Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Infect Dis ; 24(1): 724, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044181

RESUMEN

BACKGROUND: The Anopheles hyrcanus group is distributed throughout the Oriental and Palaearctic regions and can transmit diseases such as malaria, Japanese encephalitis virus, and filariasis. This investigation marks the inaugural comprehensive study to undertake a phylogenetic analysis of the constituents of this malaria vector group in the northeastern region of Iran, juxtaposed with documented occurrences from different areas within Iran and worldwide. METHODS: Mosquitoes were collected using various methods from nine different locations in Golestan province from April to December 2023. The collected mosquitoes were identified morphologically using valid taxonomic keys. DNA was isolated using the Sambio™ Kit. COI and ITS2 primers were designed using Oligo7 and GeneRunner. PCR and purification were performed with the Qiagen kit. Subsequently, sequencing was carried out at the Mehr Mam GENE Center using an Applied Biosystems 3730XL sequencer. The nucleotide sequences were then analyzed and aligned with GenBank data using BioEdit. Kimura 2-parameter was Utilized for base substitutions. DNA models were selected based on AIC and BIC criteria. Bayesian and Maximum Likelihood trees were constructed, along with a haplotype network. Molecular diversity statistics computed using DnaSP software. RESULTS: In this study, a total of 819 adult mosquitoes were collected. An. hyrcanus was the second most abundant species, predominantly found in Kalaleh and Turkman counties. The sequenced and edited COI and ITS2 sequences were deposited in GenBank under specific accession numbers. Phylogenetic analyses using ML, BI, and NJ methods confirmed a monophyletic lineage for An. hyrcanus with strong support. Molecular analysis of Iranian An. hyrcanus found 11 diverse haplotypes, with the COI gene displaying low diversity. The ITS2 gene revealed two clades - one associating with Iran, Europe, and Asia; the other originating from southwestern Iran. The haplotype network showed two main groups - one from southwest Iran and the other from north Iran. Iran exhibited six distinct haplotypes, while Turkey showcased the highest diversity. CONCLUSIONS: An. hyrcanus in southwestern Iran exhibits a distinct haplogroup, suggesting possible subspecies differentiation. Additional studies are required to validate this phenomenon.


Asunto(s)
Anopheles , Complejo IV de Transporte de Electrones , Mosquitos Vectores , Filogenia , Animales , Irán , Anopheles/genética , Anopheles/clasificación , Complejo IV de Transporte de Electrones/genética , Mosquitos Vectores/genética , Mosquitos Vectores/clasificación , Haplotipos , Variación Genética , Genética de Población , Análisis de Secuencia de ADN , ADN Espaciador Ribosómico/genética
2.
Bull Entomol Res ; 114(2): 302-307, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557482

RESUMEN

Mosquito-borne diseases have emerged in North Borneo in Malaysia due to rapid changes in the forest landscape, and mosquito surveillance is key to understanding disease transmission. However, surveillance programmes involving sampling and taxonomic identification require well-trained personnel, are time-consuming and labour-intensive. In this study, we aim to use a deep leaning model (DL) to develop an application capable of automatically detecting mosquito vectors collected from urban and suburban areas in North Borneo, Malaysia. Specifically, a DL model called MobileNetV2 was developed using a total of 4880 images of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus mosquitoes, which are widely distributed in Malaysia. More importantly, the model was deployed as an application that can be used in the field. The model was fine-tuned with hyperparameters of learning rate 0.0001, 0.0005, 0.001, 0.01 and the performance of the model was tested for accuracy, precision, recall and F1 score. Inference time was also considered during development to assess the feasibility of the model as an app in the real world. The model showed an accuracy of at least 97%, a precision of 96% and a recall of 97% on the test set. When used as an app in the field to detect mosquitoes with the elements of different background environments, the model was able to achieve an accuracy of 76% with an inference time of 47.33 ms. Our result demonstrates the practicality of computer vision and DL in the real world of vector and pest surveillance programmes. In the future, more image data and robust DL architecture can be explored to improve the prediction result.


Asunto(s)
Aedes , Aprendizaje Profundo , Mosquitos Vectores , Animales , Malasia , Mosquitos Vectores/fisiología , Mosquitos Vectores/clasificación , Aedes/fisiología , Aedes/clasificación , Culex/clasificación , Culex/fisiología , Culicidae/clasificación , Culicidae/fisiología
3.
Parasitol Res ; 123(5): 224, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809447

RESUMEN

Mosquitoes (Diptera: Culicidae) are among the most medically significant insects, with several species acting as vectors for human pathogens. Although there are frequent reports of mosquito-borne diseases in the border island areas of Thailand, comprehensive data on the diversity and DNA barcoding of these mosquito species remain limited. This study investigated mosquito diversity in two main archipelagos in Thailand-the Trat archipelago (comprising Chang Island and Kood Island) and the Ranong archipelago (comprising Chang Island and Phayam Island)-and generated DNA barcode data from the mosquitoes found there. The survey across these islands discovered a total of 41 species, highlighting the presence of several species known to be vectors for human diseases. Thirty-seven mosquito species from the island areas were documented to provide reference DNA barcode sequences for mosquitoes in Thailand's island regions. Two species, Aedes fumidus and Finlaya flavipennis, have been added as new COI sequence records in the database. DNA barcoding was highly effective in classifying almost all species by identifying barcoding gaps, except for Anopheles baimaii and Anopheles dirus, which could not be distinguished. Additionally, the study noted that geographical variations might influence certain mosquito species, such as Anopheles barbirostris A3 and Mansonia dives, causing them to be split into two distinct subgroups. The findings of this study are crucial, as they aid in classifying mosquito species using molecular techniques and expand our knowledge of disease vectors in these biodiverse regions.


Asunto(s)
Culicidae , Código de Barras del ADN Taxonómico , Animales , Tailandia , Culicidae/clasificación , Culicidae/genética , Islas , Biodiversidad , Mosquitos Vectores/genética , Mosquitos Vectores/clasificación , Variación Genética , Filogenia , Complejo IV de Transporte de Electrones/genética
4.
An Acad Bras Cienc ; 96(2): e20230452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38922274

RESUMEN

The genus Flavivirus comprises approximately 80 different viruses. Phylogenetic relationships among its members indicate a clear ecological separation between those viruses transmitted by mosquitoes, ticks, with no known vector, and insect-specific Flaviviruses. The diversity and phylogenetic relationships among insect-specific flaviviruses circulating in the central and northern regions of Argentina were studied by performing molecular detection and characterization of the NS5 protein gene in mosquitoes collected in Córdoba, Chaco and Tucumán provinces. Overall, 68 out of 1776 pools were positive. CxFV, KRV and CFAV circulate in the 3 studied provinces. Several mosquito species (Aedes aegypti, Culex bidens, Cx. dolosus, Cx. interfor, Cx. quinquefasciatus, Cx. saltanensis, Haemagogus spegazzini) were found infected. A wide circulation of CxFV was observed in the central-northern region of Argentina. CxFV strains detected in our study clustered with strains circulating in Santa Fe and Buenos Aires provinces (Argentina), and other countries such as Indonesia, Mexico, Uganda and Taiwan. The presence of these viruses in mosquitoes could play an important role from the public health perspective, because it has been shown that previous CxFV infection can increase or block the infection of the mosquito by other pathogenic flaviviruses.


Asunto(s)
Culicidae , Flavivirus , Mosquitos Vectores , Filogenia , Animales , Argentina , Flavivirus/clasificación , Flavivirus/genética , Flavivirus/aislamiento & purificación , Culicidae/virología , Culicidae/clasificación , Mosquitos Vectores/virología , Mosquitos Vectores/clasificación
5.
J Vector Borne Dis ; 61(1): 1-4, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648401

RESUMEN

Malaria remains a major health problem in Kenya despite the huge efforts put in place to control it. The non-relenting malaria threat has partly been attributed to residual malaria transmission driven by vectors that cannot effectively be controlled by the two popularly applied control methods: long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Reports indicate that residual transmission is widely spread in areas where malaria is endemic. This could mean that the World Health Organization's vision of a world free of malaria remains a mirage as elimination and prevention of re-establishment of malaria are rendered unachievable. Amongst the major contributors to residual malaria transmission are cryptic rare species, species of mosquitoes that are morphologically indistinguishable, but isolated genetically, that have not been the focus of malaria control programs. Recent studies have reported extensive new Anopheles cryptic species believed to be involved in malaria transmission in Kenya. This underscores the need to understand these malaria vector species, their distribution and bionomics and their impact on malaria transmission. This article discusses reports of these cryptic species, their importance to malaria transmission, especially in the arid and semi-arid areas, and what can be done to mitigate the situation.


Asunto(s)
Anopheles , Malaria , Control de Mosquitos , Mosquitos Vectores , Animales , Kenia/epidemiología , Anopheles/clasificación , Anopheles/parasitología , Anopheles/fisiología , Malaria/transmisión , Malaria/prevención & control , Mosquitos Vectores/parasitología , Mosquitos Vectores/clasificación , Control de Mosquitos/métodos , Humanos , Insecticidas/farmacología , Mosquiteros Tratados con Insecticida
6.
Med Trop Sante Int ; 4(1)2024 03 31.
Artículo en Francés | MEDLINE | ID: mdl-38846112

RESUMEN

Background and justification: The Republic of Djibouti is located in the Horn of Africa, on the Gulf of Aden and the Bab-el-Mandeb detroit, at the southern entrance to the Red Sea. Prior to its independence in 1977, the Republic of Djibouti was known by two names: "Côte française des Somalis" until 1967, then "Territoire Français de Afars et Issas". As part of our doctoral research on the ecology of mosquitoes in Djibouti, we noted a lack of information on the species encountered, and felt it essential to draw up a list of species before embarking on ecological monitoring. The aim of this work is to survey publications on mosquitoes in Djibouti and to synthesize data from this scientific literature in order to update the national inventory of Culicidae. Materials and methods: An exhaustive search of electronic bibliographic databases (PubMed, Scopus, HAL Open Archive, Science Direct and Google Scholar) was carried out. Reference lists were filtered to access additional articles in order to obtain more data. Two keywords were used: "Djibouti" and "French Territory of Afars and Issas". A selection of scientific publications on Djibouti mosquitoes and/or diseases transmitted by mosquito vectors was made. Researches were conducted in articles selected. The names of the species listed were checked and validated by referring to the site Mosquito Taxonomic Inventory. Results: A total of 13 studies, published between 1970 and 2023, were found. Over the years, the composition of the Culicidae fauna has become well known. In part, the movement of people traveling to and from neighboring countries has been linked to the detection of new species and the reappearance of mosquito species in Djibouti. Numerous studies have been carried out over the years, including purely taxonomic studies and others focusing on the incrimination of mosquito vectors and the characterization of the pathogens they transmit. A total of 37 species, belonging to two subfamilies (Anophelinae and Culicinae), of mosquitoes divided between 7 genera (Aedes, Anopheles, Culex, Culiseta, Lutzia, Mimomyia and Uranotaenia) have been mentioned across the country. The number of species per genus is distributed as follows: 5 species of Aedes including 1 subspecies, 14 species of Anopheles including two subspecies, 12 species of Culex including 1 subspecies, 1 species for each of the genera Culiseta and Lutzia and finally 2 species respectively for the genera Mimomiya and Uranotaenia. Five species have been incriminated as vectors of diseases such as malaria, dengue fever, yellow fever, West Nile virus and chikungunya. Others are known for their potential role in pathogen transmission, including Zika and Rift Valley virus. Discussion - Conclusion: The bibliographical research enabled us to summarize the research carried out over more than half a century in the history of Djibouti, and to update the inventory of the country's mosquitoes, which now includes 37 species. Species names were reviewed and updated, and the case of Anopheles gambiae was also addressed. Two species mentioned as part of the Culicidae fauna of Djibouti appeared to be doubtful and are up for discussion. These results provide a useful information base for defining vector control priorities in Djibouti. They will also inform, guide and facilitate future consultations of our database. In addition, this study will help to identify research ways on mosquitoes in Djibouti.


Asunto(s)
Culicidae , Animales , Culicidae/clasificación , Culicidae/fisiología , Djibouti , Mosquitos Vectores/clasificación
7.
Acta Trop ; 255: 107221, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642695

RESUMEN

Mosquito surveillance for vector-borne disease management relies on traditional morphological and molecular techniques, which are tedious, time-consuming, and costly. The present study describes a simple and efficient recording device that analyzes mosquito sound to estimate species composition, male-female ratio, fed-unfed status, and harmonic convergence interaction using fundamental frequency (F0) bandwidth, harmonics, amplitude, and combinations of these parameters. The study examined a total of 19 mosquito species, including 3 species of Aedes, 7 species of Anopheles, 1 species of Armigeres, 5 species of Culex, 1 species of Hulecoetomyia, and 2 species of Mansonia. Among them, the F0 ranges between 269.09 ± 2.96 Hz (Anopheles culiciformis) to 567.51 ± 3.82 Hz (Aedes vittatus) and the harmonic band (hb) number ranges from 5 (An. culiciformis) to 12 (Ae. albopictus). In terms of species identification, the success rate was 95.32 % with F0, 84.79 % with F0-bandwidth, 84.79 % with harmonic band (hb) diversity, and 49.7 % with amplitude (dB). The species identification rate has gone up to 96.50 % and 97.66 % with the ratio and multiplication of F0 and hb, respectively. This is because of the matrices that combine multiple sound attributes. Comparatively, combinations of the amplitude of the F0 and the higher harmonic frequency band were non-significant for species identification (60.82 %). The fed females have shown a considerable increase in F0 in comparison to the unfed. The males of all the species possessed significantly higher frequencies with respect to the females. Interestingly, the presence of male-female of Ae. vittatus together showed harmonic convergence between the 2nd and 3rd harmonic bands. In conclusion, the sound-based technology is simple, precise, and cost-effective and provides better resolution for species, sex, and fed-unfed status detection in comparison to conventional methods. Real-time surveillance of mosquitoes could potentially utilize this technology.


Asunto(s)
Culicidae , Sonido , Animales , Femenino , Masculino , Culicidae/clasificación , Culicidae/fisiología , Mosquitos Vectores/fisiología , Mosquitos Vectores/clasificación
8.
Parasit Vectors ; 17(1): 282, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956638

RESUMEN

BACKGROUND: Mosquitoes are carriers of tropical diseases, thus demanding a comprehensive understanding of their behaviour to devise effective disease control strategies. In this article we show that machine learning can provide a performance assessment of 2D and 3D machine vision techniques and thereby guide entomologists towards appropriate experimental approaches for behaviour assessment. Behaviours are best characterised via tracking-giving a full time series of information. However, tracking systems vary in complexity. Single-camera imaging yields two-component position data which generally are a function of all three orthogonal components due to perspective; however, a telecentric imaging setup gives constant magnification with respect to depth and thereby measures two orthogonal position components. Multi-camera or holographic techniques quantify all three components. METHODS: In this study a 3D mosquito mating swarm dataset was used to generate equivalent 2D data via telecentric imaging and a single camera at various imaging distances. The performance of the tracking systems was assessed through an established machine learning classifier that differentiates male and non-male mosquito tracks. SHAPs analysis has been used to explore the trajectory feature values for each model. RESULTS: The results reveal that both telecentric and single-camera models, when placed at large distances from the flying mosquitoes, can produce equivalent accuracy from a classifier as well as preserve characteristic features without resorting to more complex 3D tracking techniques. CONCLUSIONS: Caution should be exercised when employing a single camera at short distances as classifier balanced accuracy is reduced compared to that from 3D or telecentric imaging; the trajectory features also deviate compared to those from the other datasets. It is postulated that measurement of two orthogonal motion components is necessary to optimise the accuracy of machine learning classifiers based on trajectory data. The study increases the evidence base for using machine learning to determine behaviours from insect trajectory data.


Asunto(s)
Aprendizaje Automático , Animales , Masculino , Culicidae/clasificación , Culicidae/fisiología , Imagenología Tridimensional/métodos , Mosquitos Vectores/fisiología , Mosquitos Vectores/clasificación , Conducta Animal , Femenino
9.
Parasit Vectors ; 17(1): 306, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014474

RESUMEN

BACKGROUND: The protective effectiveness of vector control in malaria relies on how the implemented tools overlap with mosquito species-specific compositions and bionomic traits. In Ethiopia, targeted entomological data enabling strategic decision-making are lacking around high-risk migrant worker camps in the lowlands and resident communities in the highlands-resulting in suboptimal malaria control strategies for both populations. This study investigates spatial and temporal mosquito behavior, generating baseline evidence that will improve malaria control for both migrant workers in the lowlands and their home communities in the highlands. METHODS: Hourly Centers for Disease Control and Prevention (CDC) light trap collections were performed indoors and outdoors during the peak (October to December 2022) and minor (March to May 2023) malaria transmission seasons. These seasons coincide with the post-long rain and post-short rain seasons, respectively. Eight resident households were sampled from each of four villages in the highlands and eight households/farm structures on and near farms in four villages in the lowlands. The sampling occurred between 18:00 and 06:00. Spatiotemporal vector behaviors and hourly indoor and outdoor mosquito capture rates, used as a proxy for human biting rates, were calculated for overall catches and for individual species. Adult mosquitoes were identified using morphological keys, and a subset of samples were confirmed to species by sequencing ribosomal DNA internal transcribed spacer region 2 (ITS2) and/or mitochondrial DNA cytochrome c oxidase subunit 1 (Cox1). RESULTS: In the highlands, 4697 Anopheles mosquitoes belonging to 13 morphologically identified species were collected. The predominant species of Anopheles identified in the highlands was An. gambiae sensu lato (s.l.) (n = 1970, 41.9%), followed by An. demeilloni (n = 1133, 24.1%) and An. cinereus (n = 520, 11.0%). In the lowland villages, 3220 mosquitoes belonging to 18 morphological species were collected. Anopheles gambiae s.l. (n = 1190, 36.9%), An. pretoriensis (n = 899, 27.9%), and An. demeilloni (n = 564, 17.5%) were the predominant species. A total of 20 species were identified molecularly, of which three could not be identified to species through comparison with published sequences. In highland villages, the indoor Anopheles mosquito capture rate was much greater than the outdoor rate. This trend reversed in the lowlands, where the rate of outdoor captures was greater than the indoor rate. In both highlands and lowlands, Anopheles mosquitoes showed early biting activities in the evening, which peaked between 18:00 and 21:00, for both indoor and outdoor locations. CONCLUSIONS: The high diversity of Anopheles vectors and their variable behaviors result in a dynamic and resilient transmission system impacting both exposure to infectious bites and intervention effectiveness. This creates gaps in protection allowing malaria transmission to persist. To achieve optimal control, one-size-fits-all strategies must be abandoned, and interventions should be tailored to the diverse spatiotemporal behaviors of different mosquito populations.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Estaciones del Año , Animales , Anopheles/clasificación , Anopheles/fisiología , Anopheles/genética , Etiopía , Mosquitos Vectores/clasificación , Mosquitos Vectores/fisiología , Mosquitos Vectores/genética , Humanos , Malaria/transmisión , Malaria/prevención & control , Femenino , Control de Mosquitos/métodos
10.
PLoS One ; 19(7): e0305167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968228

RESUMEN

Malaria elimination in Southeast Asia remains a challenge, underscoring the importance of accurately identifying malaria mosquitoes to understand transmission dynamics and improve vector control. Traditional methods such as morphological identification require extensive training and cannot distinguish between sibling species, while molecular approaches are costly for extensive screening. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and cost-effective tool for Anopheles species identification, yet its current use is limited to few specialized laboratories. This study aimed to develop and validate an online reference database for MALDI-TOF MS identification of Southeast Asian Anopheles species. The database, constructed using the in-house data analysis pipeline MSI2 (Sorbonne University), comprised 2046 head mass spectra from 209 specimens collected at the Thailand-Myanmar border. Molecular identification via COI and ITS2 DNA barcodes enabled the identification of 20 sensu stricto species and 5 sibling species complexes. The high quality of the mass spectra was demonstrated by a MSI2 median score (min-max) of 61.62 (15.94-77.55) for correct answers, using the best result of four technical replicates of a test panel. Applying an identification threshold of 45, 93.9% (201/214) of the specimens were identified, with 98.5% (198/201) consistency with the molecular taxonomic assignment. In conclusion, MALDI-TOF MS holds promise for malaria mosquito identification and can be scaled up for entomological surveillance in Southeast Asia. The free online sharing of our database on the MSI2 platform (https://msi.happy-dev.fr/) represents an important step towards the broader use of MALDI-TOF MS in malaria vector surveillance.


Asunto(s)
Anopheles , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Anopheles/genética , Anopheles/clasificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Mosquitos Vectores/genética , Mosquitos Vectores/clasificación , Malaria/transmisión , Asia Sudoriental , Especificidad de la Especie , Código de Barras del ADN Taxonómico/métodos , Tailandia , Pueblos del Sudeste Asiático
11.
Parasit Vectors ; 17(1): 229, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755689

RESUMEN

BACKGROUND: This study examined population genetics of Aedes aegypti in El Salvador and Honduras, two adjacent countries in Central America. Aedes aegypti is associated with yellow fever, dengue, chikungunya, and Zika. Each year, thousands of cases of dengue are typically reported in El Salvador and Honduras. METHODS: In El Salvador, collections were obtained from five Departments. In Honduras, samples were obtained from six municipalities in four Departments. Mitochondrial DNA cytochrome oxidase I (COI) was sequenced, and consensus sequences were combined with available sequences from El Salvador to determine haplotype number, haplotype diversity, nucleotide diversity, and Tajima's D. A haplotype network was produced to examine the relationship between genotypes. RESULTS: In El Salvador, there were 17 haplotypes, while in Honduras there were 4 haplotypes. In both El Salvador and Honduras, Haplotype 1 is most abundant and widespread. In El Salvador, haplotype H2 was also widespread in 10 of 11 sampled municipalities, but it was not present in Honduras. The capital of El Salvador (San Salvador) and the eastern region of ES had the highest haplotype diversity of regions sampled. CONCLUSIONS: Haplotype 1 and H2 each belong to different phylogenetic lineages of Ae. aegypti. The most geographically widespread haplotype (H1) may have been present the longest and could be a remnant from previous eradication programs. These data may contribute to future control programs for Ae. aegypti in the two countries.


Asunto(s)
Aedes , Variación Genética , Haplotipos , Mosquitos Vectores , Animales , Honduras , Aedes/genética , Aedes/clasificación , El Salvador , Mosquitos Vectores/genética , Mosquitos Vectores/clasificación , Control de Mosquitos , Complejo IV de Transporte de Electrones/genética , Filogenia , ADN Mitocondrial/genética , Genotipo
12.
Parasit Vectors ; 17(1): 260, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880909

RESUMEN

BACKGROUND: The Anopheles dirus complex plays a significant role as a malaria vector in the Greater Mekong Subregion (GMS), with varying degrees of vector competence among species. Accurate identification of sibling species in this complex is essential for understanding malaria transmission dynamics and deploying effective vector control measures. However, the original molecular identification assay, Dirus allele-specific polymerase chain reaction (AS-PCR), targeting the ITS2 region, has pronounced nonspecific amplifications leading to ambiguous results and misidentification of the sibling species. This study investigates the underlying causes of these inconsistencies and develops new primers to accurately identify species within the Anopheles dirus complex. METHODS: The AS-PCR reaction and thermal cycling conditions were modified to improve specificity for An. dirus member species identification. In silico analyses with Benchling and Primer-BLAST were conducted to identify problematic primers and design a new set for Dirus complex species identification PCR (DiCSIP). DiCSIP was then validated with laboratory and field samples of the An. dirus complex. RESULTS: Despite several optimizations by reducing primer concentration, decreasing thermal cycling time, and increasing annealing temperature, the Dirus AS-PCR continued to produce inaccurate identifications for Anopheles dirus, Anopheles scanloni, and Anopheles nemophilous. Subsequently, in silico analyses pinpointed problematic primers with high Guanine-Cytosine (GC) content and multiple off-target binding sites. Through a series of in silico analyses and laboratory validation, a new set of primers for Dirus complex species identification PCR (DiCSIP) has been developed. DiCSIP primers improve specificity, operational range, and sensitivity to identify five complex member species in the GMS accurately. Validation with laboratory and field An. dirus complex specimens demonstrated that DiCSIP could correctly identify all samples while the original Dirus AS-PCR misidentified An. dirus as other species when used with different thermocyclers. CONCLUSIONS: The DiCSIP assay offers a significant improvement in An. dirus complex identification, addressing challenges in specificity and efficiency of the previous ITS2-based assay. This new primer set provides a valuable tool for accurate entomological surveys, supporting effective vector control strategies to reduce transmission and prevent malaria re-introducing in the GMS.


Asunto(s)
Anopheles , Reacción en Cadena de la Polimerasa , Anopheles/genética , Anopheles/clasificación , Animales , Reacción en Cadena de la Polimerasa/métodos , Cartilla de ADN/genética , Mosquitos Vectores/genética , Mosquitos Vectores/clasificación , Malaria/transmisión , Malaria/prevención & control , Asia Sudoriental , Sensibilidad y Especificidad
13.
Parasit Vectors ; 17(1): 329, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095920

RESUMEN

BACKGROUND: Identifying mosquito vectors is crucial for controlling diseases. Automated identification studies using the convolutional neural network (CNN) have been conducted for some urban mosquito vectors but not yet for sylvatic mosquito vectors that transmit the yellow fever. We evaluated the ability of the AlexNet CNN to identify four mosquito species: Aedes serratus, Aedes scapularis, Haemagogus leucocelaenus and Sabethes albiprivus and whether there is variation in AlexNet's ability to classify mosquitoes based on pictures of four different body regions. METHODS: The specimens were photographed using a cell phone connected to a stereoscope. Photographs were taken of the full-body, pronotum and lateral view of the thorax, which were pre-processed to train the AlexNet algorithm. The evaluation was based on the confusion matrix, the accuracy (ten pseudo-replicates) and the confidence interval for each experiment. RESULTS: Our study found that the AlexNet can accurately identify mosquito pictures of the genus Aedes, Sabethes and Haemagogus with over 90% accuracy. Furthermore, the algorithm performance did not change according to the body regions submitted. It is worth noting that the state of preservation of the mosquitoes, which were often damaged, may have affected the network's ability to differentiate between these species and thus accuracy rates could have been even higher. CONCLUSIONS: Our results support the idea of applying CNNs for artificial intelligence (AI)-driven identification of mosquito vectors of tropical diseases. This approach can potentially be used in the surveillance of yellow fever vectors by health services and the population as well.


Asunto(s)
Aedes , Mosquitos Vectores , Redes Neurales de la Computación , Fiebre Amarilla , Animales , Mosquitos Vectores/clasificación , Fiebre Amarilla/transmisión , Aedes/clasificación , Aedes/fisiología , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Culicidae/clasificación , Inteligencia Artificial
14.
Parasit Vectors ; 17(1): 325, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080702

RESUMEN

BACKGROUND: Analyses of the temporal distribution of mosquitoes are presented in statistical charts, but it is difficult to prove in statistics whether differences in peak periods exist among different years or habitats. This study aimed to investigate the application of circular statistics in determining the peak period and a comparison of differences. METHODS: Surveillance of adult mosquitoes was conducted twice a month by light traps in five different habitats from March to November for 3 years (2021-2023) in Qingdao, Shandong Province, China. The Kruskal-Wallis test was performed to determine the differences in mosquito density among different years and habitats. Circular statistics and line charts were employed to determine the peak period and a comparison of differences. RESULTS: Among a total of 14,834 adult mosquitoes comprising five mosquito species from four genera, Culex pipiens pallens was dominant and accounted for 89.6% of the specimens identified. Aedes albopictus, Armigeres subalbatus, and Anopheles sinensis made up 5.7%, 4.2%, and 0.5%, respectively. Culex tritaeniorhynchus accounted for less than 0.1%. The mean mosquito density (females/trap night) for the trapping period was 10.3 in 2021, 5.6 in 2022, and 3.6 in 2023. Among five habitats, the highest mosquito density was 8.9 in livestock sheds, followed by 6.8 in parks, 5.9 in rural dwellings, 5.5 in urban dwellings, and 5.4 in hospitals. No statistically significant differences were found among different years (H = 1.96, d.f. 2, P = 0.376) and habitats (H = 0.45, d.f. 4, P = 0.978). Overall, the peak period of mosquito activity fell in the months from June to September. The peak period among 3 years differed significantly (F(2,7022) = 119.17, P < 0.01), but there were no statistically significant differences in peak period among different habitats (F(4,7020) = -159.09, P > 0.05). CONCLUSION: Circular statistics could be effectively combined with statistical charts to elucidate the peak period of mosquitoes and determine the differences in statistics among different years and habitats. These findings will provide valuable information for mosquito control and public health management.


Asunto(s)
Culicidae , Ecosistema , Animales , China , Culicidae/clasificación , Culicidae/fisiología , Culex/fisiología , Culex/clasificación , Mosquitos Vectores/fisiología , Mosquitos Vectores/clasificación , Femenino , Densidad de Población , Distribución Animal , Estaciones del Año , Anopheles/fisiología , Anopheles/clasificación
15.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734639

RESUMEN

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Asunto(s)
Culicidae , Código de Barras del ADN Taxonómico , Culicidae/anatomía & histología , Culicidae/clasificación , Culicidae/genética , Mosquitos Vectores/anatomía & histología , Mosquitos Vectores/clasificación , Mosquitos Vectores/genética , Código de Barras del ADN Taxonómico/métodos , Ciclooxigenasa 1/genética , ADN Espaciador Ribosómico/genética , Filogenia
16.
Acta Trop ; 257: 107321, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972559

RESUMEN

Fragmented landscapes in Mexico, characterized by a mix of agricultural, urban, and native vegetation cover, presents unique ecological characteristics that shape the mosquito community composition and mosquito-borne diseases. The extent to which landscape influences mosquito populations and mosquito-borne diseases is still poorly understood. This work assessed the effect of landscape metrics -agriculture, urban, and native vegetation cover- on mosquito diversity and arbovirus presence in fragmented tropical deciduous forests in Central Mexico during 2021. Among the 21 mosquito species across six genera we identified, Culex quinquefasciatus was the most prevalent species, followed by Aedes aegypti, Ae. albopictus, and Ae. epactius. Notably, areas with denser native vegetation cover displayed higher mosquito species richness, which could have an impact on phenomena such as the dilution effect. Zika and dengue virus were detected in 85% of captured species, with first reports of DENV in several Aedes species and ZIKV in multiple Aedes and Culex species. These findings underscore the necessity of expanding arbovirus surveillance beyond Ae. aegypti and advocate for a deeper understanding of vector ecology in fragmented landscapes to adequately address public health strategies.


Asunto(s)
Arbovirus , Biodiversidad , Culicidae , Mosquitos Vectores , Animales , Arbovirus/aislamiento & purificación , Arbovirus/clasificación , México/epidemiología , Mosquitos Vectores/virología , Mosquitos Vectores/clasificación , Culicidae/virología , Culicidae/clasificación , Agricultura , Aedes/virología , Aedes/clasificación , Ciudades , Virus Zika/aislamiento & purificación , Virus Zika/genética , Ecosistema
17.
Am J Trop Med Hyg ; 111(2): 324-332, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38955202

RESUMEN

Aedes aegypti-borne viruses (i.e., dengue, chikungunya, and Zika) have become endemic to India, posing a severe threat to public health. Vector control remains the mainstay of disease management due to nonavailability of licensed vaccines/therapeutics. Conventional morpho-taxonomical methods cannot differentiate between closely related sibling species or species complexes, and hence we evaluated two molecular markers, mitochondrial cytochrome c oxidase subunit 1 (Cox1) and nuclear DNA internal transcribed spacer 2 (-2) gene sequences, to characterize seven populations of Ae. aegypti and four medically important mosquito species (Aedes albopictus, Anopheles stephensi, Culex tritaeniorhyncus, and Culex murrelli). DNA extracted from the 11 mosquito populations (two mosquitoes per population) was polymerase chain reaction amplified, sequenced, and analyzed. Molecular characterization was found to be congruent with morphological identification, suggesting no variants or cryptic species exist in Ae. aegypti and the other mosquitoes studied. Phylogenetic analysis with sequences obtained with Cox1 gene of Ae. aegypti and other Aedes and non-Aedes mosquito species showed clustering of sequences from different species representing different clades, distinctly separating one taxon from the other, whereas ITS-2 sequences of Aedes aegypti from across the world clustered tightly. Nucleotide divergence values revealed a low percentage of intraspecies variation and a higher percentage of interspecies variation. The present study authenticates the applicability of Cox1 and ITS-2 in the precise identification of Ae. aegypti mosquitoes against cryptic or sibling species. Cox1 appeared to be a more reliable marker because it showed distinct clustering of mosquito species, and some sequence variations to represent genetic diversity.


Asunto(s)
Aedes , Código de Barras del ADN Taxonómico , Variación Genética , Mosquitos Vectores , Filogenia , Animales , India , Aedes/genética , Aedes/clasificación , Aedes/virología , Mosquitos Vectores/genética , Mosquitos Vectores/clasificación , Complejo IV de Transporte de Electrones/genética , Culex/genética , Culex/clasificación , Culex/virología , Anopheles/genética , Anopheles/clasificación , Especificidad de la Especie
18.
Parasit Vectors ; 17(1): 261, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886827

RESUMEN

BACKGROUND: Malaria transmission in Tanzania is driven by mosquitoes of the Anopheles gambiae complex and Anopheles funestus group. The latter includes An. funestus s.s., an anthropophilic vector, which is now strongly resistant to public health insecticides, and several sibling species, which remain largely understudied despite their potential as secondary vectors. This paper provides the initial results of a cross-country study of the species composition, distribution and malaria transmission potential of members of the Anopheles funestus group in Tanzania. METHODS: Mosquitoes were collected inside homes in 12 regions across Tanzania between 2018 and 2022 using Centres for Disease Control and Prevention (CDC) light traps and Prokopack aspirators. Polymerase chain reaction (PCR) assays targeting the noncoding internal transcribed spacer 2 (ITS2) and 18S ribosomal DNA (18S rDNA) were used to identify sibling species in the An. funestus group and presence of Plasmodium infections, respectively. Where DNA fragments failed to amplify during PCR, we sequenced the ITS2 region to identify any polymorphisms. RESULTS: The following sibling species of the An. funestus group were found across Tanzania: An. funestus s.s. (50.3%), An. parensis (11.4%), An. rivulorum (1.1%), An. leesoni (0.3%). Sequencing of the ITS2 region in the nonamplified samples showed that polymorphisms at the priming sites of standard species-specific primers obstructed PCR amplification, although the ITS2 sequences closely matched those of An. funestus s.s., barring these polymorphisms. Of the 914 samples tested for Plasmodium infections, 11 An. funestus s.s. (1.2%), and 2 An. parensis (0.2%) individuals were confirmed positive for P. falciparum. The highest malaria transmission intensities [entomological inoculation rate (EIR)] contributed by the Funestus group were in the north-western region [108.3 infectious bites/person/year (ib/p/y)] and the south-eastern region (72.2 ib/p/y). CONCLUSIONS: Whereas An. funestus s.s. is the dominant malaria vector in the Funestus group in Tanzania, this survey confirms the occurrence of Plasmodium-infected An. parensis, an observation previously made in at least two other occasions in the country. The findings indicate the need to better understand the ecology and vectorial capacity of this and other secondary malaria vectors in the region to improve malaria control.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Anopheles/genética , Anopheles/clasificación , Anopheles/parasitología , Anopheles/fisiología , Animales , Tanzanía/epidemiología , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Mosquitos Vectores/clasificación , Mosquitos Vectores/fisiología , Malaria/transmisión , Malaria/epidemiología , Humanos , ARN Ribosómico 18S/genética , Reacción en Cadena de la Polimerasa , Femenino , Plasmodium/genética , Plasmodium/aislamiento & purificación , Plasmodium/clasificación , ADN Espaciador Ribosómico/genética
19.
Bol. malariol. salud ambient ; 61(4): 565-587, dic. 2021. ilus., tab.
Artículo en Español | LILACS, LIVECS | ID: biblio-1392424

RESUMEN

Este estudio forma parte de la primera etapa de una serie de estudios sobre la ecología, biodiversidad y biogeografía de los mosquitos de la familia Culicidae de Venezuela, principalmente en Bolívar y Delta Amacuro. El objetivo del estudio fue caracterizar la composición de especies, la abundancia y la biodiversidad de mosquitos (Diptera; Culicidae) en el municipio Gran Sabana del estado Bolívar. Las capturas de mosquitos adultos se realizaron con aspiradores bucales mediante capturas por atracción al cebo humano y con trampas de luz negra. Se determinó la riqueza de especies, su abundancia relativa e índices ecológicos de diversidad Shannon-Wiener (H'), equidad de Simpson (E) y dominancia-D, del área general de estudio y sitios o comunidades de muestreo. Los resultados del estudio, generaron el registro de 7.860 ejemplares adultos de Culicidae identificados a nivel de especie, pertenecientes a 69 especies y 17 géneros, de ellos 7.797 (99,19%) fueron hembras adultas capturadas picando o con trampas de luz y 63 (0,81%) fueron machos capturados con trampas de luz. El 16,6% (1.297) de las hembras fue atraído por trampas de luz y el 83,4% (6.500) por cebo humano. Entre las especies más abundantes del estudio están: Culex quinquefasciatus (26,67 %), Anopheles peryassui (12,32 %), Aedes aegypti (11,87 %), Coquilletidia juxtamansonia (8,28 %), Anopheles braziliensis (6,97 %) Anopheles triannulatus s.l. (6,39 %), Coquilletidia nigricans (2,88 %), Coquilletidia venezuelensis (2,51 %) y Anopheles albitarsis s.l. (2,44 %), las cuales en conjunto representan 80,33 % del total de adultos capturado. Se discuten algunos aspectos sobre su ecología, importancia médica y el riesgo epidemiológico que representan para el país algunas especies reportadas. La diversidad de Shannon-Wiener (H') del área general de estudio fue de 2,665, la equidad de Simpson (E) fue igual a 0,8787222 y la dominancia (D) fue de 0,1213. El mayor índice de diversidad (Shannon-Wiener) ocurrió en Chiririka (2,675), seguido de Betania (2,409), Santa Elena Capital (2,354), Manak-Krü (2,203) y Waramasén (2,181). En cuanto a la riqueza de especies por localidad, las comunidades con mayor riqueza de especies fueron: Santa Elena (Capital), Waramasén y Chiririka con 50, 35 y 30 especies respectivamente, seguidas por San Antonio del Morichal con 23 y Kinok-Pon Parú, con 22 especies(AU)


This is the first part of a series of studies related to biodiversity, ecological and biogeographic aspects of the mosquitoes of Culicidae family in Venezuela. The objective of this study was the ecological characterization of species composition, diversity and abundance of Culicidae mosquitoes (Diptera: Culicidae) in the Gran Sabana Municipality, Bolívar State. Mosquitoes were captured in adult collections, with aspirators on human landing catches and with black light traps. A total of 7.860 adult's mosquitoes were collected and 69 species and 17 genera of Culicidae were identified. A total of 7.797 mosquitoes (99.19%) were females and 63 (0,81%) were males. Some 16,6 % (1.297) of females mosquitoes were attracted to the light traps and 83,4% (6.500) to human bait. The most abundant species in adult stage were: Culex quinquefasciatus (26,67%), Anopheles peryassui (12,32 %), Aedes aegypti (11,87 %), Coquilletidia juxtamansonia (8,28%), Anopheles braziliensis (6,97%), Anopheles triannulatus s.l. (6,39%), Coquilletidia nigricans (2,88%), Coquilletidia venezuelensis (2,51%) and Anopheles albitarsis s.l. (2,44%). Their medical importance of some mosquito species is commented, and some ecological and epidemiological aspects of the mosquito reported are discussed. The diversity index (Shannon-Wiener) of the estudy area was 2,665, the Simpson equity index was 0, 8787222 and the index of dominance was 0, 1213. The higher diversity index was registered in Chiririka (2,675), Betania (2,409), Santa Elena Capital (2,354), Manak-Krü (2,203) and Waramasén (2,181). The higher species richness was registered in Santa Elena (50 species), Waramasén (35 species), Chiririka (30 species), San Antonio del Morichal (23 species) and Kinok-Pon Parú (22 species) (AU)


Asunto(s)
Animales , Aedes , Culex , Biodiversidad , Anopheles , Culicidae , Culicidae/clasificación , Venezuela , Dípteros , Mosquitos Vectores/clasificación
20.
Mem. Inst. Oswaldo Cruz ; 115: e190496, 2020. tab, graf
Artículo en Inglés | LILACS, SES-SP | ID: biblio-1135286

RESUMEN

The geographic distribution of Aedes (Stegomyia) aegypti (L.) in South America has been expanding during the last decades. Herein we present two new distribution records that extend its southern limits towards localities with extremer environmental conditions than reported to date. San Antonio Oeste constitutes the southernmost finding for the continent (40º44'S), whereas Tandil is the infested locality with the coldest mean annual temperature in Argentina (14.17ºC). The projection of a previous distribution model for Ae. aegypti predicts these two cities as positive and suggests several other localities with suitable conditions for vector proliferation beyond its assumed distribution limits.


Asunto(s)
Animales , Masculino , Femenino , Aedes/clasificación , Mosquitos Vectores/clasificación , Densidad de Población , Potentilla , Distribución Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA