Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.386
Filtrar
Más filtros

Intervalo de año de publicación
1.
Environ Res ; 252(Pt 2): 118922, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614202

RESUMEN

Grazing is the most extensive land use in grassland worldwide, wherein the soil microbiome is known to support multiple ecosystem functions. Yet, the experimental impact of livestock grazing and dung deposits on the soil microbiome in degraded grassland remains poorly understood. We examined the effects of sheep dung depositions on the bacterial and fungal microbiome of two grasslands: non-degraded and degraded (long-term overgrazing) in northern China. Specifically, sheep dung was experimentally added to the soil and its effects on the soil microbial community were determined 3 months later (corresponding to livestock excreta deposited throughout the entire growing season of grassland, June to September). Our results showed that sheep dung additions showed negative effects on the soil microbiome of already degraded grassland, while with a diminished impact on the non-degraded grassland. In particular, dung deposition decreased soil microbial Shannon index, notably significantly reducing fungal diversity in degraded grassland. Moreover, sheep dung deposition modifies soil bacterial community structure and diminishes bacterial community network complexity. The alteration of soil pH caused by sheep dung deposition partially explains the decline in microbial diversity in degraded grassland. However, sheep dung did not alter the relative abundance and community composition of bacterial and fungal dominant phyla either in the non-degraded or in the degraded grassland. In conclusion, the short-term deposition of sheep dung exerted a detrimental influence on the microbial community in degraded grassland soil. It contributes new experimental evidence regarding the adverse effects of livestock grazing, particularly through dung deposition, on the soil microbiome in degraded grassland. This knowledge is crucial for guiding managers in conserving the soil microbiome in grazed grasslands.


Asunto(s)
Heces , Pradera , Microbiota , Microbiología del Suelo , Animales , Ovinos/microbiología , Heces/microbiología , China , Hongos , Bacterias/clasificación , Bacterias/metabolismo , Suelo/química
2.
Curr Microbiol ; 81(8): 219, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862704

RESUMEN

Mannheimia haemolytica is recognized as principal pathogen associated with pneumonic pasteurellosis leading to huge economic losses to small ruminant farmers. Even though the disease causes huge economic losses, epidemiology of M. haemolytica is less studied, hindering the formulation of effective control strategies. Current study aimed to highlight molecular characterisation of M. haemolytica strains isolated from ovine pneumonic infection. M. haemolytica 27 isolates with two reference strains were characterised using capsular and virulence gene typing, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) methods. M. haemolytica serotype A2 recognized as predominant serotype (74%) followed by A6 (11%) and A1 (5%) serotypes. Virulence gene profiling by PCRs showed dominance of all five virulent genes [such as adh and gcp (100% each)] followed by gs60 (88.8%), lktC (85.2%), tbpB (51.9%) and least nmaA gene (14.8%). MLST profiling delineated M. haemolytic isolates into 11 sequence types (STs) with most prevalent being ST37 (27.9%) and ST16 (23%) and nine new STs (ST37, 38, 39, 40, 41, 42, 47, 48, and 49). These new STs did not belong to any of the three clonal complexes (CC4, CC8 and CC28). ST16 was exclusively noted in A1 and A6 serotypes. Amongst 25 isolates, 22 pulsotypes (GD 0.88) recorded indicated variability of the M. haemolytica isolates in PFGE analysis. In conclusion, the study suggested dominance of M. haemolytica serotype A2 harbouring different virulent genes, diverse STs and pulsotypes responsible for pneumonic pasteurellosis frequently encountered in sheep.


Asunto(s)
Mannheimia haemolytica , Tipificación de Secuencias Multilocus , Pasteurelosis Neumónica , Enfermedades de las Ovejas , Animales , Mannheimia haemolytica/genética , Mannheimia haemolytica/clasificación , Mannheimia haemolytica/aislamiento & purificación , Mannheimia haemolytica/patogenicidad , Ovinos/microbiología , Enfermedades de las Ovejas/microbiología , India , Pasteurelosis Neumónica/microbiología , Serogrupo , Electroforesis en Gel de Campo Pulsado , Factores de Virulencia/genética , Virulencia/genética , Filogenia
3.
Anim Biotechnol ; 35(1): 2362639, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38856695

RESUMEN

Diet is an important component to influence microbiota, there are less data available about the microbiome of Suffolk cross with Tibetan (SCT) animals with different fodders. The current study was conducted for comparing the fungi microbiota in SCT sheep fed with different forages. Sequencing of ileum samples from sheep groups of AH (alfalfa and oat grass), BH (mixture of grass and concentrated feeds), CH (concentrated feed I), DH (concentrated feed II) and EH (concentrated feed III) achieved 3,171,271 raw and 2,719,649 filtered sequences. Concentrated feeds changed fungi microbiota in SCT sheep with three phyla and 47 genera significantly different among the groups. Genera include positive genus of Scytalidium and negative fungi of Sarocladium, Kazachstania, Gibberella, Scytalidium, Candida, Wickerhamomyces. The findings of our study will contribute to efficient feeding of SCT sheep at cold plateau areas.


Asunto(s)
Alimentación Animal , Animales , Ovinos/microbiología , Dieta/veterinaria , Microbioma Gastrointestinal , Hongos/clasificación , Hongos/aislamiento & purificación , Microbiota , Tibet , Íleon/microbiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38763476

RESUMEN

The origin of vitamin D2 in herbivorous animals was investigated in vivo in sheep and in bovine as well as mouse gastrointestinal tracts. A high concentration of 25-hydroxyvitamin D2 in blood plasma of sheep both in summer and winter appeared to be incompatible with the undetectable level of vitamin D2 in the pasture on which the sheep were grazing. Studies with bovine rumen contents from a cow grazing the same pasture as the sheep, demonstrated an increased concentration of vitamin D2 on anaerobic incubation in a 'Rusitec' artificial rumen, which was further enhanced when cellulose powder was added as a fermentation substrate. The colon contents of mice that were fed from weaning on a vitamin D-free diet were found to contain vitamin D2. The results of these comparative studies in 3 animal species indicated that vitamin D2 was being generated by microbial anaerobic metabolism in the gastrointestinal tract.


Asunto(s)
Ergocalciferoles , Rumen , Animales , Bovinos , Ovinos/microbiología , Ratones , Rumen/microbiología , Rumen/metabolismo , Ergocalciferoles/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Fermentación
5.
ScientificWorldJournal ; 2024: 5605552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655561

RESUMEN

Background: Pasteurella species are frequently encountered as serious diseases in small ruminants. It is the main cause of respiratory pasteurellosis in sheep and goats of all age groups. Methods: The cross-sectional study was conducted from December 2022 to April 2023 in Haramaya district, eastern Ethiopia, to isolate and identify Pasteurella multocida and Mannheimia haemolytica and estimate their prevalence, associated risk factors, and antimicrobial sensitivity of isolates in small ruminants using a purposive sampling method. A total of 384 samples (156 nasal swabs from clinic cases and 228 lung swabs from abattoir cases) were collected. STATA 14 software was used to analyze the data. In addition, multivariable logistic regression analysis was performed to assess an association of risk factors. Results: Out of the 384 samples examined, 164 were positive for pasteurellosis, resulting in a 42.70% prevalence. Similarly, 63 (38.4%) of the 164 positive results were from nasal swabs, while 101 (61.6%) came from lung samples. M. haemolytica accounted for 126 (76.82%) of the isolates, while P. multocida accounted for 38 (23.17%). Of the 63 nasal swab isolates, 33 (37%) were from goats and 30 (42.8%) were from sheep. And 17 (10.89%) and 46 (29.58%), respectively, were P. multocida and M. haemolytica. Of the 46 (40%) of the 101 (44.3%) isolates of the pneumonic lung, samples were from goats, while 55 (48.47%) were from sheep. In this study, the risk factors (species, age, and body condition score) were found to be significant (p < 0.05). Pasteurella isolates evaluated for antibiotic susceptibility were highly resistant to oxacillin (90.90%), followed by gentamycin (72.72%), and penicillin (63.63%). However, the isolates were highly sensitive to chloramphenicol (90.90%), followed by tetracycline (63.63%), and ampicillin (54.54%). Conclusion: This study showed that M. haemolytica and P. multocida are the common causes of mannheimiosis and pasteurellosis in small ruminants, respectively, and isolates were resistant to commonly used antibiotics in the study area. Thus, an integrated vaccination strategy, antimicrobial resistance monitoring, and avoidance of stress-inducing factors are recommended.


Asunto(s)
Antibacterianos , Cabras , Mannheimia haemolytica , Pruebas de Sensibilidad Microbiana , Pasteurella multocida , Enfermedades de las Ovejas , Animales , Pasteurella multocida/efectos de los fármacos , Pasteurella multocida/aislamiento & purificación , Mannheimia haemolytica/efectos de los fármacos , Mannheimia haemolytica/aislamiento & purificación , Etiopía/epidemiología , Ovinos/microbiología , Cabras/microbiología , Antibacterianos/farmacología , Estudios Transversales , Enfermedades de las Ovejas/microbiología , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Cabras/microbiología , Enfermedades de las Cabras/epidemiología , Prevalencia , Factores de Riesgo , Infecciones por Pasteurella/microbiología , Infecciones por Pasteurella/veterinaria , Infecciones por Pasteurella/epidemiología
6.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928432

RESUMEN

During the adaptive evolution of animals, the host and its gut microbiota co-adapt to different elevations. Currently, there are few reports on the rumen microbiota-hepato-intestinal axis of Tibetan sheep at different altitudes. Therefore, the purpose of this study was to explore the regulatory effect of rumen microorganism-volatile fatty acids (VFAs)-VFAs transporter gene interactions on the key enzymes and genes related to gluconeogenesis in Tibetan sheep. The rumen fermentation parameters, rumen microbial densities, liver gluconeogenesis activity and related genes were determined and analyzed using gas chromatography, RT-qPCR and other research methods. Correlation analysis revealed a reciprocal relationship among rumen microflora-VFAs-hepatic gluconeogenesis in Tibetan sheep at different altitudes. Among the microbiota, Ruminococcus flavefaciens (R. flavefaciens), Ruminococcus albus (R. albus), Fibrobactersuccinogenes and Ruminobacter amylophilus (R. amylophilus) were significantly correlated with propionic acid (p < 0.05), while propionic acid was significantly correlated with the transport genes monocarboxylate transporter 4 (MCT4) and anion exchanger 2 (AE2) (p < 0.05). Propionic acid was significantly correlated with key enzymes such as pyruvate carboxylase, phosphoenolpyruvic acid carboxylase and glucose (Glu) in the gluconeogenesis pathway (p < 0.05). Additionally, the expressions of these genes were significantly correlated with those of the related genes, namely, forkhead box protein O1 (FOXO1) and mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2) (p < 0.05). The results showed that rumen microbiota densities differed at different altitudes, and the metabolically produced VFA contents differed, which led to adaptive changes in the key enzyme activities of gluconeogenesis and the expressions of related genes.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Gluconeogénesis , Hígado , Rumen , Animales , Gluconeogénesis/genética , Ovinos/microbiología , Rumen/microbiología , Rumen/metabolismo , Hígado/metabolismo , Ácidos Grasos Volátiles/metabolismo , Tibet , Altitud , Adaptación Fisiológica , Fermentación
7.
Epidemiol Infect ; 150: e125, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35641482

RESUMEN

The increasing number of diversified small-scale farms (DSSF) that raise outdoor-based livestock in the USA reflects growing consumer demand for sustainably produced food. Diversified farms are small scale and raise a combination of multiple livestock species and numerous produce varieties. This 2015-2016 cross-sectional study aimed to describe the unique characteristics of DSSF in California, estimate the prevalence of Shiga toxin-producing Escherichia coli (STEC) in livestock and evaluate the association between risk factors and the presence of STEC in livestock, using generalised linear mixed models. STEC prevalence was 13.62% (76/558). Significant variables in the mixed-effect logistic regression model included daily maximum temperature (OR 0.95; CI95% 0.91-0.98), livestock sample source (cattle (OR 4.61; CI95% 1.64-12.96) and sheep (OR 5.29; CI95% 1.80-15.51)), multiple species sharing the same barn (OR 6.23; CI95% 1.84-21.15) and livestock having contact with wild areas (OR 3.63; CI95% 1.37-9.62). Identification of STEC serogroups of public health concern (e.g. O157:H7, O26, O103) in this study indicated the need for mitigation strategies to ensure food safety by evaluating risk factors and management practices that contribute to the spread and prevalence of foodborne pathogens in a pre-harvest environment on DSSF.


Asunto(s)
Infecciones por Escherichia coli , Granjas , Ganado , Escherichia coli Shiga-Toxigénica , Animales , California/epidemiología , Bovinos/microbiología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/microbiología , Estudios Transversales , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Ganado/microbiología , Factores de Riesgo , Ovinos/microbiología , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/microbiología
8.
J Sci Food Agric ; 102(3): 1281-1291, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34363700

RESUMEN

BACKGROUND: Apart from being an oil crop, forage rape (Brassica napus) can be used to feed ruminants. The objective of this study was to investigate the effects of pelleted total mixed ration (TMR) diets with various levels of forage rape on growth performance, carcass traits, meat quality, meat nutritional value and rumen microbiota of Hu lambs, which was important for the efficient utilization of forage rape and alleviating the shortage of high-quality forage in China. RESULTS: Lambs fed on diets with 200-400 g kg-1 forage rape had greater average daily gain (ADG) and lower feed conversion ratio (FCR) than those fed on diets with 0-100 g kg-1 of forage rape (P < 0.05). As dietary forage rape levels increased, the content of intramuscular α-linolenic acid and a variety of amino acids in the muscle increased linearly (P < 0.05). No difference was found in carcass traits or meat quality among the dietary treatments (P > 0.05). However, the inclusion of forage rape increased the relative abundance of cellulolytic bacteria and short-chain fatty acid producers, including Succiniclasticum, Fibrobacter and members of the Lachnospiraceae. Besides, Succiniclasticum was found to be positively correlated with the final body weight of lambs. CONCLUSION: TMR diets that included 200-400 g kg-1 forage rape could improve the growth performance of lambs, and elevated the content of intramuscular α-linolenic acid and a variety of amino acids in the muscle, accompanied by increased abundance of cellulolytic bacteria in the rumen.


Asunto(s)
Alimentación Animal/análisis , Brassica napus/metabolismo , Microbioma Gastrointestinal , Carne/análisis , Rumen/microbiología , Ovinos/crecimiento & desarrollo , Ovinos/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Dieta/veterinaria , Digestión , Rumen/metabolismo , Ovinos/microbiología
9.
Gut ; 70(5): 853-864, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33589511

RESUMEN

OBJECTIVE: Microbial exposure is critical to neonatal and infant development, growth and immunity. However, whether a microbiome is present in the fetal gut prior to birth remains debated. In this study, lambs delivered by aseptic hysterectomy at full term were used as an animal model to investigate the presence of a microbiome in the prenatal gut using a multiomics approach. DESIGN: Lambs were euthanised immediately after aseptic caesarean section and their cecal content and umbilical cord blood samples were aseptically acquired. Cecal content samples were assessed using metagenomic and metatranscriptomic sequencing to characterise any existing microbiome. Both sample types were analysed using metabolomics in order to detect microbial metabolites. RESULTS: We detected a low-diversity and low-biomass microbiome in the prenatal fetal gut, which was mainly composed of bacteria belonging to the phyla Proteobacteria, Actinobacteria and Firmicutes. Escherichia coli was the most abundant species in the prenatal fetal gut. We also detected multiple microbial metabolites including short chain fatty acids, deoxynojirimycin, mitomycin and tobramycin, further indicating the presence of metabolically active microbiota. Additionally, bacteriophage phiX174 and Orf virus, as well as antibiotic resistance genes, were detected in the fetal gut, suggesting that bacteriophage, viruses and bacteria carrying antibiotic resistance genes can be transmitted from the mother to the fetus during the gestation period. CONCLUSIONS: This study provides strong evidence that the prenatal gut harbours a microbiome and that microbial colonisation of the fetal gut commences in utero.


Asunto(s)
Feto/metabolismo , Feto/microbiología , Microbioma Gastrointestinal/genética , Ovinos/genética , Ovinos/microbiología , Animales , Femenino , Perfilación de la Expresión Génica , Metabolómica , Metagenómica , Modelos Animales , Embarazo
10.
Infect Immun ; 89(10): e0027021, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34227837

RESUMEN

Footrot is a polymicrobial infectious disease in sheep causing severe lameness, leading to one of the industry's largest welfare problems. The complex etiology of footrot makes in situ or in vitro investigations difficult. Computational methods offer a solution to understanding the bacteria involved and how they may interact with the host, ultimately providing a way to identify targets for future hypothesis-driven investigative work. Here, we present the first combined global analysis of bacterial community transcripts together with the host immune response in healthy and diseased ovine feet during a natural polymicrobial infection state using metatranscriptomics. The intratissue and surface bacterial populations and the most abundant bacterial transcriptomes were analyzed, demonstrating that footrot-affected skin has reduced diversity and increased abundances of not only the causative bacterium Dichelobacter nodosus but also other species such as Mycoplasma fermentans and Porphyromonas asaccharolytica. Host transcriptomics reveals the suppression of biological processes related to skin barrier function, vascular functions, and immunosurveillance in unhealthy interdigital skin, supported by histological findings that type I collagen (associated with scar tissue formation) is significantly increased in footrot-affected interdigital skin compared to outwardly healthy skin. Finally, we provide some interesting indications of host and pathogen interactions associated with virulence genes and the host spliceosome, which could lead to the identification of future therapeutic targets.


Asunto(s)
Bacterias/inmunología , Panadizo Interdigital/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad/inmunología , Ovinos/inmunología , Animales , Colágeno Tipo I/inmunología , Panadizo Interdigital/microbiología , Ovinos/microbiología , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/microbiología , Piel/inmunología , Piel/microbiología , Transcriptoma/inmunología , Virulencia/inmunología
11.
Appl Environ Microbiol ; 87(24): e0138421, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34644161

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) organisms are a diverse group of pathogenic bacteria capable of causing serious human illness, and serogroups O157 and O26 are frequently implicated in human disease. Ruminant hosts are the primary STEC reservoir, and small ruminants are important contributors to STEC transmission. This study investigated the prevalence, serotypes, and shedding dynamics of STEC, including the supershedding of serogroups O157 and O26, in Irish sheep. Recto-anal mucosal swab samples (n = 840) were collected over 24 months from two ovine slaughtering facilities. Samples were plated on selective agars and were quantitatively and qualitatively assessed via real-time PCR (RT-PCR) for Shiga toxin prevalence and serogroup. A subset of STEC isolates (n = 199) were selected for whole-genome sequencing and analyzed in silico. In total, 704/840 (83.8%) swab samples were Shiga toxin positive following RT-PCR screening, and 363/704 (51.6%) animals were subsequently culture positive for STEC. Five animals were shedding STEC O157, and three of these were identified as supershedders. No STEC O26 was isolated. Post hoc statistical analysis showed that younger animals are more likely to harbor STEC and that STEC carriage is most prevalent during the summer months. Following sequencing, 178/199 genomes were confirmed as STEC. Thirty-five different serotypes were identified, 15 of which were not yet reported for sheep. Serotype O91:H14 was the most frequently reported. Eight Shiga toxin gene variants were reported, two stx1 and six stx2, and three novel Shiga-toxin subunit combinations were observed. Variant stx1c was the most prevalent, while many strains also harbored stx2b. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) bacteria are foodborne, zoonotic pathogens of significant public health concern. All STEC organisms harbor stx, a critical virulence determinant, but it is not expressed in most serotypes. Sheep shed the pathogen via fecal excretion and are increasingly recognized as important contributors to the dissemination of STEC. In this study, we have found that there is high prevalence of STEC circulating within sheep and that prevalence is related to animal age and seasonality. Further, sheep harbor a variety of non-O157 STEC, whose prevalence and contribution to human disease have been underinvestigated for many years. A variety of Stx variants were also observed, some of which are of high clinical importance.


Asunto(s)
Ovinos/microbiología , Toxinas Shiga , Escherichia coli Shiga-Toxigénica , Canal Anal/microbiología , Animales , Irlanda , Prevalencia , Recto/microbiología , Estaciones del Año , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Secuenciación Completa del Genoma
12.
Biotechnol Bioeng ; 118(2): 759-769, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33095441

RESUMEN

Growing industrial utilization of enzymes and the increasing availability of metagenomic data highlight the demand for effective methods of targeted identification and verification of novel enzymes from various environmental microbiota. Xylanases are a class of enzymes with numerous industrial applications and are involved in the degradation of xylose, a component of lignocellulose. The optimum temperature of enzymes is an essential factor to be considered when choosing appropriate biocatalysts for a particular purpose. Therefore, in silico prediction of this attribute is a significant cost and time-effective step in the effort to characterize novel enzymes. The objective of this study was to develop a computational method to predict the thermal dependence of xylanases. This tool was then implemented for targeted screening of putative xylanases with specific thermal dependencies from metagenomic data and resulted in the identification of three novel xylanases from sheep and cow rumen microbiota. Here we present thermal activity prediction for xylanase, a new sequence-based machine learning method that has been trained using a selected combination of various protein features. This random forest classifier discriminates non-thermophilic, thermophilic, and hyper-thermophilic xylanases. The model's performance was evaluated through multiple iterations of sixfold cross-validations as well as holdout tests, and it is freely accessible as a web-service at arimees.com.


Asunto(s)
Endo-1,4-beta Xilanasas , Calor , Aprendizaje Automático , Metagenoma , Microbiota , Rumen/microbiología , Animales , Bovinos/microbiología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Ovinos/microbiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-33974533

RESUMEN

Four Gram-stain-positive, non-motile and asporous bacilli (strains ZJ-599T, ZJ-621, MC1420T and MC1482), isolated from animal tissue and environmental samples collected on the Qinghai-Tibet Plateau, PR China, were taxonomically characterized. Based on the results of 16S rRNA gene sequence analyses, the closest relatives of strains ZJ-599T and ZJ-621 were Corynebacterium endometrii LMM-1653T (97.5 %), Corynebacterium phocae M408/89/1T (96.5 %) and Corynebacterium flavescens OJ8T (96.3 %), whereas strains MC1420T and MC1482 were closest to Corynebacterium sanguinis CCUG 58655T (98.9 %), Corynebacterium mycetoides DSM 20632T (98.4 %) and Corynebacterium lipophiloflavum DSM 44291T (97.9 %). The results of rpoB gene sequence similarity analysis indicated that C. phocae M408/89/1T and C. sanguinis CCUG 58655T were closest to strains ZJ-599T/ZJ-621 (83.5 %) and MC1420T/MC1482 (91.8 %), respectively. The two novel type strains shared a similarity of 95.2 % in 16S rRNA and 81.3 % in rpoB gene sequences. The TAP-PCR DNA fingerprint and MALDI-TOF MS spectrum patterns clearly differentiated the novel isolates within and between each pair of strains. Strain ZJ-599T had 21.9-22.4 % digital DNA-DNA hybridization (dDDH) scores with C. endometrii LMM-1653T, C. phocae M408/89/1T and C. flavescens OJ8T, and 72.3-72.9 % of average nucleotide identity (ANI) with them. Similarly, strain MC1420T had 22.9-23.7 % dDDH values with C. sanguinis CCUG 58655T, C. mycetoides DSM 20632T and C. lipophiloflavum DSM 44291T, and 80.4-81.3 % ANI scores with them. Strain ZJ-599T had a 23.1 % dDDH value and 70.5 % ANI score with strain MC1420T, both below the corresponding thresholds for species delineation. Strains ZJ-599T and MC1420T both contain mycolic acids and have MK-8(H2) and MK-9(H2) as the predominant respiratory quinones, meso-diaminopimelic acid as the diagnostic diamino acid, and C18 : 1 ω9c as the main fatty acid. C17 : 1 ω8c and C15 : 1 ω8c were predominant in strain ZJ-599T in contrast to C17 : 1 ω7c being predominant in strain MC1420T. The main polar lipids in strain ZJ-599T were diphosphatidylglycerol, phosphatidylinositol and one unidentified glycolipid, while strain MC1420T had diphosphatidylglycerol, phosphatidylglycerol and one unidentified lipid as the major components. Since the two pairs of novel strains (ZJ-599T/ZJ-621, MC1420T/MC1482) distinctly differ from each other and from their nearest relatives, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium lizhenjunii (type strain ZJ-599T=GDMCC 1.1779T=JCM 34341T) and Corynebacterium qintianiae (type strain MC1420T=GDMCC 1.1783T=JCM 34340T), respectively.


Asunto(s)
Corynebacterium/clasificación , Pulmón/microbiología , Marmota/microbiología , Filogenia , Sistema Respiratorio/microbiología , Ovinos/microbiología , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , China , Corynebacterium/aislamiento & purificación , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
14.
Epidemiol Infect ; 149: e45, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33509310

RESUMEN

We present the comparative characterisation of 195 non-aureus staphylococci (NAS) isolates obtained from sheep (n = 125) and humans (n = 70) in Sardinia, Italy, identified at the species level by gap gene polymerase chain reaction (PCR) followed by restriction fragment length polymorphism analysis with AluI. Isolates were tested phenotypically with a disc diffusion method and genotypically by PCR, for resistance to 11 antimicrobial agents including cationic antiseptic agents. Among the ovine isolates, Staphylococcus epidermidis (n = 57), S. chromogenes (n = 29), S. haemolyticus (n = 17), S. simulans (n = 8) and S. caprae (n = 6) were the most prevalent species, while among human isolates, S. haemolyticus (n = 28) and S. epidermidis (n = 26) were predominant, followed by S. lugdunensis and S. hominis (n = 4). Of the 125 ovine isolates, 79 (63.2%) did not carry any of the resistance genes tested, while the remainder carried resistance genes for at least one antibiotic. The highest resistance rates among ovine isolates were recorded against tetracycline (20.8%), and penicillin (15.2%); none was resistant to methicillin and two exhibited multidrug resistance (MDR); one of which was positive for the antiseptic resistance smr gene. By contrast, most human isolates (59/70, 84.3%) were resistant to ⩾1 antimicrobials, and 41 (58.6%) were MDR. All 52 (74.3%) penicillin-resistant isolates possessed the blaZ gene, and 33 of 70 (47.1%) harboured the mec gene; of these, seven were characterised by the Staphylococcal Chromosomal Cassette (SCCmec) type IV, 6 the type V, 5 of type III and one representative each of type I and type II. The majority (57.1%) was erythromycin-resistant and 17 isolates carried only the efflux msrA gene, 11 the methylase ermC gene and an equal number harboured both of the latter genes. Moreover, 23 (32.8%) were tetracycline-resistant and all but one possessed only the efflux tetK gene. qacA/B and smr genes were detected in 27 (38.6%) and 18 (25.7%) human NAS, respectively. These results underline a marked difference in species distribution and antimicrobial resistance between ovine and human-derived NAS.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Ovinos/microbiología , Staphylococcus/aislamiento & purificación , Animales , Femenino , Humanos , Italia/epidemiología , Leche , Staphylococcus/clasificación , Staphylococcus/genética
15.
BMC Vet Res ; 17(1): 79, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588859

RESUMEN

BACKGROUND: Livestock play an important role as reservoir of enteric pathogens and antimicrobial resistance (AMR), a health and economic concern worldwide. However, little is known regarding the transmission and maintenance of these pathogens at the wildlife-livestock interface. In this study, we assessed the occurrence, genetic diversity and AMR of Campylobacter spp. and Salmonella spp. shed by sympatric free-ranging livestock and a wild herbivore in an alpine ecosystem. RESULTS: Campylobacter spp. was isolated from 23.3 % of cattle and 7.7 % of sheep but was not isolated from horses nor Pyrenean chamois (Rupicapra pyrenaica). Campylobacter jejuni was the most frequent species. A high genetic diversity and certain host specificity of C. jejuni isolates was observed. The main AMR detected in Campylobacter isolates was to nalidixic acid (88.2 %), ciprofloxacin (82.4 %) and tetracycline (82.4 %); only 11.7 % of the isolates were pan-susceptible and 17.6 % were multi-resistant. Salmonella ser. Newport was isolated only from one Pyrenean chamois and was pan-susceptible. CONCLUSIONS: Results show that free-ranging cattle and sheep are spreaders of Campylobacter as well as their AMR strains in the alpine environment. Therefore, contaminated alpine pastures or streams may constitute a source for the dissemination of AMR enteropathogens. However, apparently, alpine wild ungulates such as Pyrenean chamois play a negligible role in the epidemiology of zoonotic enteropathogens and AMR, and are not potential bioindicators of the burden of alpine environments.


Asunto(s)
Campylobacter/aislamiento & purificación , Farmacorresistencia Microbiana , Ganado/microbiología , Rupicapra/microbiología , Salmonella/aislamiento & purificación , Animales , Animales Salvajes , Antibacterianos , Bovinos/microbiología , Caballos/microbiología , Ovinos/microbiología , España/epidemiología
16.
Can J Microbiol ; 67(5): 372-380, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33242254

RESUMEN

Lolium perenne L. and Sorghum sudanense (Piper) Stapf. are 2 common forages fed to blue sheep (Pseudois nayaur Hodgson, 1833) in captivity. However, the effect of these 2 forages on the gastrointestinal microbiota is largely unknown. We analyzed the diversity of the microbiota in the feces of captive blue sheep fed with L. perenne (group F1) and S. sudanense (group F2) by 16S rRNA sequencing. A total of 20 major phyla and 29 genera fecal bacterial communities were detected in the 2 groups. The F1 and F2 groups shared common microbiota at the phylum level, which mainly consisted of Firmicutes and Bacteroidetes. Ruminococcaceae_UCG-005, Eubacterium_coprostanoligenes_group, Ruminococcaceae_UCG-013, and Ruminococcaceae_UCG-010 were the top 4 dominant taxa at the genus level. The percentage of Ruminococcaceae_UCG-010 was significantly higher in the F2 group (∼2.75-fold) than in F1 group. The diversity and abundance of the microbial community in F2 was higher than that in F1. Although both of L. perenne and S. sudanense affect the metabolism of the gastrointestinal microbiota of blue sheep, the S. sudanense improves more aspects of metabolism and biogenesis. In summary, our results demonstrated that L. perenne and S. sudanense affect blue sheep gastrointestinal microbiota in different ways. But S. sudanense efficiently improved the gastrointestinal microbiota of blue sheep.


Asunto(s)
Alimentación Animal , Bacterias/clasificación , Heces/microbiología , Microbioma Gastrointestinal , Ovinos/microbiología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , ADN Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Lolium , Filogenia , ARN Ribosómico 16S/genética , Ovinos/metabolismo , Sorghum
17.
Food Microbiol ; 94: 103648, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33279073

RESUMEN

Shelf life of red meat is influenced by a number of intrinsic and extrinsic factors making its prediction challenging. Here we investigated the influence of geographically distant abattoir facilities and storage temperature relevant to commercial supply chain on the shelf lives of vacuum packaged (VP) beef and lamb meat. Samples of VP beef and lamb were analysed for surface pH, total viable counts, lactic acid bacterial counts, sensory properties, and associated bacterial community using Illumina MiSeq based 16S rRNA gene amplicon sequencing over a period of >200 days. The consistent 0.41 pH unit difference between beef and lamb was found to have a profound effect on bacterial community diversity and composition, bacterial growth rates and the rate of loss of sensory quality. Though different community structures were derived from different abattoir source, bacterial growth rate and rate of sensory quality deterioration were found to be comparable for individual meat type. The greatest variation in rates was found resulting from storage temperature and livestock species themselves. Our findings indicate that bacterial growth and sensory quality loss are essentially predictable when considering their temperature dependency, however for successful meat export validation of shelf life predictive models is required due to stochastic variation in abattoir seeded bacterial populations.


Asunto(s)
Bacterias/aislamiento & purificación , Bovinos/microbiología , Carne/microbiología , Microbiota , Ovinos/microbiología , Mataderos/estadística & datos numéricos , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Recuento de Colonia Microbiana , Contaminación de Alimentos/análisis , Contaminación de Alimentos/estadística & datos numéricos , Manipulación de Alimentos/instrumentación , Microbiología de Alimentos , Embalaje de Alimentos/instrumentación , Embalaje de Alimentos/métodos , Humanos , Gusto , Temperatura , Vacio
18.
Molecules ; 26(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361810

RESUMEN

Antimicrobial peptides are promising molecules to address the global antibiotic resistance problem, however, optimization to achieve favorable potency and safety is required. Here, a peptide-template modification approach was employed to design physicochemical variants based on net charge, hydrophobicity, enantiomer, and terminal group. All variants of the scorpion venom peptide BmKn-2 with amphipathic α-helical cationic structure exhibited an increased antibacterial potency when evaluated against multidrug-resistant Salmonella isolates at a MIC range of 4-8 µM. They revealed antibiofilm activity in a dose-dependent manner. Sheep red blood cells were used to evaluate hemolytic and cell selectivity properties. Peptide Kn2-5R-NH2, dKn2-5R-NH2, and 2F-Kn2-5R-NH2 (variants with +6 charges carrying amidated C-terminus) showed stronger antibacterial activity than Kn2-5R (a variant with +5 charges bearing free-carboxyl group at C-terminus). Peptide dKn2-5R-NH2 (d-enantiomer) exhibited slightly weaker antibacterial activity with much less hemolytic activity (higher hemolytic concentration 50) than Kn2-5R-NH2 (l-enantiomer). Furthermore, peptide Kn2-5R with the least hydrophobicity had the lowest hemolytic activity and showed the highest specificity to Salmonella (the highest selectivity index). This study also explained the relationship of peptide physicochemical properties and bioactivities that would fulfill and accelerate progress in peptide antibiotic research and development.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas Citotóxicas Formadoras de Poros/farmacología , Animales , Antibacterianos/efectos adversos , Antibacterianos/química , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/microbiología , Hemólisis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros/genética , Salmonella/efectos de los fármacos , Salmonella/genética , Salmonella/patogenicidad , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Ovinos/sangre , Ovinos/microbiología , Relación Estructura-Actividad
19.
J Sci Food Agric ; 101(3): 1100-1110, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32767556

RESUMEN

BACKGROUND: Rumen bacteria play a critical role in feed degradation and productivity. This study evaluated the impact of feeding regimen on the rumen microbial populations and fatty acid composition of the meat of sheep. Twenty-four Sunit sheep were raised on a grass pasture from birth to 9 months of age, at which time they were randomly divided into two feeding groups: pasture feeding (PF) and barn feeding (BF). Sheep in the PF group were allowed to graze freely on wild grassland for 3 months. Sheep in the BF group were confined for 3 months to a dry barn, in which they roamed freely with corn straw and corn. RESULTS: Sheep in the PF group had greater rumen bacteria diversity. The relative abundances of the genera Butyrivibrio_2, Saccharofermentans and Succiniclasticum were increased, and that of the genus RC9_gut_group was decreased, in the PF compared to the BF sheep. The n-3 polyunsaturated fatty acid contents were greater in meat from PF sheep than from BF sheep. In addition, the α-linolenic acid (C18:3 n-3, ALA) and conjugated linoleic acid (CLA) contents were positively correlated with the abundance of Butyrivibrio_2. CONCLUSION: Grazing may improve the diversity of rumen bacteria and increase the proportion of ALA and CLA in sheep meat. © 2020 Society of Chemical Industry.


Asunto(s)
Bacterias/aislamiento & purificación , Ácidos Grasos/química , Microbioma Gastrointestinal , Carne/análisis , Rumen/microbiología , Ovinos/metabolismo , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , China , Ácidos Grasos/metabolismo , Femenino , Masculino , Rumen/metabolismo , Ovinos/microbiología
20.
J Sci Food Agric ; 101(13): 5574-5582, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33709417

RESUMEN

BACKGROUND: The optimal use of feed resources must be considered by most livestock farmers. The use of low-cost agricultural by-products and the processing of these materials is one possible solution in this respect. One such compound is edible button mushroom waste (EM), a large amount of which is produced annually in the mushroom production cycle worldwide. RESULTS: Bulk density 100 of EM was smaller than the other groups. These changes also applied to alfalfa for bulk density, which was higher than the replaced waste. The dry matter solubility of EM was higher than that of alfalfa hay, whereas the ash solubility rate for EM was greater compared to alfalfa. Replacing up to 210 g kg-1 alfalfa with EM did not affect the production of purine derivatives, microbial protein, nitrogen excreted in urine and feces, and retained nitrogen, although the organic matter digestibility (OMD) increased, whereas the crude protein digestibility and neutral detergent fiber (NDF) decreased (P < 0.05). Fermentation potential, gas production rate, metabolizable energy and short-chain fatty acids were increased. On replacing up to 210 g kg-1 alfalfa with EM, the diet OMD increased, whereas the crude protein and NDF digestibility decreased (P < 0.05). CONCLUSION: EM usage in the experimental diets did not affect the production of purine derivatives, microbial protein, nitrogen excreted in urine and feces, and retained nitrogen. The physical properties, chemical composition and nutritional value of EM, as well as its low cost, show that it can be used as an alternative part of the diet forage in the ruminant's diet. © 2021 Society of Chemical Industry.


Asunto(s)
Agaricus/química , Nitrógeno/metabolismo , Ovinos/metabolismo , Residuos/análisis , Agaricales/química , Agaricales/metabolismo , Agaricus/metabolismo , Alimentación Animal/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dieta/veterinaria , Digestión , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Medicago sativa/química , Medicago sativa/metabolismo , Nutrientes/química , Nutrientes/metabolismo , Biosíntesis de Proteínas , Ovinos/crecimiento & desarrollo , Ovinos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA