Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 881
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(20): 4147-4164.e7, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34453890

RESUMEN

Missense mutations of the tumor suppressor Neurofibromin 2 (NF2/Merlin/schwannomin) result in sporadic to frequent occurrences of tumorigenesis in multiple organs. However, the underlying pathogenicity of NF2-related tumorigenesis remains mostly unknown. Here we found that NF2 facilitated innate immunity by regulating YAP/TAZ-mediated TBK1 inhibition. Unexpectedly, patient-derived individual mutations in the FERM domain of NF2 (NF2m) converted NF2 into a potent suppressor of cGAS-STING signaling. Mechanistically, NF2m gained extreme associations with IRF3 and TBK1 and, upon innate nucleic acid sensing, was directly induced by the activated IRF3 to form cellular condensates, which contained the PP2A complex, to eliminate TBK1 activation. Accordingly, NF2m robustly suppressed STING-initiated antitumor immunity in cancer cell-autonomous and -nonautonomous murine models, and NF2m-IRF3 condensates were evident in human vestibular schwannomas. Our study reports phase separation-mediated quiescence of cGAS-STING signaling by a mutant tumor suppressor and reveals gain-of-function pathogenesis for NF2-related tumors by regulating antitumor immunity.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana/metabolismo , Mutación Missense , Neoplasias/metabolismo , Neurofibromina 2/metabolismo , Nucleotidiltransferasas/metabolismo , Escape del Tumor , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neurofibromina 2/genética , Nucleotidiltransferasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
2.
Cell ; 154(6): 1342-55, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24012335

RESUMEN

Although Merlin/NF2 was discovered two decades ago as a tumor suppressor underlying Neurofibromatosis type II, its precise molecular mechanism remains poorly understood. Recent studies in Drosophila revealed a potential link between Merlin and the Hippo pathway by placing Merlin genetically upstream of the kinase Hpo/Mst. In contrast to the commonly depicted linear model of Merlin functioning through Hpo/Mst, here we show that in both Drosophila and mammals, Merlin promotes downstream Hippo signaling without activating the intrinsic kinase activity of Hpo/Mst. Instead, Merlin directly binds and recruits the effector kinase Wts/Lats to the plasma membrane. Membrane recruitment, in turn, promotes Wts phosphorylation by the Hpo-Sav kinase complex. We further show that disruption of the actin cytoskeleton promotes Merlin-Wts interactions, which implicates Merlin in actin-mediated regulation of Hippo signaling. Our findings elucidate an important molecular function of Merlin and highlight the plasma membrane as a critical subcellular compartment for Hippo signal transduction.


Asunto(s)
Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Neurofibromina 2/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Evolución Biológica , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia
3.
Genes Dev ; 34(7-8): 511-525, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32115406

RESUMEN

The Hippo pathway is a master regulator of tissue homeostasis and organ size. NF2 is a well-established tumor suppressor, and loss of NF2 severely compromises Hippo pathway activity. However, the precise mechanism of how NF2 mediates upstream signals to regulate the Hippo pathway is not clear. Here we report that, in mammalian cells, NF2's lipid-binding ability is critical for its function in activating the Hippo pathway in response to osmotic stress. Mechanistically, osmotic stress induces PI(4,5)P2 plasma membrane enrichment by activating the PIP5K family, allowing for NF2 plasma membrane recruitment and subsequent downstream Hippo pathway activation. An NF2 mutant deficient in lipid binding is unable to activate the Hippo pathway in response to osmotic stress, as measured by LATS and YAP phosphorylation. Our findings identify the PIP5K family as novel regulators upstream of Hippo signaling, and uncover the importance of phosphoinositide dynamics, specifically PI(4,5)P2, in Hippo pathway regulation.


Asunto(s)
Homeostasis/fisiología , Neurofibromina 2/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Vía de Señalización Hippo , Humanos , Ratones , Neurofibromina 2/genética , Presión Osmótica/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Proteínas Señalizadoras YAP
4.
EMBO J ; 42(6): e112863, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36807601

RESUMEN

The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.


Asunto(s)
Proteínas de Drosophila , Vía de Señalización Hippo , Animales , Humanos , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Neurofibromina 2/metabolismo , Drosophila melanogaster/metabolismo , Mamíferos , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
5.
Nature ; 599(7884): 315-319, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707296

RESUMEN

The autosomal dominant monogenetic disease neurofibromatosis type 1 (NF1) affects approximately one in 3,000 individuals and is caused by mutations in the NF1 tumour suppressor gene, leading to dysfunction in the protein neurofibromin (Nf1)1,2. As a GTPase-activating protein, a key function of Nf1 is repression of the Ras oncogene signalling cascade. We determined the human Nf1 dimer structure at an overall resolution of 3.3 Å. The cryo-electron microscopy structure reveals domain organization and structural details of the Nf1 exon 23a splicing3 isoform 2 in a closed, self-inhibited, Zn-stabilized state and an open state. In the closed conformation, HEAT/ARM core domains shield the GTPase-activating protein-related domain (GRD) so that Ras binding is sterically inhibited. In a distinctly different, open conformation of one protomer, a large-scale movement of the GRD occurs, which is necessary to access Ras, whereas Sec14-PH reorients to allow interaction with the cellular membrane4. Zn incubation of Nf1 leads to reduced Ras-GAP activity with both protomers in the self-inhibited, closed conformation stabilized by a Zn binding site between the N-HEAT/ARM domain and the GRD-Sec14-PH linker. The transition between closed, self-inhibited states of Nf1 and open states provides guidance for targeted studies deciphering the complex molecular mechanism behind the widespread neurofibromatosis syndrome and Nf1 dysfunction in carcinogenesis.


Asunto(s)
Microscopía por Crioelectrón , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo , Sitios de Unión , Exones , Humanos , Modelos Moleculares , Neurofibromina 1/metabolismo , Neurofibromina 2/ultraestructura , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestructura , Multimerización de Proteína , Estabilidad Proteica , Zinc/metabolismo
6.
Mol Cell ; 72(2): 328-340.e8, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30293781

RESUMEN

The Hippo pathway plays a crucial role in organ size control and tumor suppression, but its precise regulation is not fully understood. In this study, we discovered that phosphatidic acid (PA)-related lipid signaling is a key regulator of the Hippo pathway. Supplementing PA in various Hippo-activating conditions activates YAP. This PA-related lipid signaling is involved in Rho-mediated YAP activation. Mechanistically, PA directly interacts with Hippo components LATS and NF2 to disrupt LATS-MOB1 complex formation and NF2-mediated LATS membrane translocation and activation, respectively. Inhibition of phospholipase D (PLD)-dependent PA production suppresses YAP oncogenic activities. PLD1 is highly expressed in breast cancer and positively correlates with YAP activation, suggesting their pathological relevance in breast cancer development. Taken together, our study not only reveals a role of PLD-PA lipid signaling in regulating the Hippo pathway but also indicates that the PLD-PA-YAP axis is a potential therapeutic target for cancer treatment.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Ácidos Fosfatidicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Células HEK293 , Vía de Señalización Hippo , Humanos , Estimulante Tiroideo de Acción Prolongada/metabolismo , Ratones , Ratones Desnudos , Neurofibromina 2/metabolismo , Proteínas Nucleares/metabolismo , Fosfolipasa D/metabolismo , Fosfoproteínas/metabolismo
7.
Genes Dev ; 32(17-18): 1201-1214, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143526

RESUMEN

The architectural and biochemical features of the plasma membrane are governed by its intimate association with the underlying cortical cytoskeleton. The neurofibromatosis type 2 (NF2) tumor suppressor merlin and closely related membrane:cytoskeleton-linking protein ezrin organize the membrane:cytoskeleton interface, a critical cellular compartment that both regulates and is regulated by growth factor receptors. An example of this poorly understood interrelationship is macropinocytosis, an ancient process of nutrient uptake and membrane remodeling that can both be triggered by growth factors and manage receptor availability. We show that merlin deficiency primes the membrane:cytoskeleton interface for epidermal growth factor (EGF)-induced macropinocytosis via a mechanism involving increased cortical ezrin, altered actomyosin, and stabilized cholesterol-rich membranes. These changes profoundly alter EGF receptor (EGFR) trafficking in merlin-deficient cells, favoring increased membrane levels of its heterodimerization partner, ErbB2; clathrin-independent internalization; and recycling. Our work suggests that, unlike Ras transformed cells, merlin-deficient cells do not depend on macropinocytic protein scavenging and instead exploit macropinocytosis for receptor recycling. Finally, we provide evidence that the macropinocytic proficiency of NF2-deficient cells can be used for therapeutic uptake. This work provides new insight into fundamental mechanisms of macropinocytic uptake and processing and suggests new ways to interfere with or exploit macropinocytosis in NF2 mutant and other tumors.


Asunto(s)
Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico/fisiología , Receptores ErbB/metabolismo , Neurofibromina 2/fisiología , Pinocitosis , Actomiosina/metabolismo , Animales , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Humanos , Ratones , Neurofibromina 2/genética , Biosíntesis de Proteínas
8.
J Biol Chem ; 300(5): 107212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522513

RESUMEN

As an output effector of the Hippo signaling pathway, the TEAD transcription factor and co-activator YAP play crucial functions in promoting cell proliferation and organ size. The tumor suppressor NF2 has been shown to activate LATS1/2 kinases and interplay with the Hippo pathway to suppress the YAP-TEAD complex. However, whether and how NF2 could directly regulate TEAD remains unknown. We identified a direct link and physical interaction between NF2 and TEAD4. NF2 interacted with TEAD4 through its FERM domain and C-terminal tail and decreased the protein stability of TEAD4 independently of LATS1/2 and YAP. Furthermore, NF2 inhibited TEAD4 palmitoylation and induced the cytoplasmic translocation of TEAD4, resulting in ubiquitination and dysfunction of TEAD4. Moreover, the interaction with TEAD4 is required for NF2 function to suppress cell proliferation. These findings reveal an unanticipated role of NF2 as a binding partner and inhibitor of the transcription factor TEAD, shedding light on an alternative mechanism of how NF2 functions as a tumor suppressor through the Hippo signaling cascade.


Asunto(s)
Vía de Señalización Hippo , Neurofibromina 2 , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Factores de Transcripción de Dominio TEA , Humanos , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Células HEK293 , Lipoilación , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Factores de Transcripción de Dominio TEA/metabolismo , Proteínas Supresoras de Tumor , Ubiquitinación
9.
Circulation ; 149(25): 1960-1979, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38752370

RESUMEN

BACKGROUND: Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS: We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS: Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS: These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Miocitos Cardíacos , Neurofibromina 2 , Humanos , Miocitos Cardíacos/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Sistemas CRISPR-Cas , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología
10.
FASEB J ; 38(13): e23809, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967126

RESUMEN

The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/ß-catenin, Hippo, TGF-ß, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.


Asunto(s)
Carcinogénesis , Neurofibromina 2 , Humanos , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Neurofibromatosis 2/genética , Neurofibromatosis 2/metabolismo , Neurofibromatosis 2/patología , Transducción de Señal , Mutación
11.
FASEB J ; 38(13): e23737, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38953724

RESUMEN

Meningiomas are the most common primary intracranial tumors and account for nearly 30% of all nervous system tumors. Approximately half of meningioma patients exhibit neurofibromin 2 (NF2) gene inactivation. Here, NF2 was shown to interact with the endoplasmic reticulum (ER) calcium (Ca2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in IOMM-Lee, a high-grade malignant meningioma cell line, and the F1 subdomain of NF2 plays a critical role in this interaction. Functional assays indicated that NF2 promotes the phosphorylation of IP3R (Ser 1756) and IP3R-mediated endoplasmic reticulum (ER) Ca2+ release by binding to IP3R1, which results in Ca2+-dependent apoptosis. Knockout of NF2 decreased Ca2+ release and promoted resistance to apoptosis, which was rescued by wild-type NF2 overexpression but not by F1 subdomain deletion truncation overexpression. The effects of NF2 defects on the development of tumors were further studied in mouse models. The decreased expression level of NF2 caused by NF2 gene knockout or mutation affects the activity of the IP3R channel, which reduces Ca2+-dependent apoptosis, thereby promoting the development of tumors. We elucidated the interaction patterns of NF2 and IP3R1, revealed the molecular mechanism through which NF2 regulates IP3R1-mediated Ca2+ release, and elucidated the new pathogenic mechanism of meningioma-related NF2 variants. Our study broadens the current understanding of the biological function of NF2 and provides ideas for drug screening of NF2-associated meningioma.


Asunto(s)
Apoptosis , Señalización del Calcio , Calcio , Receptores de Inositol 1,4,5-Trifosfato , Neoplasias Meníngeas , Meningioma , Animales , Humanos , Ratones , Calcio/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/genética , Meningioma/metabolismo , Meningioma/patología , Meningioma/genética , Neurofibromina 2
12.
J Pathol ; 263(2): 257-269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613194

RESUMEN

Genomic rearrangements of the neurotrophic receptor tyrosine kinase genes (NTRK1, NTRK2, and NTRK3) are the most common mechanism of oncogenic activation for this family of receptors, resulting in sustained cancer cell proliferation. Several targeted therapies have been approved for tumours harbouring NTRK fusions and a new generation of TRK inhibitors has already been developed due to acquired resistance. We established a patient-derived LMNA::NTRK1-rearranged soft-tissue sarcoma cell model ex vivo with an acquired resistance to targeted TRK inhibition. Molecular profiling of the resistant clones revealed an acquired NF2 loss of function mutation that was absent in the parental cell model. Parental cells showed continuous sensitivity to TRK-targeted treatment, whereas the resistant clones were insensitive. Furthermore, resistant clones showed upregulation of the MAPK and mTOR/AKT pathways in the gene expression based on RNA sequencing data and increased sensitivity to MEK and mTOR inhibitor therapy. Drug synergy was seen using trametinib and rapamycin in combination with entrectinib. Medium-throughput drug screening further identified small compounds as potential drug candidates to overcome resistance as monotherapy or in combination with entrectinib. In summary, we developed a comprehensive model of drug resistance in an LMNA::NTRK1-rearranged soft-tissue sarcoma and have broadened the understanding of acquired drug resistance to targeted TRK therapy. Furthermore, we identified drug combinations and small compounds to overcome acquired drug resistance and potentially guide patient care in a functional precision oncology setting. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Resistencia a Antineoplásicos , Reordenamiento Génico , Lamina Tipo A , Mutación , Neurofibromina 2 , Inhibidores de Proteínas Quinasas , Receptor trkA , Sarcoma , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Resistencia a Antineoplásicos/genética , Receptor trkA/genética , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Sarcoma/genética , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Sarcoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Piridonas/farmacología , Benzamidas/farmacología , Pirimidinonas/farmacología , Sirolimus/farmacología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Neoplasias de los Tejidos Blandos/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Transducción de Señal/efectos de los fármacos , Sinergismo Farmacológico , Indazoles
13.
Cell ; 140(4): 477-90, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20178741

RESUMEN

Current models imply that the FERM domain protein Merlin, encoded by the tumor suppressor NF2, inhibits mitogenic signaling at or near the plasma membrane. Here, we show that the closed, growth-inhibitory form of Merlin accumulates in the nucleus, binds to the E3 ubiquitin ligase CRL4(DCAF1), and suppresses its activity. Depletion of DCAF1 blocks the promitogenic effect of inactivation of Merlin. Conversely, enforced expression of a Merlin-insensitive mutant of DCAF1 counteracts the antimitogenic effect of Merlin. Re-expression of Merlin and silencing of DCAF1 implement a similar, tumor-suppressive program of gene expression. Tumor-derived mutations invariably disrupt Merlin's ability to interact with or inhibit CRL4(DCAF1). Finally, depletion of DCAF1 inhibits the hyperproliferation of Schwannoma cells from NF2 patients and suppresses the oncogenic potential of Merlin-deficient tumor cell lines. We propose that Merlin suppresses tumorigenesis by translocating to the nucleus to inhibit CRL4(DCAF1).


Asunto(s)
Proteínas Portadoras/metabolismo , Genes Supresores de Tumor , Mesotelioma/metabolismo , Neurilemoma/metabolismo , Neurofibromina 2/metabolismo , Transporte Activo de Núcleo Celular , Animales , Proteínas Portadoras/química , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Humanos , Modelos Moleculares , Proteínas Serina-Treonina Quinasas , Ubiquitina-Proteína Ligasas
14.
Nature ; 572(7769): 402-406, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341276

RESUMEN

Ferroptosis, a cell death process driven by cellular metabolism and iron-dependent lipid peroxidation, has been implicated in diseases such as ischaemic organ damage and cancer1,2. The enzyme glutathione peroxidase 4 (GPX4) is a central regulator of ferroptosis, and protects cells by neutralizing lipid peroxides, which are by-products of cellular metabolism. The direct inhibition of GPX4, or indirect inhibition by depletion of its substrate glutathione or the building blocks of glutathione (such as cysteine), can trigger ferroptosis3. Ferroptosis contributes to the antitumour function of several tumour suppressors such as p53, BAP1 and fumarase4-7. Counterintuitively, mesenchymal cancer cells-which are prone to metastasis, and often resistant to various treatments-are highly susceptible to ferroptosis8,9. Here we show that ferroptosis can be regulated non-cell-autonomously by cadherin-mediated intercellular interactions. In epithelial cells, such interactions mediated by E-cadherin suppress ferroptosis by activating the intracellular NF2 (also known as merlin) and Hippo signalling pathway. Antagonizing this signalling axis allows the proto-oncogenic transcriptional co-activator YAP to promote ferroptosis by upregulating several ferroptosis modulators, including ACSL4 and TFRC. This finding provides mechanistic insights into the observations that cancer cells with mesenchymal or metastatic property are highly sensitive to ferroptosis8. Notably, a similar mechanism also modulates ferroptosis in some non-epithelial cells. Finally, genetic inactivation of the tumour suppressor NF2, a frequent tumorigenic event in mesothelioma10,11, rendered cancer cells more sensitive to ferroptosis in an orthotopic mouse model of malignant mesothelioma. Our results demonstrate the role of intercellular interactions and intracellular NF2-YAP signalling in dictating ferroptotic death, and also suggest that malignant mutations in NF2-YAP signalling could predict the responsiveness of cancer cells to future ferroptosis-inducing therapies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ferroptosis , Mesotelioma/metabolismo , Mesotelioma/patología , Neurofibromina 2/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Recuento de Células , Coenzima A Ligasas/metabolismo , Células Epiteliales/metabolismo , Femenino , Células HCT116 , Vía de Señalización Hippo , Humanos , Ratones , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Transferrina/metabolismo , Proteínas Señalizadoras YAP
15.
Glia ; 72(8): 1518-1540, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38794866

RESUMEN

In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Quinasas p21 Activadas , Quinasas p21 Activadas/metabolismo , Oligodendroglía/metabolismo , Animales , Vaina de Mielina/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Ratas , Actinas/metabolismo , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Citoesqueleto de Actina/metabolismo
16.
J Virol ; 97(3): e0184622, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916924

RESUMEN

Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.


Asunto(s)
Citomegalovirus , Interferón Tipo I , Humanos , Citomegalovirus/metabolismo , Neurofibromina 2/metabolismo , Neurofibromina 2/farmacología , Proteínas de Unión al ARN/metabolismo , Replicación Viral/fisiología , Antivirales/farmacología , Interferón Tipo I/metabolismo , Dedos de Zinc
17.
Brain ; 146(4): 1697-1713, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36148553

RESUMEN

Schwannoma tumours typically arise on the eighth cranial nerve and are mostly caused by loss of the tumour suppressor Merlin (NF2). There are no approved chemotherapies for these tumours and the surgical removal of the tumour carries a high risk of damage to the eighth or other close cranial nerve tissue. New treatments for schwannoma and other NF2-null tumours such as meningioma are urgently required. Using a combination of human primary tumour cells and mouse models of schwannoma, we have examined the role of the Hippo signalling pathway in driving tumour cell growth. Using both genetic ablation of the Hippo effectors YAP and TAZ as well as novel TEAD palmitoylation inhibitors, we show that Hippo signalling may be successfully targeted in vitro and in vivo to both block and, remarkably, regress schwannoma tumour growth. In particular, successful use of TEAD palmitoylation inhibitors in a preclinical mouse model of schwannoma points to their potential future clinical use. We also identify the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) as a Hippo signalling target, driven by the TAZ protein in human and mouse NF2-null schwannoma cells, as well as in NF2-null meningioma cells, and examine the potential future role of this new target in halting schwannoma and meningioma tumour growth.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Neurilemoma , Animales , Humanos , Ratones , Proliferación Celular , Neurilemoma/genética , Neurilemoma/patología , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo
18.
Mol Cell ; 64(5): 993-1008, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912098

RESUMEN

The Hippo pathway is important for regulating tissue homeostasis, and its dysregulation has been implicated in human cancer. However, it is not well understood how the Hippo pathway becomes dysregulated because few mutations in core Hippo pathway components have been identified. Therefore, much work in the Hippo field has focused on identifying upstream regulators, and a complex Hippo interactome has been identified. Nevertheless, it is not always clear which components are the most physiologically relevant in regulating YAP/TAZ. To provide an overview of important Hippo pathway components, we created knockout cell lines for many of these components and compared their relative contributions to YAP/TAZ regulation in response to a wide range of physiological signals. By this approach, we provide an overview of the functional importance of many Hippo pathway components and demonstrate NF2 and RHOA as important regulators of YAP/TAZ and TAOK1/3 as direct kinases for LATS1/2.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Transducción de Señal/genética , Aciltransferasas , Proteínas de Ciclo Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Silenciamiento del Gen , Células HEK293 , Vía de Señalización Hippo , Humanos , Neurofibromina 2 , Proteínas Nucleares , Fosforilación , Proteínas Serina-Treonina Quinasas , Factores de Transcripción , Proteínas Supresoras de Tumor , Proteína de Unión al GTP rhoA
19.
Nucleic Acids Res ; 50(11): 6052-6066, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35694833

RESUMEN

Genome-scale metabolic models have been recognised as useful tools for better understanding living organisms' metabolism. merlin (https://www.merlin-sysbio.org/) is an open-source and user-friendly resource that hastens the models' reconstruction process, conjugating manual and automatic procedures, while leveraging the user's expertise with a curation-oriented graphical interface. An updated and redesigned version of merlin is herein presented. Since 2015, several features have been implemented in merlin, along with deep changes in the software architecture, operational flow, and graphical interface. The current version (4.0) includes the implementation of novel algorithms and third-party tools for genome functional annotation, draft assembly, model refinement, and curation. Such updates increased the user base, resulting in multiple published works, including genome metabolic (re-)annotations and model reconstructions of multiple (lower and higher) eukaryotes and prokaryotes. merlin version 4.0 is the only tool able to perform template based and de novo draft reconstructions, while achieving competitive performance compared to state-of-the art tools both for well and less-studied organisms.


Asunto(s)
Genoma , Neurofibromina 2 , Algoritmos , Células Procariotas , Programas Informáticos
20.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338806

RESUMEN

Solid tumours can universally evade contact inhibition of proliferation (CIP), a mechanism halting cell proliferation when cell-cell contact occurs. Merlin, an ERM-like protein, crucially regulates CIP and is frequently deactivated in various cancers, indicating its significance as a tumour suppressor in cancer biology. Despite extensive investigations into Merlin's role in cancer, its lack of intrinsic catalytic activity and frequent conformation changes have made it notoriously challenging to study. To address this challenge, we harnessed innovative luciferase technologies to create and validate a NanoBiT split-luciferase biosensor system in which Merlin is cloned between two split components (LgBiT and SmBiT) of NanoLuc luciferase. This system enables precise quantification of Merlin's conformation and activity both in vitro and within living cells. This biosensor significantly enhances the study of Merlin's molecular functions, serving as a potent tool for exploring its contributions to CIP and tumorigenesis.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Neurofibromina 2 , Humanos , Transformación Celular Neoplásica , Genes Supresores de Tumor , Luciferasas , Neurofibromina 2/química , Neurofibromina 2/metabolismo , Técnicas Biosensibles/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA