Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Genomics ; 25(1): 693, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009981

RESUMEN

ARs plays a crucial role in plant morphogenesis and development. The limited and inefficient rooting of scions poses a significant challenge to the efficiency and quality of clonal propagation of forest trees in silvicultural practices. Building on previous research conducted by our team, we found that applying IBA at a concentration of 1000 mg/L significantly enhanced mulberry rooting. This study aims to uncover the molecular mechanisms underlying this effect by analyzing RNA sequencing data from mulberry phloem before and after treatment with IBA over time intervals of 10, 20, 30, and 40 days. We identified 5226 DEGs, which were then classified into GO terms and KEGG pathways, showing significant enrichment in hormone signaling processes. Using WGCNA, we identified eight co-expression modules, two of which were significantly correlated with the IBA treatment. Additionally, 18 transcription factors that potentially facilitate ARs formation in mulberry were identified, and an exploratory analysis on the cis-regulatory elements associated with these transcription factors was conducted. The findings of this study provide a comprehensive understanding of the mechanisms of ARs in mulberry and offer theoretical support for the discovery and utilization of exceptional genetic resources within the species.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Morus , Raíces de Plantas , Factores de Transcripción , Morus/genética , Morus/metabolismo , Morus/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
2.
BMC Plant Biol ; 24(1): 132, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383312

RESUMEN

Seed propagation is the main method of mulberry expansion in China, an important economic forest species. However, seed germination is the most sensitive stage to various abiotic stresses, especially salinity stress. To reveal the molecular regulatory mechanism of mulberry seed germination under salt stress, flavonoid metabolomics and transcriptomics analyses were performed on mulberry seeds germinated under 50 and 100 mmol/L NaCl stress. Analysis of the flavonoid metabolome revealed that a total of 145 differential flavonoid metabolites (DFMs) were classified into 9 groups, 40 flavonols, 32 flavones, 16 chalcones and 14 flavanones. Among them, 61.4% (89) of the DFMs accumulated continuously with increasing salt concentration, reaching the highest level at a 100 mmol/L salt concentration; these DFMs included quercetin-3-O-glucoside (isoquercitrin), kaempferol (3,5,7,4'-tetrahydroxyflavone), quercetin-7-O-glucoside, taxifolin (dihydroquercetin) and apigenin (4',5,7-trihydroxyflavone), indicating that these flavonoids may be key metabolites involved in the response to salt stress. Transcriptional analysis identified a total of 3055 differentially expressed genes (DEGs), most of which were enriched in flavonoid biosynthesis (ko00941), phenylpropanoid biosynthesis (ko00940) and biosynthesis of secondary metabolites (ko01110). Combined analysis of flavonoid metabolomic and transcriptomic data indicated that phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), flavonol synthase (FLS), bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR) and anthocyanidin reductase (ANR) were the key genes involved in flavonoid accumulation during mulberry seed germination under 50 and 100 mmol/L NaCl stress. In addition, three transcription factors, MYB, bHLH and NAC, were involved in the regulation of flavonoid accumulation under salt stress. The results of quantitative real-time PCR (qRT‒PCR) validation showed that the expression levels of 11 DEGs, including 7 genes involved in flavonoid biosynthesis, under different salt concentrations were consistent with the transcriptomic data, and parallel reaction monitoring (PRM) results showed that the expression levels of 6 key enzymes (proteins) involved in flavonoid synthesis were consistent with the accumulation of flavonoids. This study provides a new perspective for investigating the regulatory role of flavonoid biosynthesis in the regulation of mulberry seed germination under salt stress at different concentrations.


Asunto(s)
Morus , Transcriptoma , Morus/genética , Morus/metabolismo , Germinación/genética , Cloruro de Sodio/metabolismo , Semillas/metabolismo , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Oxidorreductasas/metabolismo , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas
3.
Mycorrhiza ; 34(4): 317-339, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38836935

RESUMEN

Broussonetia papyrifera is widely found in cadmium (Cd) contaminated areas, with an inherent enhanced flavonoids metabolism and inhibited lignin biosynthesis, colonized by lots of symbiotic fungi, such as arbuscular mycorrhizal fungi (AMF). However, the physiological and molecular mechanisms by which Rhizophagus irregularis, an AM fungus, regulates flavonoids and lignin in B. papyrifera under Cd stress remain unclear. Here, a pot experiment of B. papyrifera inoculated and non-inoculated with R. irregularis under Cd stress was carried out. We determined flavonoids and lignin concentrations in B. papyrifera roots by LC-MS and GC-MS, respectively, and measured the transcriptional levels of flavonoids- or lignin-related genes in B. papyrifera roots, aiming to ascertain the key components of flavonoids or lignin, and key genes regulated by R. irregularis in response to Cd stress. Without R. irregularis, the concentrations of eriodictyol, quercetin and myricetin were significantly increased under Cd stress. The concentrations of eriodictyol and genistein were significantly increased by R. irregularis, while the concentration of rutin was significantly decreased. Total lignin and lignin monomer had no alteration under Cd stress or with R. irregularis inoculation. As for flavonoids- or lignin-related genes, 26 genes were co-regulated by Cd stress and R. irregularis. Among these genes, BpC4H2, BpCHS8 and BpCHI5 were strongly positively associated with eriodictyol, indicating that these three genes participate in eriodictyol biosynthesis and were involved in R. irregularis assisting B. papyrifera to cope with Cd stress. This lays a foundation for further research revealing molecular mechanisms by which R. irregularis regulates flavonoids synthesis to enhance tolerance of B. papyrifera to Cd stress.


Asunto(s)
Cadmio , Flavonoides , Raíces de Plantas , Flavonoides/metabolismo , Cadmio/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Lignina/metabolismo , Morus/microbiología , Morus/metabolismo , Morus/genética , Estrés Fisiológico , Broussonetia/metabolismo , Broussonetia/microbiología , Broussonetia/genética , Micorrizas/fisiología , Glomeromycota/fisiología , Regulación de la Expresión Génica de las Plantas , Contaminantes del Suelo/metabolismo , Hongos
4.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000525

RESUMEN

Abiotic stress, especially drought stress, poses a significant threat to terrestrial plant growth, development, and productivity. Although mulberry has great genetic diversity and extensive stress-tolerant traits in agroforestry systems, only a few reports offer preliminary insight into the biochemical responses of mulberry leaves under drought conditions. In this study, we performed a comparative metabolomic and transcriptomic analysis on the "drooping mulberry" (Morus alba var. pendula Dippel) under PEG-6000-simulated drought stress. Our research revealed that drought stress significantly enhanced flavonoid accumulation and upregulated the expression of phenylpropanoid biosynthetic genes. Furthermore, the activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content were elevated. In vitro enzyme assays and fermentation tests indicated the involvement of flavonol synthase/flavanone 3-hydroxylase (XM_010098126.2) and anthocyanidin 3-O-glucosyltransferase 5 (XM_010101521.2) in the biosynthesis of flavonol aglycones and glycosides, respectively. The recombinant MaF3GT5 protein was found to recognize kaempferol, quercetin, and UDP-glucose as substrates but not 3-/7-O-glucosylated flavonols and UDP-rhamnose. MaF3GT5 is capable of forming 3-O- and 7-O-monoglucoside, but not di-O-glucosides, from kaempferol. This implies its role as a flavonol 3, 7-O-glucosyltransferase. The findings from this study provided insights into the biosynthesis of flavonoids and could have substantial implications for the future diversified utilization of mulberry.


Asunto(s)
Sequías , Flavonoides , Regulación de la Expresión Génica de las Plantas , Morus , Hojas de la Planta , Proteínas de Plantas , Morus/genética , Morus/metabolismo , Flavonoides/metabolismo , Flavonoides/biosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Perfilación de la Expresión Génica , Quempferoles/metabolismo , Oxigenasas de Función Mixta , Oxidorreductasas
5.
Biomolecules ; 14(3)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38540728

RESUMEN

Phytoplasma disease is one of the most serious infectious diseases that affects the growth and development of mulberry. Long non-coding RNAs (lncRNAs) play an important role in plants' defense systems; however, the contribution of lncRNAs in the response to phytoplasma infection in mulberry is still largely unknown. Herein, strand-specific RNA sequencing was performed to profile the mRNAs and lncRNAs involved in the response to phytoplasma infection in mulberry, and a total of 4169 genes were found to be differentially expressed (DE) between healthy and phytoplasma-infected leaves. Moreover, 1794 lncRNAs were identified, of which 742 lncRNAs were DE between healthy and infected leaves. Target prediction showed that there were 68 and 44 DE lncRNAs which may function as cis and trans-regulators, targeting 54 and 44 DE genes, respectively. These DE target genes are associated with biological processes such as metabolism, signaling, development, transcriptional regulation, etc. In addition, it was found that the expression of the antisense lncRNA (MuLRR-RLK-AS) of the leucine-rich repeat receptor-like protein kinase gene (MuLRR-RLK) was decreased in the phytoplasma-infected leaves. Interestingly, it was found that overexpression of MuLRR-RLK-AS can inhibit the expression of MuLRR-RLK. Moreover, it was found that the expression levels of PTI-related and MAPK genes in the transgenic MuLRR-RLK Arabidopsis plants were significantly higher than those in the wild-type plants when inoculated with pathogens, and the transgenic plants were conferred with strong disease resistance. Our results demonstrate that MuLRR-RLK-AS, as a trans-regulatory factor, can inhibit the expression of the MuLRR-RLK gene and is a negative regulatory factor for mulberry resistance. The information provided is particularly useful for understanding the functions and mechanisms of lncRNAs in the response to phytoplasma infection in mulberry.


Asunto(s)
Morus , ARN Largo no Codificante , Redes Reguladoras de Genes , Enfermedad por Fitoplasma , ARN Largo no Codificante/genética , Morus/genética , Morus/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantas Modificadas Genéticamente/genética , Perfilación de la Expresión Génica
6.
Microbiome ; 12(1): 73, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605412

RESUMEN

BACKGROUND: The utilization of mulberry branch fiber (MF), the largest by-product of the sericulture industry, is an important issue. Supplementation with MF as a dietary fiber for poultry may serve as a useful application. However, little is known about the effects of MF on liver lipid metabolism and egg yolk fatty acid composition of laying hens and their underlying mechanisms. In this study, we performed a multi-omics investigation to explore the variations in liver lipid metabolism, egg yolk fatty acid composition, gut microbiota, and the associations among them induced by dietary MF in laying hens. RESULTS: Dietary MF had no harmful effects on the laying performance or egg quality in laying hens. The enzyme activities associated with lipid metabolism in the liver were altered by the addition of 5% MF, resulting in reduced liver fat accumulation. Furthermore, dietary 5% MF induced the variation in the fatty acid profiles of egg yolk, and increased the polyunsaturated fatty acid (PUFA) content. We observed a significant reduction in the diversity of both gut bacteria and changes in their compositions after the addition of MF. Dietary MF significantly increased the abundance of genes involved in fatty acid biodegradation, and short-chain fatty acids biosynthesis in the gut microbiota of laying hens. The significant correlations were observed between the liver lipid metabolism enzyme activities of hepatic lipase, lipoprotein lipase, and total esterase with gut microbiota, including negative correlations with gut microbiota diversity, and multiple correlations with gut bacteria and viruses. Moreover, various correlations between the contents of PUFAs and monounsaturated fatty acids in egg yolk with the gut microbiota were obtained. Based on partial-least-squares path modeling integrated with the multi-omics datasets, we deduced the direct effects of liver enzyme activities and gut bacterial compositions on liver fat content and the roles of liver enzyme activities and gut bacterial diversity on egg yolk fatty acid composition. CONCLUSIONS: The results indicate that dietary MF is beneficial to laying hens as it reduces the liver fat and improves egg yolk fatty acid composition through the enterohepatic axis. Video Abstract.


Asunto(s)
Ácidos Grasos , Morus , Animales , Femenino , Ácidos Grasos/metabolismo , Yema de Huevo/metabolismo , Morus/metabolismo , Metabolismo de los Lípidos , Pollos/metabolismo , Dieta , Ácidos Grasos Insaturados/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos
7.
Front Endocrinol (Lausanne) ; 15: 1344262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559696

RESUMEN

Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.


Asunto(s)
Hippophae , Morus , Ratas , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Hippophae/metabolismo , Morus/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Transducción de Señal , Pérdida de Peso
8.
Plant Sci ; 344: 112084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614360

RESUMEN

Mulberry (Morus alba L.) is a climacteric and highly perishable fruit. Ethylene has been considered to be an important trigger of fruit ripening process. However, the role of ethylene in the mulberry fruit ripening process remains unclear. In this study, we performed a comprehensive analysis of metabolomic and transcriptomic data of mulberry fruit and the physiological changes accompanying the fruit ripening process. Our study revealed that changes in the accumulation of specific metabolites at different stages of fruit development and ripening were closely correlated to transcriptional changes as well as underlying physiological changes and the development of taste biomolecules. The ripening of mulberry fruits was highly associated with the production of endogenous ethylene, and further application of exogenous ethylene assisted the ripening process. Transcriptomic analysis revealed that differential expression of diverse ripening-related genes was involved in sugar metabolism, anthocyanin biosynthesis, and cell wall modification pathways. Network analysis of transcriptomics and metabolomics data revealed that many transcription factors and ripening-related genes were involved, among which ethylene-responsive transcription factor 3 (MaERF3) plays a crucial role in the ripening process. The role of MaERF3 in ripening was experimentally proven in a transient overexpression assay in apples. Our study indicates that ethylene plays a vital role in modulating mulberry fruit ripening. The results provide a basis for guiding the genetic manipulation of mulberry fruits towards sustainable agricultural practices and improve post-harvest management, potentially enhancing the quality and shelf life of mulberry fruits for sustainable agriculture and forestry.


Asunto(s)
Etilenos , Frutas , Morus , Transcriptoma , Etilenos/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Morus/genética , Morus/metabolismo , Morus/fisiología , Morus/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metabolómica , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma
9.
Food Res Int ; 175: 113689, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129030

RESUMEN

Phenolics of mulberry (Morus alba L.) leaves (MLs) have potential anti-diabetic effects, but they may be chemically modified during gastrointestinal digestion so affect their biological activity. In this study, an in vitro digestion model coupled with Caco-2 monolayer and Caco-2/insulin-resistant HepG2 coculture model were used to study the transport and hypoglycemic effects of phenolics in raw MLs (U-MLs) and solid-fermented MLs (F-MLs). The results of LC-MS/MS analysis showed that the Papp (apparent permeability coefficient, 10-6cm/s) of phenolics in digested MLs ranged from 0.002 ± 0.00 (quercetin 3-O-glucoside) to 60.19 ± 0.67 (ferulic acid), indicating higher phenolic acids absorbability and poor flavonoids absorbability. The Papp values of phenolic extracts of F-MLs in Caco-2 monolayer were significantly higher (p > 0.05) than that of U-MLs. Digested phenolic extracts inhibited the activities of sucrase (60.13 ± 2.03 %) and maltase (82.35 ± 0.78 %) and decreased 9.28 ± 0.84 % of glucose uptake in Caco-2 monolayer. Furthermore, a decrease in the mRNA expression of glucose transporters SGLT1 (0.64 ± 0.18), GLUT2 (0.14 ± 0.02) and the sucrase-isomaltase (0.59 ± 0.00) was observed. In Caco-2/insulin-resistant HepG2 co-culture model, phenolic extracts regulated glucose metabolism by up-regulating the mRNA expressions of IRS1 (9.32-fold), Akt (17.07-fold) and GYS2 (1.5-fold), and down-regulating the GSK-3ß (0.22-fold), PEPCK (0.49-fold) and FOXO1 (0.10-fold) mRNA levels. Both U-MLs and F-MLs could improve glucose metabolism, and the partial least squares (PLS) analysis showed that luteoforol and p-coumaric acid were the primary phenolics that strongly correlated with the hypoglycemic ability of MLs. Results suggested that phenolics of MLs can be used as dietary supplements to regulate glucose metabolism.


Asunto(s)
Hipoglucemiantes , Morus , Humanos , Hipoglucemiantes/farmacología , Técnicas de Cocultivo , Insulina , Morus/metabolismo , Células CACO-2 , Cromatografía Liquida , Glucógeno Sintasa Quinasa 3 beta , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , Fenoles/farmacología , Fenoles/análisis , Glucosa/metabolismo , Sacarasa , ARN Mensajero
10.
J Agric Food Chem ; 72(12): 6339-6346, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488910

RESUMEN

There are many complications of type 2 diabetes mellitus. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two complications related to the increased lipid accumulation in the liver. Previous studies have shown that mulberry leaf water extract (MLE) has the effect of lowering lipid levels in peripheral blood, inhibiting the expression of fatty acid synthase (FASN) and increasing the activity of liver antioxidant enzymes superoxide dismutase (SOD) and catalase. Our study aimed to investigate the role of MLE and its main component, neochlorogenic acid (nCGA), in reducing serum lipid profiles, decreasing lipid deposition in the liver, and improving steatohepatitis levels. We evaluated the antioxidant activity including glutathione (GSH), glutathione reductase (GRd), glutathione peroxidase (GPx), glutathione S-transferase (GST), and superoxide dismutase (SOD), and catalase was tested in mice fed with MLE and nCGA. The results showed a serum lipid profile, and fatty liver scores were significantly increased in the HFD group compared to the db/m and db mice groups, while liver antioxidant activity significantly decreased in the HFD group. When fed with HFD + MLE or nCGA, there was a significant improvement in serum lipid profiles, liver fatty deposition conditions, steatohepatitis levels, and liver antioxidant activity compared to the HFD group. Although MLE and nCGA do not directly affect the blood sugar level of db/db mice, they do regulate abnormalities in lipid metabolism. These results demonstrate the potential of MLE/nCGA as a treatment against glucotoxicity-induced diabetic fatty liver disease in animal models.


Asunto(s)
Ácido Clorogénico/análogos & derivados , Diabetes Mellitus Tipo 2 , Morus , Enfermedad del Hígado Graso no Alcohólico , Ácido Quínico/análogos & derivados , Ratones , Animales , Catalasa/metabolismo , Morus/metabolismo , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Lípidos/farmacología , Hojas de la Planta/metabolismo , Ratones Endogámicos C57BL
11.
Plant Physiol Biochem ; 212: 108773, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820912

RESUMEN

The mulberry fruit is prized for its superior nutrition value and abundant color due to its high flavone content. To enhance comprehension of flavone biogenesis induced by external hormones, we sprayed exogenous ethylene (ETH), indoleacetic acid (IAA) and spermine (SPM) on mulberry fruit (Hongguo 2) during its color-changed period. The levels of anthocyanin, titratable acid, soluble sugar and endogenous hormones were determined after hormone treatment, integrated transcriptome and metabolome analysis were performed for mechanism exploration. Our results indicated that exogenous ETH, SPM, and IAA play important roles in mulberry ripening, including acid reduction, sugar increase and flavonoid synthesis.


Asunto(s)
Flavonoides , Frutas , Ácidos Indolacéticos , Morus , Reguladores del Crecimiento de las Plantas , Morus/metabolismo , Morus/genética , Morus/efectos de los fármacos , Frutas/metabolismo , Frutas/genética , Frutas/efectos de los fármacos , Flavonoides/metabolismo , Flavonoides/biosíntesis , Reguladores del Crecimiento de las Plantas/farmacología , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Etilenos/metabolismo , Etilenos/farmacología , Espermina/metabolismo , Espermina/farmacología , Perfilación de la Expresión Génica , Metaboloma/efectos de los fármacos , Metabolómica
12.
Artículo en Inglés | WPRIM | ID: wpr-1010993

RESUMEN

Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.


Asunto(s)
Ratones , Animales , Tejido Adiposo Pardo , Sirtuina 1/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Morus/metabolismo , Flavonoides/metabolismo , Estudios Prospectivos , Transducción de Señal , Tejido Adiposo Blanco , Hojas de la Planta , Proteína Desacopladora 1/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
13.
Braz. j. microbiol ; 45(2): 721-729, Apr.-June 2014. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-723139

RESUMEN

DNJ, an inhibitor of α-glucosidase, is used to suppress the elevation of postprandial hyperglycemia. In this study, we focus on screening an appropriate microorganism for performing fermentation to improve DNJ content in mulberry leaf. Results showed that Ganoderma lucidum was selected from 8 species and shown to be the most effective in improvement of DNJ production from mulberry leaves through fermentation. Based on single factor and three factor influence level tests by following the Plackett-Burman design, the optimum extraction yield was analyzed by response surface methodology (RSM). The extracted DNJ was determined by reverse-phase high performance liquid chromatograph equipped with fluorescence detector (HPLC-FD). The results of RSM showed that the optimal condition for mulberry fermentation was defined as pH 6.97, potassium nitrate content 0.81% and inoculums volume 2 mL. The extraction efficiency reached to 0.548% in maximum which is 2.74 fold of those in mulberry leaf.


Asunto(s)
1-Desoxinojirimicina/aislamiento & purificación , 1-Desoxinojirimicina/metabolismo , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/metabolismo , Morus/metabolismo , Reishi/metabolismo , Biotecnología/métodos , Cromatografía Líquida de Alta Presión , Medios de Cultivo/química , Fermentación , Concentración de Iones de Hidrógeno , Hojas de la Planta/metabolismo , Reishi/crecimiento & desarrollo , Tecnología Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA