7931): 356-365, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198802

RESUMEN

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Células Estrelladas Hepáticas , Neoplasias Hepáticas , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Proliferación Celular , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Ratones , Miofibroblastos/patología
12.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602479

RESUMEN

Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.


Asunto(s)
Animales Recién Nacidos , Diferenciación Celular , Pulmón , Miofibroblastos , Animales , Miofibroblastos/metabolismo , Miofibroblastos/citología , Ratones , Pulmón/citología , Pulmón/embriología , Pulmón/metabolismo , Linaje de la Célula , Organogénesis , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
13.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38602485

RESUMEN

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Asunto(s)
Diferenciación Celular , Vía de Señalización Hippo , Morfogénesis , Miofibroblastos , Proteínas Serina-Treonina Quinasas , Alveolos Pulmonares , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/citología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Morfogénesis/genética , Mesodermo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Pulmón/metabolismo , Organogénesis/genética , Regulación del Desarrollo de la Expresión Génica
14.
Nature ; 589(7841): 281-286, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176333

RESUMEN

Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present no antifibrotic therapies exist1-3. The origin, functional heterogeneity and regulation of scar-forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map the entire human kidney. This analysis enabled us to map all matrix-producing cells at high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin using sequencing) experiments in mice, and spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and differentiation of human kidney myofibroblasts and their precursors at high resolution. Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 as a myofibroblast-specific target in human kidney fibrosis.


Asunto(s)
Linaje de la Célula , Fibrosis/patología , Túbulos Renales/patología , Miofibroblastos/patología , Insuficiencia Renal Crónica/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Mesodermo/citología , Mesodermo/patología , Ratones , Miofibroblastos/metabolismo , Pericitos/citología , Pericitos/patología , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de la Célula Individual , Transcriptoma
15.
Hum Mol Genet ; 33(12): 1090-1104, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38538566

RESUMEN

RATIONALE: Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis. OBJECTIVES: Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants. METHODS: A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts. RESULTS: Individuals with dominant negative (DN) SMAD3 variant in the MH2 domain exhibited more major events (66.7% vs. 44.0%, P = 0.054), occurring at a younger age compared to those with haploinsufficient (HI) variants. The age at first major event was 35.0 years [IQR 29.0-47.0] in individuals with DN variants in MH2, compared to 46.0 years [IQR 40.0-54.0] in those with HI variants (P = 0.065). Fibroblasts carrying DN SMAD3 variants displayed reduced differentiation potential, contrasting with increased differentiation potential in HI SMAD3 variant fibroblasts. HI SMAD3 variant VSMCs showed elevated SMA expression and altered expression of alternative MYH11 isoforms. DN SMAD3 variant myofibroblasts demonstrated reduced extracellular matrix formation compared to control cell lines. CONCLUSION: Distinguishing between P/LP HI and DN SMAD3 variants can be achieved by assessing differentiation potential, and SMA and MYH11 expression. The differences between DN and HI SMAD3 variant fibroblasts and VSMCs potentially contribute to the differences in disease manifestation. Notably, myofibroblast differentiation seems a suitable alternative in vitro test system compared to VSMCs.


Asunto(s)
Fibroblastos , Estudios de Asociación Genética , Síndrome de Loeys-Dietz , Músculo Liso Vascular , Proteína smad3 , Humanos , Proteína smad3/genética , Proteína smad3/metabolismo , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patología , Masculino , Femenino , Fibroblastos/metabolismo , Adulto , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Diferenciación Celular/genética , Línea Celular , Miocitos del Músculo Liso/metabolismo , Estudios Retrospectivos , Fenotipo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Mutación
16.
EMBO J ; 41(7): e109470, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35212000

RESUMEN

Skin wound repair is essential for organismal survival and failure of which leads to non-healing wounds, a leading health issue worldwide. However, mechanistic understanding of chronic wounds remains a major challenge due to lack of appropriate genetic mouse models. αSMA+ myofibroblasts, a unique class of dermal fibroblasts, are associated with cutaneous wound healing but their precise function remains unknown. We demonstrate that genetic depletion of αSMA+ myofibroblasts leads to pleiotropic wound healing defects, including lack of reepithelialization and granulation, dampened angiogenesis, and heightened hypoxia, hallmarks of chronic non-healing wounds. Other wound-associated FAP+ and FSP1+ fibroblasts do not exhibit such dominant functions. While type I collagen (COL1) expressing cells play a role in the repair process, COL1 produced by αSMA+ myofibroblasts is surprisingly dispensable for wound repair. In contrast, we show that ß1 integrin from αSMA+ myofibroblasts, but not TGFßRII, is essential for wound healing, facilitating contractility, reepithelization, and vascularization. Collectively, our study provides evidence for the functions of myofibroblasts in ß1 integrin-mediated wound repair with potential implications for treating chronic non-healing wounds.


Asunto(s)
Colágeno Tipo I , Miofibroblastos , Cicatrización de Heridas , Animales , Colágeno Tipo I/genética , Fibroblastos , Integrina beta1/genética , Ratones , Piel
17.
Circ Res ; 134(7): 875-891, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38440901

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is a connective tissue disease that can serve as a model to study vascular changes in response to inflammation, autoimmunity, and fibrotic remodeling. Although microvascular changes are the earliest histopathologic manifestation of SSc, the vascular pathophysiology remains poorly understood. METHODS: We applied spatial proteomic approaches to deconvolute the heterogeneity of vascular cells at the single-cell level in situ and characterize cellular alterations of the vascular niches of patients with SSc. Skin biopsies of patients with SSc and control individuals were analyzed by imaging mass cytometry, yielding a total of 90 755 cells including 2987 endothelial cells and 4096 immune cells. RESULTS: We identified 7 different subpopulations of blood vascular endothelial cells (VECs), 2 subpopulations of lymphatic endothelial cells, and 3 subpopulations of pericytes. A novel population of CD34+;αSMA+ (α-smooth muscle actin);CD31+ VECs was more common in SSc, whereas endothelial precursor cells were decreased. Co-detection by indexing and tyramide signal amplification confirmed these findings. The microenvironment of CD34+;αSMA+;CD31+ VECs was enriched for immune cells and myofibroblasts, and CD34+;αSMA+;CD31+ VECs expressed markers of endothelial-to-mesenchymal transition. The density of CD34+;αSMA+;CD31+ VECs was associated with clinical progression of fibrosis in SSc. CONCLUSIONS: Using spatial proteomics, we unraveled the heterogeneity of vascular cells in control individuals and patients with SSc. We identified CD34+;αSMA+;CD31+ VECs as a novel endothelial cell population that is increased in patients with SSc, expresses markers for endothelial-to-mesenchymal transition, and is located in close proximity to immune cells and myofibroblasts. CD34+;αSMA+;CD31+ VEC counts were associated with clinical outcomes of progressive fibrotic remodeling, thus providing a novel cellular correlate for the crosstalk of vasculopathy and fibrosis.


Asunto(s)
Células Progenitoras Endoteliales , Esclerodermia Sistémica , Humanos , Proteómica , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/patología , Fibrosis , Miofibroblastos/patología
18.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072048

RESUMEN

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Mecanotransducción Celular , Miofibroblastos , Proteína de Unión al Calcio S100A4 , Animales , Ratones , Transdiferenciación Celular , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo
19.
Development ; 149(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35302583

RESUMEN

The mesenchyme consists of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling, but are poorly defined morphologically and molecularly. Leveraging single-cell RNA-sequencing, 3D imaging and lineage tracing, we classify the mouse lung mesenchyme into three proximal-distal axes that are associated with the endothelium, epithelium and interstitium, respectively. From proximal to distal: the vascular axis includes vascular smooth muscle cells and pericytes that transition as arterioles and venules ramify into capillaries; the epithelial axis includes airway smooth muscle cells and two populations of myofibroblasts - ductal myofibroblasts, surrounding alveolar ducts and marked by CDH4, HHIP and LGR6, which persist post-alveologenesis, and alveolar myofibroblasts, surrounding alveoli and marked by high expression of PDGFRA, which undergo developmental apoptosis; and the interstitial axis, residing between the epithelial and vascular trees and sharing the marker MEOX2, includes fibroblasts in the bronchovascular bundle and the alveolar interstitium, which are marked by IL33/DNER/PI16 and Wnt2, respectively. Single-cell imaging reveals a distinct morphology of mesenchymal cell populations. This classification provides a conceptual and experimental framework applicable to other organs.


Asunto(s)
Células Madre Mesenquimatosas , Miofibroblastos , Animales , Pulmón , Mesodermo/metabolismo , Ratones , Alveolos Pulmonares
20.
Am J Pathol ; 194(5): 656-672, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38325552

RESUMEN

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Lesión Pulmonar , Animales , Ratones , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Miofibroblastos/metabolismo , Lesión Pulmonar/patología , Proteómica , Pulmón/patología , Fibrosis , Hipoxia/patología , Fibrosis Pulmonar Idiopática/patología , Bleomicina/toxicidad , Regeneración , Péptidos y Proteínas de Señalización Intracelular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA