Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556880

RESUMEN

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Asunto(s)
Bombyx , Nosema , Animales , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiología , Perfilación de la Expresión Génica , Proliferación Celular , Lípidos , Bombyx/genética
2.
Arch Insect Biochem Physiol ; 116(4): e22099, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39137216

RESUMEN

Nosema ceranae is a microsporidian parasite that threatens current apiculture. N. ceranae-infected honey bees (Apis mellifera) exhibit morbid physiological impairments and reduced honey production, malnutrition, shorter life span, and higher mortality than healthy honey bees. In this study, we found that dimethyl sulfoxide (DMSO) could enhance the survival rate of N. ceranae-infected honey bees. Therefore, we investigated the effect of DMSO on N. ceranae-infected honey bees using comparative RNA sequencing analysis. Our results revealed that DMSO was able to affect several biochemical pathways, especially the metabolic-related pathways in N. ceranae-infected honey bees. Based on these findings, we conclude that DMSO may be a useful alternative for treating N. ceranae infection in apiculture.


Asunto(s)
Dimetilsulfóxido , Nosema , Animales , Nosema/efectos de los fármacos , Nosema/fisiología , Abejas/microbiología , Dimetilsulfóxido/farmacología , Microsporidiosis/veterinaria
3.
J Invertebr Pathol ; 203: 108074, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38350524

RESUMEN

Most honey bee pathogens, such as Vairimorpha (Nosema), cannot be rapidly and definitively diagnosed in a natural setting, consequently there is typically the spread of these diseases through shared and re-use of beekeeping equipment. Furthermore, there are no viable treatment options available for Nosema spores to aid in managing the spread of this bee disease. We therefore aimed to develop a new method using novel Zinc Phthalocyanine (ZnPc) as a photosensitizer for the photodynamic inactivation of Nosema spores that could be used for the decontamination of beekeeping equipment. Nosema spores were propagated for in vitro testing using four caged Apis mellifera honey bees. The ZnPc treatment was characterized, encapsulated with a liposome, and then used as either a 10 or 100 µM treatment for the freshly harvested Nosema spores, for either a 30 and or 60-minute time period, under either light or dark conditions, in-vitro, in 96-well plates. In the dark treatment, after 30-min, the ZnPc 100 µM treatment, caused a 30 % Nosema mortality, while this increased to 80 % at the same concentration after the light treatment. The high rate of anti-spore effects, in a short period of time, supports the notion that this could be an effective treatment for managing honey bee Nosema infections in the future. Our results also suggest that the photo activation of the treatment could be applied in the field setting and this would increase the sterilization of beekeeping equipment against Nosema.


Asunto(s)
Isoindoles , Nosema , Compuestos Organometálicos , Compuestos de Zinc , Abejas , Animales , Nosema/fisiología , Apicultura
4.
Parasitol Res ; 123(5): 204, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709330

RESUMEN

In recent years, there has been growing concern on the potential weakening of honey bees and their increased susceptibility to pathogens due to chronic exposure to xenobiotics. The present work aimed to study the effects on bees undergoing an infection by Nosema ceranae and being exposed to a frequently used in-hive acaricide, amitraz. To achieve this, newly emerged bees were individually infected with N. ceranae spores and/or received a sublethal concentration of amitraz in their diets under laboratory conditions. Mortality, food intake, total volume excrement, body appearance, and parasite development were registered. Bees exposed to both stressors jointly had higher mortality rates compared to bees exposed separately, with no difference in the parasite development. An increase in sugar syrup consumption was observed for all treated bees while infected bees fed with amitraz also showed a diminishment in pollen intake. These results coupled with an increase in the total number of excretion events, alterations in behavior and body surface on individuals that received amitraz could evidence the detrimental action of this molecule. To corroborate these findings under semi-field conditions, worker bees were artificially infected, marked, and released into colonies. Then, they were exposed to a commercial amitraz-based product by contact. The recovered bees showed no differences in the parasite development due to amitraz exposure. This study provides evidence to which extent a honey bee infected with N. ceranae could potentially be weakened by chronic exposure to amitraz treatment.


Asunto(s)
Nosema , Toluidinas , Animales , Abejas/efectos de los fármacos , Abejas/microbiología , Abejas/parasitología , Nosema/efectos de los fármacos , Nosema/fisiología , Acaricidas
5.
J Econ Entomol ; 117(3): 772-781, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38691061

RESUMEN

Microsporidia Nosema bombycis (Nb) is a cellular parasite responsible for pébrine disease in silkworms, significantly impacting the sericulture industry. Long non-coding RNAs (lncRNAs), which are RNA fragments longer than 200 nucleotides, are pivotal in a range of cellular and physiological functions. However, the potential role of silkworm lncRNAs in response to Nb infection remains unknown. This study conducted transcriptome sequencing on both larvae and Nb-infected midguts of silkworms, identifying 1,440 lncRNAs across all examined midgut samples. Within the Nb-infected group, 42 differentially expressed lncRNAs (DElncRNAs) and 305 differentially expressed mRNAs (DEmRNAs) were detected. Functional annotation and pathway analysis showed that these DEmRNAs are mostly involved in metabolism, apoptosis, autophagy, and other key pathways. The co-expression network of DEmRNAs and DElncRNAs illustrates that 1 gene could be regulated by multiple lncRNAs and 1 lncRNA may target multiple genes, indicating that the regulation of lncRNA is intricate and networked. In addition, the DElncRNA-miRNA-mRNA network showed that some DElncRNAs may be involved in the immune response and metabolism through miRNA. Notably, the study observed an increase in lncRNA MSTRG857.1 following Nb infection, which may promote Nb proliferation. These findings offer insights into the complex interplay between insects and microsporidia.


Asunto(s)
Bombyx , Larva , Nosema , ARN Largo no Codificante , Bombyx/genética , Bombyx/microbiología , Animales , ARN Largo no Codificante/genética , Nosema/fisiología , Larva/microbiología , Larva/crecimiento & desarrollo , Larva/genética , Transcriptoma
6.
Front Cell Infect Microbiol ; 14: 1323157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808063

RESUMEN

The genus Serratia harbors opportunistic pathogenic species, among which Serratia marcescens is pathogenic for honeybees although little studied. Recently, virulent strains of S. marcescens colonizing the Varroa destructor mite's mouth were found vectored into the honeybee body, leading to septicemia and death. Serratia also occurs as an opportunistic pathogen in the honeybee's gut with a low absolute abundance. The Serratia population seems controlled by the host immune system, but its presence may represent a hidden threat, ready to arise when honeybees are weakened by biotic and abiotic stressors. To shed light on the Serratia pathogen, this research aims at studying Serratia's development dynamics in the honeybee body and its interactions with the co-occurring fungal pathogen Vairimorpha ceranae. Firstly, the degree of pathogenicity and the ability to permeate the gut epithelial barrier of three Serratia strains, isolated from honeybees and belonging to different species (S. marcescens, Serratia liquefaciens, and Serratia nematodiphila), were assessed by artificial inoculation of newborn honeybees with different Serratia doses (104, 106, and 108 cells/mL). The absolute abundance of Serratia in the gut and in the hemocoel was assessed in qPCR with primers targeting the luxS gene. Moreover, the absolute abundance of Serratia was assessed in the gut of honeybees infected with V. ceranae at different development stages and supplied with beneficial microorganisms and fumagillin. Our results showed that all tested Serratia strains could pass through the gut epithelial barrier and proliferate in the hemocoel, with S. marcescens being the most pathogenic. Moreover, under cage conditions, Serratia better proliferates when a V. ceranae infection is co-occurring, with a positive and significant correlation. Finally, fumagillin and some of the tested beneficial microorganisms could control both Serratia and Vairimorpha development. Our findings suggest a correlation between the two pathogens under laboratory conditions, a co-occurring infection that should be taken into consideration by researches when testing antimicrobial compounds active against V. ceranae, and the related honeybees survival rate. Moreover, our findings suggest a positive control of Serratia by the environmental microorganism Apilactobacillus kunkeei in a in vivo model, confirming the potential of this specie as beneficial bacteria for honeybees.


Asunto(s)
Nosema , Serratia , Animales , Abejas/microbiología , Serratia/patogenicidad , Serratia/genética , Serratia/crecimiento & desarrollo , Nosema/patogenicidad , Nosema/crecimiento & desarrollo , Nosema/fisiología , Nosema/genética , Serratia marcescens/patogenicidad , Serratia marcescens/crecimiento & desarrollo , Serratia marcescens/genética , Tracto Gastrointestinal/microbiología , Infecciones por Serratia/microbiología , Ciclohexanos/farmacología , Serratia liquefaciens/crecimiento & desarrollo , Serratia liquefaciens/genética , Ácidos Grasos Insaturados , Sesquiterpenos
7.
Sci Rep ; 13(1): 22515, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110440

RESUMEN

Nosema ceranae and Lotmaria passim are two commonly encountered digestive tract parasites of the honey bee that have been associated with colony losses in Canada, the United States, and Europe. Though honey bees can be co-infected with these parasites, we still lack basic information regarding how they impact bee health at the individual and colony level. Using locally-isolated parasite strains, we investigated the effect of single and co-infections of these parasites on individual honey bee survival, and their responsiveness to sucrose. Results showed that a single N. ceranae infection is more virulent than both single L. passim infections and co-infections. Honey bees singly infected with N. ceranae reached < 50% survival eight days earlier than those inoculated with L. passim alone, and four days earlier than those inoculated with both parasites. Honey bees infected with either one, or both, parasites had increased responsiveness to sucrose compared to uninfected bees, which could correspond to higher levels of hunger and increased energetic stress. Together, these findings suggest that N. ceranae and L. passim pose threats to bee health, and that the beekeeping industry should monitor for both parasites in an effort correlate pathogen status with changes in colony-level productivity and survival.


Asunto(s)
Coinfección , Nosema , Parásitos , Trypanosomatina , Abejas , Animales , Nosema/fisiología , Sacarosa
8.
Benef Microbes ; 14(4): 385-400, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38661390

RESUMEN

Honey bee colonies form a complex superorganism, with individual and social immune defences that control overall colony health. Sometimes these defences are not enough to overcome infections by parasites and pathogens. For that reason, several studies have been conducted to evaluate different strategies to improve honey bee health. A novel alternative that is being studied is the use of beneficial microbes. In a previous study, we isolated and characterised bacterial strains from the native gut microbiota of honey bees. Four Apilactobacillus kunkeei strains were mixed and administered in laboratory models to evaluate their potential beneficial effect on larvae and adult bees. This beneficial microbe mixture was safe; it did not affect the expression of immune-related genes, and it was able to decrease the mortality caused by Paenibacillus larvae infection in larvae and reduced the Nosema ceranae spore number in infected adult honey bees. In the present study, we aimed to delve into the impact of the administration of this beneficial microbe mixture on honey bee colonies, under field conditions. The mixture was administered in sugar syrup using lyophilised bacterial cells or fresh cultures, by aspersion or sprayed and feeder, once a week for three consecutive weeks, in autumn or spring 2015, 2017 and 2019. Colony strength parameters were estimated before the administration, and one and three months later. Simultaneously different samples were collected to evaluate the infection levels of parasites and pathogens. The results showed that administering the beneficial microbe mixture decreased or stabilised the infection by N. ceranae or Varroa destructor in some trials but not in others. However, it failed to improve the colony's strength parameters or honey production. Therefore, field studies can be a game-changer when beneficial microbes for honey bees are tested, and meticulous studies should be performed to test their effectiveness.


Asunto(s)
Larva , Nosema , Abejas/microbiología , Animales , Nosema/fisiología , Larva/microbiología , Microbioma Gastrointestinal , Probióticos/farmacología , Probióticos/administración & dosificación , Miel , Paenibacillus larvae
9.
Gac. méd. Méx ; 132(5): 489-92, sept.-oct. 1996. ilus
Artículo en Español | LILACS | ID: lil-202940

RESUMEN

Por medio de video-microscopía de contraste acentuado electrónicamente, se consiguió el primer análisis cinemático de la descarga del filamento polar y el esporoplasma por esporas de un microsporidio. La estimulación in vitro de esporas de Nosema algerea, un parásito de los mosquitos, provoca la salida explosiva del filamento polar con una velocidad instantánea máxima de 105 µm/s en promedio, seguida por la expulsión del esporoplasma en el extremo del filamento luego de un lapso variable con un máximo de 500 ms. La descarga total se completa en menores de 2 s. La morfología de la parte del filamento ya descargada en cada instante no cambia durante la salida, lo que sugiere que el alargamiento ocurre tan solo en el extremo distal, conforma a la opinión de que el filamento es extruido por eversión. Por lo común, la longitud del filamento disminuye entre 5 y un 10 por ciento después de la expulsión del esporoplasma, lo que indica elasticidad del material constitutivo y presurización interna durante el proceso. Una vez liberado el esporoplasma aumenta de volumen, como es de esperar de una alta presión osmótica residual que, de acuerdo con la hipótesis prevaleciente, es ocasionada por la estimulación. Los resultados apoyan el modelo de que las esporas de los microsporidios germinan cuando el estímulo causa un aumento de presión osmótica interna, que a su vez determina un influjo de agua de manera que la presión hidrostática se eleva y finalmente rompe la tapa polar de la espora, por donde son entonces expulsados el filamento y enseguida el esporoplasma.


Asunto(s)
Culicidae/parasitología , Eucariontes/fisiología , Técnicas In Vitro , Insectos/parasitología , Microscopía Electrónica/métodos , Microsporida/patogenicidad , Nosema/fisiología , Técnicas Citológicas/clasificación , Grabación de Cinta de Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA