Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Histochem Cell Biol ; 161(2): 145-163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37855874

RESUMEN

Peripheral nerve injuries lead to significant changes in the dorsal root ganglia, where the cell bodies of the damaged axons are located. The sensory neurons and the surrounding satellite cells rearrange the composition of the intracellular organelles to enhance their plasticity for adaptation to changing conditions and response to injury. Meanwhile, satellite cells acquire phagocytic properties and work with macrophages to eliminate degenerated neurons. These structural and functional changes are not identical in all injury types. Understanding the cellular response, which varies according to the type of injury involved, is essential in determining the optimal method of treatment. In this research, we investigated the numerical and morphological changes in primary sensory neurons and satellite cells in the dorsal root ganglion 30 days following chronic compression, crush, and transection injuries using stereology, high-resolution light microscopy, immunohistochemistry, and behavioral analysis techniques. Electron microscopic methods were employed to evaluate fine structural alterations in cells. Stereological evaluations revealed no statistically significant difference in terms of mean sensory neuron numbers (p > 0.05), although a significant decrease was observed in sensory neuron volumes in the transection and crush injury groups (p < 0.05). Active caspase-3 immunopositivity increased in the injury groups compared to the sham group (p < 0.05). While crush injury led to desensitization, chronic compression injury caused thermal hyperalgesia. Macrophage infiltrations were observed in all injury types. Electron microscopic results revealed that the chromatolysis response was triggered in the sensory neuron bodies from the transection injury group. An increase in organelle density was observed in the perikaryon of sensory neurons after crush-type injury. This indicates the presence of a more active regeneration process in crush-type injury than in other types. The effect of chronic compression injury is more devastating than that of crush-type injury, and the edema caused by compression significantly inhibits the regeneration process.


Asunto(s)
Lesiones por Aplastamiento , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Ratas , Animales , Ganglios Espinales/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Neuropatía Ciática/metabolismo , Nervio Ciático/lesiones , Lesiones por Aplastamiento/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385304

RESUMEN

Inflammation, the body's primary defensive response system to injury and infection, is triggered by molecular signatures of microbes and tissue injury. These molecules also stimulate specialized sensory neurons, termed nociceptors. Activation of nociceptors mediates inflammation through antidromic release of neuropeptides into infected or injured tissue, producing neurogenic inflammation. Because HMGB1 is an important inflammatory mediator that is synthesized by neurons, we reasoned nociceptor release of HMGB1 might be a component of the neuroinflammatory response. In support of this possibility, we show here that transgenic nociceptors expressing channelrhodopsin-2 (ChR2) directly release HMGB1 in response to light stimulation. Additionally, HMGB1 expression in neurons was silenced by crossing synapsin-Cre (Syn-Cre) mice with floxed HMGB1 mice (HMGB1f/f). When these mice undergo sciatic nerve injury to activate neurogenic inflammation, they are protected from the development of cutaneous inflammation and allodynia as compared to wild-type controls. Syn-Cre/HMGB1fl/fl mice subjected to experimental collagen antibody-induced arthritis, a disease model in which nociceptor-dependent inflammation plays a significant pathological role, are protected from the development of allodynia and joint inflammation. Thus, nociceptor HMGB1 is required to mediate pain and inflammation during sciatic nerve injury and collagen antibody-induced arthritis.


Asunto(s)
Proteína HMGB1/metabolismo , Neuronas/fisiología , Nociceptores/metabolismo , Animales , Anticuerpos/inmunología , Artritis/inducido químicamente , Células Cultivadas , Colágeno/inmunología , Citocinas/genética , Citocinas/metabolismo , Femenino , Ganglios Espinales/citología , Regulación de la Expresión Génica , Proteína HMGB1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Neuropatía Ciática/metabolismo
3.
Glia ; 71(7): 1715-1728, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36971019

RESUMEN

Our previous studies indicated that RhoA knockdown or inhibition could alleviate the proliferation, migration, and differentiation of Schwann cells. However, the role of RhoA in Schwann cells during nerve injury and repair is still unknown. Herein, we developed two lines of Schwann cells conditional RhoA knockout (cKO) mice by breeding RhoAflox / flox mice with PlpCre -ERT2 or DhhCre mice. Our results indicate that RhoA cKO in Schwann cells accelerates axonal regrowth and remyelination after sciatic nerve injury, which enhances the recovery of nerve conduction and hindlimb gait, and alleviates the amyotrophy in gastrocnemius muscle. Mechanistic studies in both in vivo and in vitro models revealed that RhoA cKO could facilitate Schwann cell dedifferentiation via JNK pathway. Schwann cell dedifferentiation subsequently promotes Wallerian degeneration by enhancing phagocytosis and myelinophagy, as well as stimulating the production of neurotrophins (NT-3, NGF, BDNF, and GDNF). These findings shed light on the role of RhoA in Schwann cells during nerve injury and repair, indicating that cell type-specific RhoA targeting could serve as a promising molecular therapeutic strategy for peripheral nerve injury.


Asunto(s)
Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Ratones , Animales , Desdiferenciación Celular , Nervio Ciático/metabolismo , Células de Schwann/metabolismo , Neuropatía Ciática/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo
4.
J Neurochem ; 165(6): 842-859, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36971732

RESUMEN

Schwann cells play an essential role in peripheral nerve regeneration by generating a favorable microenvironment. Gastric inhibitory peptide/gastric inhibitory peptide receptor (GIP/GIPR) axis deficiency leads to failure of sciatic nerve repair. However, the underlying mechanism remains elusive. In this study, we surprisingly found that GIP treatment significantly enhances the migration of Schwann cells and the formation of Schwann cell cords during recovery from sciatic nerve injury in rats. We further revealed that GIP and GIPR levels in Schwann cells were low under normal conditions, and significantly increased after injury demonstrated by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Wound healing and Transwell assays showed that GIP stimulation and GIPR silencing could affect Schwann cell migration. In vitro and in vivo mechanistic studies based on interference experiment revealed that GIP/GIPR might promote mechanistic target of rapamycin complex 2 (mTORC2) activity, thus facilitating cell migration; Rap1 activation might be involved in this process. Finally, we retrieved the stimulatory factors responsible for GIPR induction after injury. The results indicate that sonic hedgehog (SHH) is a potential candidate whose expression increased upon injury. Luciferase and chromatin immunoprecipitation (ChIP) assays showed that Gli3, the target transcription factor of the SHH pathway, dramatically augmented GIPR expression. Additionally, in vivo inhibition of SHH could effectively reduce GIPR expression after sciatic nerve injury. Collectively, our study reveals the importance of GIP/GIPR signaling in Schwann cell migration, providing a therapeutic avenue toward peripheral nerve injury.


Asunto(s)
Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Ratas , Animales , Proteínas Hedgehog/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Transducción de Señal/fisiología , Neuropatía Ciática/metabolismo , Nervio Ciático/lesiones , Receptores de Péptidos/metabolismo , Células de Schwann/metabolismo
5.
Biochem Biophys Res Commun ; 674: 36-43, 2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37393642

RESUMEN

Peripheral nerve injuries have common clinical problems that are often accompanied by sensory and motor dysfunction and failure of axonal regeneration. Although various therapeutic approaches have been attempted, full functional recovery and axonal regeneration are rarely achieved in patients. In this study, we investigated the effects of recombinant adeno-associated virus (AAV) of mesencephalic astrocyte-derived neurotrophic factor (AAV-MANF) or placental growth factor (AAV-PlGF) transduced into mesenchymal stem cells (hMSC-MANF and hMSC-PlGF), which were then transplanted using human decellularized nerves (HDN) into sciatic nerve injury model. Our results showed that both AAV-MANF and AAV-PlGF were expressed in MSCs transplanted into the injury site. Behavioral measurements performed 2, 4, 6, 8, and 12 weeks after injury indicated that MANF facilitated the rapid and improved recovery of sensory and motor functions than PlGF. In addition, immunohistochemical analysis was used to quantitatively analyze the myelination of neurofilaments, Schwann cells, and regrowth axons. Both hMSC-MANF and hMSC-PlGF increased axon numbers and immunoreactive areas of axons and Schwann cells compared with the hMSC-GFP group. However, hMSC-MANF significantly improved the thickness of axons and Schwann cells compared with hMSC-PlGF. G-ratio analysis also showed a marked increase in axon myelination in axons thicker than 2.0 µm treated with MANF than that treated with PlGF. Our study suggests that transplantation of hMSC transduced with AAV-MANF has a potential to provide a novel and efficient strategy for promoting functional recovery and axonal regeneration in peripheral nerve injury.


Asunto(s)
Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Humanos , Femenino , Traumatismos de los Nervios Periféricos/metabolismo , Recuperación de la Función/fisiología , Astrocitos/metabolismo , Regeneración Nerviosa/fisiología , Factor de Crecimiento Placentario/metabolismo , Neuropatía Ciática/metabolismo , Axones/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/metabolismo
6.
Neurochem Res ; 48(7): 2161-2174, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36828984

RESUMEN

This study was designed to investigate the analgesic effect of perineural injection of BoNT/A on neuropathic pain induced by sciatic nerve chronic constriction injury (CCI) and possible mechanisms. SD rats were randomly divided into Sham group, CCI group and BoNT/A group. Paw mechanical withdrawal threshold (pMWT) and paw thermal withdrawal latency (pTWL) of each group were detected at different time points after surgery. The expression of myelin markers, autophagy markers and NLRP3 inflammasome-related molecules in injured sciatic nerves were examined at 12 days after surgery. Moreover, C-fiber evoked potential in spinal dorsal horn was recorded. The expression of SNAP-25, neuroinflammation and synaptic plasticity in spinal dorsal horn of each group were examined. Then rats treated with BoNT/A were randomly divided into DMSO group and Wnt agonist group to further explore the regulatory effect of BoNT/A on Wnt pathway. We found that pMWT and pTWL of ipsilateral paw were significantly decreased in CCI group compared with Sham group, which could be improved by perineural injection of BoNT/A at days 7, 9 and 12 after surgery. The peripheral analgesic mechanisms of perineural injection of BoNT/A might be related to the protective effect on myelin sheath by inhibiting NLRP3 inflammasome and promoting autophagy flow, while the central analgesic mechanisms might be associated with inhibition of neuroinflammation and synaptic plasticity in spinal dorsal horn due to inhibiting SNAP-25 and Wnt pathway. As a new route of administration, perineural injection of BoNT/A can relieve CCI induced neuropathic pain probably via both peripheral and central analgesic mechanisms.


Asunto(s)
Neuralgia , Neuropatía Ciática , Ratas , Animales , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Constricción , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Nervio Ciático/lesiones , Analgésicos/farmacología , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Hiperalgesia
7.
Neurochem Res ; 48(6): 1945-1957, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36763313

RESUMEN

The histone H3 lysine 27 trimethylation (H3K27me3) is one of the most important chromatin modifications, which is associated with injury-activated gene expression in Schwann cells (SCs). However, the alteration of genome-wide H3K27me3 enrichments in the development of neuropathic pain is still unknown. Here, we applied the chromatin immunoprecipitation sequencing (ChIP-seq) approach to identify the alteration of differential enrichments of H3K27me3 in chronic constriction injury (CCI) sciatic nerve of rats and potential molecular mechanisms underlying the development of neuropathic pain. Our results indicated that CCI increased the numbers of SCs displaying H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) and H3K27me3 in the sciatic nerve. ChIP-seq data showed that CCI significantly changed H3K27me3 enrichments on gene promoters in the sciatic nerve. Bioinformatics analyses exhibited that genes gaining H3K27me3 were mostly associated with regulation of cell proliferation, response to stress and oxidation-reduction process. Genes losing this mark were enriched in neuronal generation, and MAPK, cAMP as well as ERBB signaling pathways. Importantly, IL1A, CCL2, NOS2, S100A8, BDNF, GDNF, ERBB3 and C3 were identified as key genes in neuropathic pain. CCI led to significant upregulation of key genes in the sciatic nerve. EZH2 inhibitor reversed CCI-induced increases of H3K27me3 and key gene protein levels, which were accompanied by relieved mechanical allodynia and thermal hyperalgesia in CCI rats. These results indicate that genes with differential enrichments of H3K27me3 in SCs function in various cellular processes and pathways, and many are linked to neuropathic pain after peripheral nerve injury.


Asunto(s)
Neuralgia , Neuropatía Ciática , Animales , Ratas , Constricción , Histonas/metabolismo , Hiperalgesia/metabolismo , Lisina/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Nervio Ciático/metabolismo , Neuropatía Ciática/genética , Neuropatía Ciática/metabolismo , Estudio de Asociación del Genoma Completo
8.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047247

RESUMEN

N-docosahexaenoylethanolamine (DHEA), or synaptamide, is an endogenous metabolite of docosahexaenoic acid (DHA) that exhibits synaptogenic and neurogenic effects. In our previous studies, synaptamide administration inhibited the neuropathic pain-like behavior and reduced inflammation in the central nervous system following sciatic nerve injury. In the present study, we examine the effect of synaptamide on the peripheral nervous system in a neuropathic pain condition. The dynamics of ionized calcium-binding adapter molecule 1 (iba-1), CD68, CD163, myelin basic protein, and the production of interleukin 1ß and 6 within the sciatic nerve, as well as the neuro-glial index and the activity of iba-1, CD163, glial fibrillary acidic protein (GFAP), neuronal NO synthase (nNOS), substance P (SP), activating transcription factor 3 (ATF3) in the dorsal root ganglia (DRG), are studied. According to our results, synaptamide treatment (4 mg/kg/day) (1) decreases the weight-bearing deficit after nerve trauma; (2) enhances the remyelination process in the sciatic nerve; (3) shows anti-inflammatory properties in the peripheral nervous system; (4) decreases the neuro-glial index and GFAP immunoreactivity in the DRG; (5) inhibits nNOS- and SP-ergic activity in the DRG, which might contribute to neuropathic pain attenuation. In general, the current study demonstrates the complex effect of synaptamide on nerve injury, which indicates its high potential for neuropathic pain management.


Asunto(s)
Neuralgia , Neuropatía Ciática , Humanos , Etanolaminas/farmacología , Neuropatía Ciática/metabolismo , Nervio Ciático/metabolismo , Antiinflamatorios/metabolismo , Ganglios Espinales/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Neuralgia/metabolismo , Hiperalgesia/metabolismo
9.
J Neurosci ; 41(13): 2870-2882, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33593854

RESUMEN

Interleukin-4 (IL-4) is an anti-inflammatory cytokine, which can be protective in inflammatory and neurologic disorders, and can alleviate pain. Classically, IL-4 diminishes pain by blocking the production of proinflammatory cytokines. Here, we uncovered that IL-4 induces acute antinociception by IL-4 receptor α (IL-4Rα)-dependent release of opioid peptides from M1 macrophages at injured nerves. As a model of pathologic pain, we used a chronic constriction injury (CCI) of the sciatic nerve in male mice. A single application of IL-4 at the injured nerves (14 d following CCI) attenuated mechanical hypersensitivity evaluated by von Frey filaments, which was reversed by co-injected antibody to IL-4Rα, antibodies to opioid peptides such as Met-enkephalin (ENK), ß-endorphin and dynorphin A 1-17, and selective antagonists of δ-opioid, µ-opioid, and κ-opioid receptors. Injured nerves were predominately infiltrated by proinflammatory M1 macrophages and IL-4 did not change their numbers or the phenotype, assessed by flow cytometry and qRT-PCR, respectively. Macrophages isolated from damaged nerves by immunomagnetic separation (IMS) and stimulated with IL-4 dose dependently secreted all three opioid peptides measured by immunoassays. The IL-4-induced release of ENK was diminished by IL-4Rα antibody, intracellular Ca2+ chelator, and inhibitors of protein kinase A (PKA), phosphoinositide 3-kinase (PI3K), and ryanodine receptors. Together, we identified a new opioid mechanism underlying the IL-4-induced antinociception that involves PKA-mediated, PI3K-mediated, ryanodine receptor-mediated, and intracellular Ca2+-mediated release from M1 macrophages of opioid peptides, which activate peripheral opioid receptors in injured tissue.SIGNIFICANCE STATEMENT Interleukin-4 (IL-4) is an anti-inflammatory cytokine, which can ameliorate pain. The IL-4-mediated effects are considered to mostly result from the inhibition of the production of proinflammatory mediators (e.g., IL-1ß, tumor necrosis factor, prostaglandin E2). Here, we found that IL-4 injected at the injured nerves attenuates pain by releasing opioid peptides from the infiltrating macrophages in mice. The opioids were secreted by IL-4 in the intracellular Ca2+-dependent manner and activated local peripheral opioid receptors. These actions represent a novel mode of IL-4 action, since its releasing properties have not been so far reported. Importantly, our findings suggest that the IL-4-opioid system should be targeted in the peripheral damaged tissue, since this can be devoid of central and systemic side effects.


Asunto(s)
Interleucina-4/farmacología , Macrófagos/metabolismo , Neuralgia/metabolismo , Neuralgia/patología , Péptidos Opioides/metabolismo , Animales , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas de Narcóticos/farmacología , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Neuropatía Ciática/metabolismo , Neuropatía Ciática/patología
10.
BMC Neurosci ; 23(1): 37, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725384

RESUMEN

BACKGROUND: Autologous vein wrapping (VW) is used in the treatment of recurrent chronic constriction neuropathy and traumatic peripheral nerve injury. However, use of autologous veins is limited by the inability to obtain longer veins of sufficient length for larger sites. Frozen allograft tissue has several advantages, including its availability for large grafts, avoidance of donor-site morbidity, and shorter operation time. Here, we investigated the effect of frozen vein wrapping (FVW) in Wistar rats as a model of sciatic nerve injury. RESULTS: The rats were grouped by treatment as (i) untreated after chronic constriction injury surgery (CCI; control group), (ii) treated with vein wrapping using freshly isolated vein (VW), and (iii) treated with vein wrapping using frozen vein (FVW). Mechanical allodynia was assessed with von Frey filaments on postoperative days (PODs) 1, 3, 5, 7, and 14. Gene expression of HO-1 was evaluated by quantitative polymerase chain reaction (qPCR). The response of heme oxygenase-1 gene, Hmox-1, expression to VW and FVW was assessed by RT-PCR. Both VW and FVW significantly increased withdrawal threshold levels compared to the untreated control group on POD 1, 3, and 5. Both VW and FVW also showed increased HO-1 expression compared to the CCI group. CONCLUSIONS: FVW increased the withdrawal threshold similar to VW in a rat CCI model for short periods. Frozen vein wrapping using vein allograft without donor site morbidity may be an alternative therapeutic option.


Asunto(s)
Lesiones por Aplastamiento , Neuropatía Ciática , Animales , Constricción , Constricción Patológica/metabolismo , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Ratas , Ratas Wistar , Nervio Ciático/lesiones , Neuropatía Ciática/metabolismo
11.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555183

RESUMEN

Neuropathic pain is a condition affecting the quality of life of a substantial part of the population, but biomarkers and treatment options are still limited. While this type of pain is caused by nerve damage, in which lipids play key roles, lipidome alterations related to nerve injury remain poorly studied. Here, we assessed blood lipidome alterations in a common animal model, the rat sciatic nerve crush injury. We analyzed alterations in blood lipid abundances between seven rats with nerve injury (NI) and eight control (CL) rats in a time-course experiment. For these rats, abundances of 377 blood lipid species were assessed at three distinct time points: immediately after, two weeks, and five weeks post injury. Although we did not detect significant differences between NI and CL at the first two time points, 106 lipids were significantly altered in NI five weeks post injury. At this time point, we found increased levels of triglycerides (TGs) and lipids containing esterified palmitic acid (16:0) in the blood plasma of NI animals. Lipids containing arachidonic acid (20:4), by contrast, were significantly decreased after injury, aligning with the crucial role of arachidonic acid reported for NI. Taken together, these results indicate delayed systematic alterations in fatty acid metabolism after nerve injury, potentially reflecting nerve tissue restoration dynamics.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Ratas , Animales , Lipidómica , Ácido Araquidónico/metabolismo , Calidad de Vida , Neuropatía Ciática/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/metabolismo , Plasma/metabolismo
12.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216130

RESUMEN

Peripheral nerve injury involves divergent alterations within dorsal root ganglia (DRG) neurons sensitized by persistent inflammation. Thymic stromal lymphopoietin (TSLP) production is crucial in the development of chronic inflammatory responses. Herein, we investigate the changes of TSLP expression in rats' DRG neurons between injured and uninjured sides in the same rat. Linalyl acetate (LA) was served as a TSLP inhibitor and given intraperitoneally. Rats were assigned to be group of chronic constriction injury (CCI) of the sciatic nerve and the group of CCI of the sciatic nerve administrated with LA. Over 14 days, the rats were measured for paw withdrawal thresholds. DRGs were collected to assess morphological changes via immunofluorescence study. After receiving CCI, the rats rapidly developed mechanical hyperalgesia. TSLP expression at DRG, on the ipsilateral injured side, was consistent with changes in pain behaviors. TSLP appeared in nerve fibers with both small diameters and large diameters. Additionally, TSLP was expressed mostly in transient receptor potential vanilloid-1 (TRPV1)-positive nociceptive neurons. Administration with LA can attenuate the pain behaviors and expression of TSLP in DRG neurons, and in apoptotic neurons at the injured side, but not in the contra-lateral uninjured side. Overall, these results imply that altered expressions of TSLP in nociceptive DRG neurons contributed to mechanical hyperalgesia in a CCI rat model.


Asunto(s)
Citocinas/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Neuronas/metabolismo , Animales , Lesiones por Aplastamiento/metabolismo , Masculino , Fibras Nerviosas/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo , Neuropatía Ciática/metabolismo , Linfopoyetina del Estroma Tímico
13.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806200

RESUMEN

Spinal microglia are crucial to neuronal hyper-excitability and pain hypersensitivity. The local anesthetic bupivacaine is commonly used for both peripheral and spinal anesthesia. The pain-relief effects resulting from the peripheral and systemic administration of bupivacaine have been previously reported. In this study, the preventive effects of intrathecal bupivacaine administration against neuropathic pain were revealed in a rat model of sciatic nerve chronic constriction injury (CCI). Using a CCI rat model, pain hypersensitivity, characterized by mechanical allodynia and thermal hyperalgesia, correlated well with microglia M1 polarization, activation and pro-inflammatory cytokine expression in both spinal cord dorsal horns and sciatic nerves. Bupivacaine attenuated pain behaviors and inflammatory alternations. We further identified that the Interferon Regulatory Factor 5 (IRF5)/P2X Purinoceptor 4 (P2X4R) and High Mobility Group Box 1 (HMGB1)/Toll-Like Receptor 4 (TLR4)/NF-κB inflammatory axes may each play pivotal roles in the acquisition of microglia M1 polarization and pro-inflammatory cytokine expression under CCI insult. The relief of pain paralleled with the suppression of microglia M1 polarization, elevation of microglia M2 polarization, and inhibition of IRF5/P2X4R and HMGB1/TLR4/NF-κB in both the spinal cord dorsal horns and sciatic nerve. Our findings provide molecular and biochemical evidence for the anti-neuropathic effect of preventive bupivacaine.


Asunto(s)
Lesiones por Aplastamiento , Proteína HMGB1 , Neuralgia , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Animales , Bupivacaína/farmacología , Constricción , Lesiones por Aplastamiento/metabolismo , Citocinas/metabolismo , Proteína HMGB1/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Inyecciones Espinales , Factores Reguladores del Interferón/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo , Neuropatía Ciática/metabolismo , Médula Espinal/metabolismo , Receptor Toll-Like 4/metabolismo
14.
J Neurosci ; 40(50): 9602-9616, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33158964

RESUMEN

Functional recovery in the end target muscle is a determinant of outcome after peripheral nerve injury. The neuromuscular junction (NMJ) provides the interface between nerve and muscle and includes non-myelinating terminal Schwann cells (tSCs). After nerve injury, tSCs extend cytoplasmic processes between NMJs to guide axon growth and NMJ reinnervation. The mechanisms related to NMJ reinnervation are not known. We used multiple mouse models to investigate the mechanisms of NMJ reinnervation in both sexes, specifically whether macrophage-derived vascular endothelial growth factor-A (Vegf-A) is crucial to establishing NMJ reinnervation at the end target muscle. Both macrophage number and Vegf-A expression increased in end target muscles after nerve injury and repair. In mice with impaired recruitment of macrophages and monocytes (Ccr2-/- mice), the absence of CD68+ cells (macrophages) in the muscle resulted in diminished muscle function. Using a Vegf-receptor 2 (VegfR2) inhibitor (cabozantinib; CBZ) via oral gavage in wild-type (WT) mice resulted in reduced tSC cytoplasmic process extension and decreased NMJ reinnervation compared with saline controls. Mice with Vegf-A conditionally knocked out in macrophages (Vegf-Afl/fl; LysMCre mice) demonstrated a more prolonged detrimental effect on NMJ reinnervation and worse functional muscle recovery. Together, these results show that contributions of the immune system are integral for NMJ reinnervation and functional muscle recovery after nerve injury.SIGNIFICANCE STATEMENT This work demonstrates beneficial contributions of a macrophage-mediated response for neuromuscular junction (NMJ) reinnervation following nerve injury and repair. Macrophage recruitment occurred at the NMJ, distant from the nerve injury site, to support functional recovery at the muscle. We have shown hindered terminal Schwann cell (tSC) injury response and NMJ recovery with inhibition of: (1) macrophage recruitment after injury; (2) vascular endothelial growth factor receptor 2 (VegfR2) signaling; and (3) Vegf secretion from macrophages. We conclude that macrophage-derived Vegf is a key component of NMJ recovery after injury. Determining the mechanisms active at the end target muscle after motor nerve injury reveals new therapeutic targets that may translate to improve motor recovery following nerve injury.


Asunto(s)
Macrófagos/metabolismo , Regeneración Nerviosa/fisiología , Unión Neuromuscular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Recuperación de la Función/fisiología , Células de Schwann/metabolismo , Neuropatía Ciática/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
15.
J Neurophysiol ; 126(6): 1948-1958, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758279

RESUMEN

Reflex abnormalities mediated by proprioceptive sensory neurons after peripheral nerve injury (PNI) can limit functional improvement, leaving patients with disability that affects their quality of life. We examined postinjury calcium transients in a subpopulation of dorsal root ganglion (DRG) neurons consisting primarily of proprioceptors to determine whether alterations in calcium homeostasis are present in proprioceptors, as has been documented in other DRG neurons after PNI. Using transgenic mice, we restricted expression of the calcium indicator GCaMP6s to DRG neurons containing parvalbumin (PV). Mice of both sexes were randomly assigned to sham, sciatic nerve crush, or sciatic nerve transection and resuture conditions. Calcium transients were recorded from ex vivo preparations of animals at one of three postsurgery time points: 1-3 days, 7-11 days, and after 60 days of recovery. Results demonstrated that the post-PNI calcium transients of PV DRG neurons are significantly different than sham. Abnormalities were not present during the acute response to injury (1-3 days), but transients were significantly different than sham at the recovery stage where axon regeneration is thought to be underway (7-11 days). During late-stage recovery (60 days postinjury), disturbances in the decay time course of calcium transients in transection animals persisted, whereas parameters of transients from crush animals returned to normal. These findings identify a deficit in calcium homeostasis in proprioceptive neurons, which may contribute to the failure to fully recover proprioceptive reflexes after PNI. Significant differences in the calcium transients of crush versus transection animals after reinnervation illustrate calcium homeostasis alterations are distinctive to injury type.NEW & NOTEWORTHY This study examines calcium homeostasis after peripheral nerve injury in dorsal root ganglion (DRG) neurons expressing parvalbumin, a group of large-diameter afferents primarily consisting of proprioceptors, using two-photon calcium imaging in the intact DRG. Our findings identify aberrant calcium homeostasis as an additional source of sensory neuron dysfunction following peripheral nerve injury, uncover differences between two injury models, and track how these changes develop and resolve over the course of recovery.


Asunto(s)
Calcio/metabolismo , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Parvalbúminas/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Propiocepción/fisiología , Neuropatía Ciática/metabolismo , Células Receptoras Sensoriales/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Homeostasis/fisiología , Masculino , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Compresión Nerviosa
16.
J Neurochem ; 158(5): 1151-1171, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34287873

RESUMEN

Individual differences in the effects of a chronic neuropathic injury on social behaviours characterize both the human experience and pre-clinical animal models. The impacts of these changes to the well-being of the individual are often underappreciated. Earlier work from our laboratory using GeneChip® microarrays identified increased cholecystokinin (CCK) gene expression in the periaqueductal gray (PAG) of rats that showed persistent changes in social interactions during a Resident-Intruder encounter following sciatic nerve chronic constriction injury (CCI). In this study, we confirmed these gene regulation patterns using RT-PCR and identified the anatomical location of the CCK-mRNA as well as the translated CCK peptides in the midbrains of rats with a CCI. We found that rats with persistent CCI-induced changes in social behaviours had increased CCK-mRNA in neurons of the ventrolateral PAG and dorsal raphe nuclei, as well as increased CCK-8 peptide expression in terminal boutons located in the lateral and ventrolateral PAG. The functional significance of these changes was explored by microinjecting small volumes of CCK-8 into the PAG of uninjured rats and observing their Resident-Intruder social interactions. Disturbances to social interactions identical to those observed in CCI rats were evoked when injection sites were located in the rostral lateral and ventrolateral PAG. We suggest that CCI-induced changes in CCK expression in these PAG regions contributes to the disruptions to social behaviours experienced by a subset of individuals with neuropathic injury.


Asunto(s)
Colecistoquinina/biosíntesis , Reacción de Fuga/fisiología , Sustancia Gris Periacueductal/metabolismo , Neuropatía Ciática/metabolismo , Interacción Social , Animales , Reacción de Fuga/efectos de los fármacos , Masculino , Microinyecciones/métodos , Sustancia Gris Periacueductal/efectos de los fármacos , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/psicología , Ratas , Ratas Sprague-Dawley , Neuropatía Ciática/patología , Neuropatía Ciática/psicología , Sincalida/administración & dosificación
17.
J Neurochem ; 157(6): 1759-1773, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32219848

RESUMEN

Ascorbic acid (vitamin C) is critical for Schwann cells to myelinate peripheral nerve axons during development and remyelination after injury. However, its exact mechanism remains elusive. Vitamin C is a dietary nutrient that was recently discovered to promote active DNA demethylation. Schwann cell myelination is characterized by global DNA demethylation in vivo and may therefore be regulated by vitamin C. We found that vitamin C induces a massive transcriptomic shift (n = 3,848 genes) in primary cultured Schwann cells while simultaneously producing a global increase in genomic 5-hydroxymethylcytosine (5hmC), a DNA demethylation intermediate which regulates transcription. Vitamin C up-regulates 10 pro-myelinating genes which exhibit elevated 5hmC content in both the promoter and gene body regions of these loci following treatment. Using a mouse model of human vitamin C metabolism, we found that maternal dietary vitamin C deficiency causes peripheral nerve hypomyelination throughout early development in resulting offspring. Additionally, dietary vitamin C intake regulates the expression of myelin-related proteins such as periaxin (PRX) and myelin basic protein (MBP) during development and remyelination after injury in mice. Taken together, these results suggest that vitamin C cooperatively promotes myelination through 1) increased DNA demethylation and transcription of pro-myelinating genes, and 2) its known role in stabilizing collagen helices to form the basal lamina that is necessary for myelination.


Asunto(s)
Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/metabolismo , Desmetilación del ADN/efectos de los fármacos , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/fisiología , Animales , Ácido Ascórbico/genética , Deficiencia de Ácido Ascórbico/tratamiento farmacológico , Deficiencia de Ácido Ascórbico/genética , Deficiencia de Ácido Ascórbico/metabolismo , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de la Mielina/genética , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/genética , Ratas Endogámicas F344 , Células de Schwann/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/genética , Neuropatía Ciática/metabolismo
18.
Neurobiol Dis ; 155: 105383, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33945876

RESUMEN

While several new translational strategies to enhance regrowth of peripheral axons have been identified, combined approaches with different targets are rare. Moreover, few have been studied after a significant delay when growth programs are already well established and regeneration-related protein expression has waned. Here we study two approaches, Rb1 (Retinoblastoma 1) knockdown that targets overall neuron plasticity, and near nerve insulin acting as a growth factor. Both are validated to boost regrowth only at the outset of regeneration. We show that local delivery of Rb1 siRNA alone, with electroporation to an area of prior sciatic nerve injury generated knockdown of Rb1 mRNA in ipsilateral lumbar dorsal root ganglia. While mice treated with Rb1-targeted siRNA, compared with scrambled control siRNA, starting 2 weeks after the onset of regeneration, had only limited behavioural or electrophysiological benefits, they had enhanced reinnervation of epidermal axons. We next confirmed that intrinsic Rb1 knockdown combined with exogenous insulin had dramatic synergistic impacts on the growth patterns of adult sensory neurons studied in vitro, prompting analysis of a combined approach in vivo. Using an identical delayed post-injury protocol, we noted that added insulin not only augmented epidermal reinnervation rendered by Rb1 knockdown alone but also improved indices of mechanical sensation and motor axon recovery. The findings illustrate that peripheral neurons that are well into attempted regrowth retain their responsiveness to both intrinsic and exogenous approaches that improve their recovery. We also identify a novel local approach to manipulate gene expression and outcome in regrowing axons.


Asunto(s)
Axones/metabolismo , Regeneración Nerviosa/fisiología , Proteínas de Unión a Retinoblastoma/deficiencia , Neuropatía Ciática/metabolismo , Animales , Axones/patología , Técnicas de Silenciamiento del Gen/métodos , Masculino , Ratones , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Ratas , Proteínas de Unión a Retinoblastoma/antagonistas & inhibidores , Proteínas de Unión a Retinoblastoma/genética , Neuropatía Ciática/genética , Neuropatía Ciática/patología
19.
Neurochem Res ; 46(4): 957-963, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33566299

RESUMEN

The complex pathogenesis and limited efficacy of available treatment make neuropathic pain difficult for long periods of time. Several findings suggested the regulatory role of microRNA in the development of neuropathic pain. This study aims to investigate the functional role of miR-122-5p in the development of neuropathic pain. Down-regulation of miR-122-5p was observed in spinal cords of rats with neuropathic pain. We also found that overexpressing miR-122-5p by intrathecal injection of miR-122-5p lentivirus in a mouse model of chronic sciatic nerve injury (CCI) prevented neuropathic pain behavior. In HEK-293 T cells, luciferase activity was significantly decreased in the transfection group with mimic-miR-122-5p in wild-type PDK4 reporter, compared with mutant PDK4 reporter. Increased PDK4 expression was also observed during the progression of neuropathic pain. Intrathecal injection of both mimic-miR-122-5p and shPDK4 in CCI mice downregulated PDK4 expression to a lower level when compared with injected with shPDK4. In CCI mice, transfection of shPDK4 suppressed mechanical allodynia and thermal hyperalgesia, while co-transfection of shPDK4 and LV-miR-122-5p resulted in stronger levels of mechanical allodynia and thermal hyperalgesia inhibition. Taken together, the data suggest that miR-122-5p inhibits PDK4 expression, attenuating neuropathic pain. This result suggests the potential role of miR-122-5p acting as a target for the treatment of neuropathic pain.


Asunto(s)
MicroARNs/metabolismo , Neuralgia/fisiopatología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Neuropatía Ciática/fisiopatología , Animales , Femenino , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Neuralgia/metabolismo , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Neuropatía Ciática/metabolismo , Regulación hacia Arriba/fisiología
20.
Neurochem Res ; 46(12): 3213-3221, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34406548

RESUMEN

In numerous studies, microRNAs (miRNAs) have been authenticated to play vital roles in the pathophysiology of neuropathic pain and other neurological diseases. In our study, we focused on evaluating miR-378 and its potential effects in neuropathic pain development, as well as the underlying molecular mechanisms. Primarily, a chronic sciatic nerve injury (CCI) rat model was established. Next, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to measure the expression levels of miR-378 and EZH2 mRNA; the EZH2 protein expression levels were detected by western blot. A luciferase activity assay monitored the interaction of miR-378 and EZH2. Mechanical and thermal hyperalgesia was also performed to quantitate the effects of overexpression of miR-378 or EZH2 on the CCI rats. We found that miR-378 was down-regulated in the CCI rats, and the overexpression of miR-378 produced significant relief in their pain management. EZH2 was the downstream gene of miR-378 and was negatively regulated by miR-378. The up-regulation of EZH2 reduced the inhibitory effects of miR-378 on the development of neuropathic pain in the CCI rats. miR-378 acts as an inhibitor in the progression of neuropathic pain via targeting EZH2; the miR-378/EZH2 axis may be a novel target for the diagnosis and therapy of neuropathic pain in clinical treatment.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , MicroARNs/genética , Neuralgia/prevención & control , Traumatismos de los Nervios Periféricos/prevención & control , Neuropatía Ciática/prevención & control , Animales , Interleucina-6/metabolismo , Masculino , MicroARNs/administración & dosificación , Neuralgia/etiología , Neuralgia/metabolismo , Neuralgia/patología , Traumatismos de los Nervios Periféricos/etiología , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Sprague-Dawley , Neuropatía Ciática/etiología , Neuropatía Ciática/metabolismo , Neuropatía Ciática/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA