Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.193
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991033

RESUMEN

The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mutación , Complejo de la Endopetidasa Proteasomal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Glicosilación , Nucleótidos/metabolismo , Nucleótidos/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
J Biol Chem ; 300(4): 107121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417795

RESUMEN

Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.


Asunto(s)
Trastornos Congénitos de Glicosilación , Transferencia Resonante de Energía de Fluorescencia , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Animales , Humanos , Masculino , Ratas , Envejecimiento/metabolismo , Encéfalo/metabolismo , Trastornos Congénitos de Glicosilación/diagnóstico , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HEK293 , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia
4.
Am J Hum Genet ; 109(2): 345-360, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35045343

RESUMEN

Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.


Asunto(s)
Quistes del Sistema Nervioso Central/genética , Trastornos Congénitos de Glicosilación/genética , Hamartoma/genética , Discapacidad Intelectual/genética , Oligosacáridos/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Polimicrogiria/genética , alfa-Manosidasa/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Línea Celular Tumoral , Quistes del Sistema Nervioso Central/metabolismo , Quistes del Sistema Nervioso Central/patología , Vermis Cerebeloso/metabolismo , Vermis Cerebeloso/patología , Niño , Preescolar , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Femenino , Feto , Glicosilación , Hamartoma/metabolismo , Hamartoma/patología , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Manosa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patología , Lengua/metabolismo , Lengua/patología , alfa-Manosidasa/deficiencia
5.
Nat Chem Biol ; 19(10): 1246-1255, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37592157

RESUMEN

Mucin-type O-glycosylation is a post-translational modification present at the interface between cells where it has important roles in cellular communication. However, deciphering the function of O-glycoproteins and O-glycans can be challenging, especially as few enzymes are available for their assembly or selective degradation. Here, to address this deficiency, we developed a genetically encoded screening methodology for the discovery and engineering of the diverse classes of enzymes that act on O-glycoproteins. The method uses Escherichia coli that have been engineered to produce an O-glycosylated fluorescence resonance energy transfer probe that can be used to screen for O-glycopeptidase activity. Subsequent cleavage of the substrate by O-glycopeptidases provides a read-out of the glycosylation state of the probe, allowing the method to also be used to assay glycosidases and glycosyltransferases. We further show the potential of this methodology in the first ultrahigh-throughput-directed evolution of an O-glycopeptidase.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Mucinas , Mucinas/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Glicoproteínas/química , Glicosilación , Polisacáridos/química
6.
Proc Natl Acad Sci U S A ; 119(11): e2118646119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35271393

RESUMEN

SignificanceFerroptosis is an oxidative form of cell death whose biochemical regulation remains incompletely understood. Cap'n'collar (CNC) transcription factors including nuclear factor erythroid-2-related factor 1 (NFE2L1/NRF1) and NFE2L2/NRF2 can both regulate oxidative stress pathways but are each regulated in a distinct manner, and whether these two transcription factors can regulate ferroptosis independent of one another is unclear. We find that NFE2L1 can promote ferroptosis resistance, independent of NFE2L2, by maintaining the expression of glutathione peroxidase 4 (GPX4), a key protein that prevents lethal lipid peroxidation. NFE2L2 can also promote ferroptosis resistance but does so through a distinct mechanism that appears independent of GPX4 protein expression. These results suggest that NFE2L1 and NFE2L2 independently regulate ferroptosis.


Asunto(s)
Ferroptosis , Regulación de la Expresión Génica , Factor 1 Relacionado con NF-E2 , Estrés Oxidativo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ferroptosis/genética , Técnicas de Inactivación de Genes , Humanos , Peroxidación de Lípido , Redes y Vías Metabólicas/genética , Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética
7.
PLoS Genet ; 18(6): e1010228, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653343

RESUMEN

NGLY1 deficiency, a rare disease with no effective treatment, is caused by autosomal recessive, loss-of-function mutations in the N-glycanase 1 (NGLY1) gene and is characterized by global developmental delay, hypotonia, alacrima, and seizures. We used a Drosophila model of NGLY1 deficiency to conduct an in vivo, unbiased, small molecule, repurposing screen of FDA-approved drugs to identify therapeutic compounds. Seventeen molecules partially rescued lethality in a patient-specific NGLY1 deficiency model, including multiple serotonin and dopamine modulators. Exclusive dNGLY1 expression in serotonin and dopamine neurons, in an otherwise dNGLY1 deficient fly, was sufficient to partially rescue lethality. Further, genetic modifier and transcriptomic data supports the importance of serotonin signaling in NGLY1 deficiency. Connectivity Map analysis identified glycogen synthase kinase 3 (GSK3) inhibition as a potential therapeutic mechanism for NGLY1 deficiency, which we experimentally validated with TWS119, lithium, and GSK3 knockdown. Strikingly, GSK3 inhibitors and a serotonin modulator rescued size defects in dNGLY1 deficient larvae upon proteasome inhibition, suggesting that these compounds act through NRF1, a transcription factor that is regulated by NGLY1 and regulates proteasome expression. This study reveals the importance of the serotonin pathway in NGLY1 deficiency, and serotonin modulators or GSK3 inhibitors may be effective therapeutics for this rare disease.


Asunto(s)
Reposicionamiento de Medicamentos , Glucógeno Sintasa Quinasa 3 , Animales , Trastornos Congénitos de Glicosilación , Drosophila/genética , Drosophila/metabolismo , Humanos , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Complejo de la Endopetidasa Proteasomal/metabolismo , Enfermedades Raras , Serotonina/genética
8.
Glycobiology ; 34(11)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39206713

RESUMEN

Cytosolic peptide: N-glycanase (PNGase/NGLY1 in mammals) is an amidase (EC:3.5.1.52) widely conserved in eukaryotes. It catalyzes the removal of N-glycans on glycoproteins, converting N-glycosylated Asn into Asp residues. This enzyme also plays a role in the quality control system for nascent glycoproteins. Since the identification of a patient with an autosomal recessive genetic disorder caused by NGLY1 gene dysfunction, known as NGLY1 deficiency or NGLY1 congenital disorder of deglycosylation (OMIM: 615273), in 2012, more than 100 cases have been reported worldwide. NGLY1 deficiency is characterized by a wide array of symptoms, such as global mental delay, intellectual disability, abnormal electroencephalography findings, seizure, movement disorder, hypolacrima or alacrima, and liver dysfunction. Unfortunately, no effective therapeutic treatments for this disease have been established. However, administration of adeno-associated virus 9 (AAV9) vector harboring human NGLY1 gene to an NGLY1-deficient rat model (Ngly1-/- rat) by intracerebroventricular injection was found to drastically improve motor function defects. This observation indicated that early therapeutic intervention could alleviate various symptoms originating from central nervous system dysfunction in this disease. Therefore, there is a keen interest in the development of facile diagnostic methods for NGLY1 deficiency. This review summarizes the history of assay development for PNGase/NGLY1 activity, as well as the recent progress in the development of novel plate-based assay systems for NGLY1, and also discusses future perspectives.


Asunto(s)
Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Humanos , Animales , Aspartilglucosaminuria/genética , Aspartilglucosaminuria/diagnóstico , Aspartilglucosaminuria/metabolismo , Ratas , Hipotonía Muscular/genética , Hipotonía Muscular/diagnóstico , Trastornos Congénitos de Glicosilación
9.
Biochem Biophys Res Commun ; 710: 149826, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581946

RESUMEN

Cytosolic peptide:N-glycanase (NGLY1, PNGase) is an enzyme that cleaves N-glycans from misfolded glycoproteins. In 2012, a human genetic disorder, NGLY1 deficiency, was first reported to be caused by mutations of the NGLY1 gene. Since then, there has been rapid progresses on NGLY1 biology, and gene therapy has been proposed as a promising therapeutic option for NGLY1 deficiency. While a plasma/urine biomarker has also been developed for this disease, detection of NGLY1 activity could be another viable option for early diagnosis of NGLY1 deficiency. Thus far, several in vitro and in cellulo NGLY1 assays have been reported, but those assay systems have several issues that must be addressed in order to develop an assay system compatible for routine clinical examination. Here, we show a facile, highly sensitive in vitro assay system that could be used to detect NGLY1 activity by utilizing its sequence editing function, i.e. conversion of glycosylated Asn into Asp, followed by a detection of newly generated epitope (HA)-tag by anti-HA antibody. Using this ELISA-based assay, we detected endogenous NGLY1 activity in as little as 2 µg of crude extract, which is the equivalent of 5 × 103 cells. Our system also detects NGLY1 activity from cells with compromised NGLY1 activity, such as iPS cells from patient samples. This assay system could be applied in future clinical examinations to achieve an early diagnosis of NGLY1 deficiency.


Asunto(s)
Trastornos Congénitos de Glicosilación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Humanos , Citosol/metabolismo , Glicosilación , Glicoproteínas/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética
10.
Bioconjug Chem ; 35(4): 465-471, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38499390

RESUMEN

A versatile chemo-enzymatic tool to site-specifically modify native (nonengineered) antibodies is using transglutaminase (TGase, E.C. 2.3.2.13). With various amines as cosubstrates, this enzyme converts the unsubstituted side chain amide of glutamine (Gln or Q) in peptides and proteins into substituted amides (i.e., conjugates). A pleasant surprise is that only a single conserved glutamine (Gln295) in the Fc region of IgG is modified by microbial TGase (mTGase, EC 2.3.2.13), thereby providing a highly specific and generally applicable conjugation method. However, prior to the transamidation (access to the glutamine residue by mTGase), the steric hindrance from the nearby conserved N-glycan (Asn297 in IgG1) must be reduced. In previous approaches, amidase (PNGase F, EC 3.5.1.52) was used to completely remove the N-glycan. However, PNGase F also converts a net neutral asparagine (Asn297) to a negatively charged aspartic acid (Asp297). This charge alteration may markedly change the structure, function, and immunogenicity of an IgG antibody. In contrast, in our new method presented herein, the N-glycan is trimmed by an endoglycosidase (EndoS2, EC 3.2.1.96), hence retaining both the core N-acetylglucosamine (GlcNAc) moiety and the neutral asparaginyl amide. The trimmed glycan also reduces or abolishes Fc receptor-mediated functions, which results in better imaging agents by decreasing nonspecific binding to other cells (e.g., immune cells). Moreover, the remaining core glycan allows further derivatization such as glycan remodeling and dual conjugation. Practical and robust, our method generates conjugates in near quantitative yields, and both enzymes are commercially available.


Asunto(s)
Glutamina , Glicósido Hidrolasas , Glutamina/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Transglutaminasas/metabolismo , Inmunoglobulina G/química , Polisacáridos/química , Amidas
11.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658366

RESUMEN

A challenge faced by peptidases is the recognition of highly diverse substrates. A feature of some peptidase families is the capacity to specifically use post-translationally added glycans present on their protein substrates as a recognition determinant. This is ultimately critical to enabling peptide bond hydrolysis. This class of enzyme is also frequently large and architecturally sophisticated. However, the molecular details underpinning glycan recognition by these O-glycopeptidases, the importance of these interactions, and the functional roles of their ancillary domains remain unclear. Here, using the Clostridium perfringens ZmpA, ZmpB, and ZmpC M60 peptidases as model proteins, we provide structural and functional insight into how these intricate proteins recognize glycans as part of catalytic and noncatalytic substrate recognition. Structural, kinetic, and mutagenic analyses support the key role of glycan recognition within the M60 domain catalytic site, though they point to ZmpA as an apparently inactive enzyme. Wider examination of the Zmp domain content reveals noncatalytic carbohydrate binding as a feature of these proteins. The complete three-dimensional structure of ZmpB provides rare insight into the overall molecular organization of a highly multimodular enzyme and reveals how the interplay of individual domain function may influence biological activity. O-glycopeptidases frequently occur in host-adapted microbes that inhabit or attack mucus layers. Therefore, we anticipate that these results will be fundamental to informing more detailed models of how the glycoproteins that are abundant in mucus are destroyed as part of pathogenic processes or liberated as energy sources during normal commensal lifestyles.


Asunto(s)
Proteínas Bacterianas/química , Clostridium perfringens/enzimología , Metaloendopeptidasas/química , Mucinas/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Proteínas Bacterianas/genética , Dominio Catalítico , Clostridium perfringens/genética , Hidrólisis , Metaloendopeptidasas/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética
12.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34215698

RESUMEN

Mutations in the human peptide:N-glycanase gene (NGLY1), which encodes a cytosolic de-N-glycosylating enzyme, cause a congenital autosomal recessive disorder. In rodents, the loss of Ngly1 results in severe developmental delay or lethality, but the underlying mechanism remains unknown. In this study, we found that deletion of Fbxo6 (also known as Fbs2), which encodes a ubiquitin ligase subunit that recognizes glycoproteins, rescued the lethality-related defects in Ngly1-KO mice. In NGLY1-KO cells, FBS2 overexpression resulted in the substantial inhibition of proteasome activity, causing cytotoxicity. Nuclear factor, erythroid 2-like 1 (NFE2L1, also known as NRF1), an endoplasmic reticulum-associated transcriptional factor involved in expression of proteasome subunits, was also abnormally ubiquitinated by SCFFBS2 in NGLY1-KO cells, resulting in its retention in the cytosol. However, the cytotoxicity caused by FBS2 was restored by the overexpression of "glycan-less" NRF1 mutants, regardless of their transcriptional activity, or by the deletion of NRF1 in NGLY1-KO cells. We conclude that the proteasome dysfunction caused by the accumulation of N-glycoproteins, primarily NRF1, ubiquitinated by SCFFBS2 accounts for the pathogenesis resulting from NGLY1 deficiency.


Asunto(s)
Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Azúcares/metabolismo , Animales , Conducta Animal , Muerte Celular , Núcleo Celular/metabolismo , Proliferación Celular , Citosol/metabolismo , Células HCT116 , Células HeLa , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Actividad Motora , Mutación/genética , Factor Nuclear 1 de Respiración/metabolismo , Polisacáridos/metabolismo , Transporte de Proteínas , Ubiquitinación
13.
J Biol Chem ; 298(10): 102439, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049519

RESUMEN

Akkermansia muciniphila is key member of the human gut microbiota that impacts many features of host health. A major characteristic of this bacterium is its interaction with host mucin, which is abundant in the gut environment, and its ability to metabolize mucin as a nutrient source. The machinery deployed by A. muciniphila to enable this interaction appears to be extensive and sophisticated, yet it is incompletely defined. The uncharacterized protein AMUC_1438 is encoded by a gene that was previously shown to be upregulated when the bacterium is grown on mucin. This uncharacterized protein has features suggestive of carbohydrate-recognition and peptidase activity, which led us to hypothesize that it has a role in mucin depolymerization. Here, we provide structural and functional support for the assignment of AMUC_1438 as a unique O-glycopeptidase with mucin-degrading capacity. O-glycopeptidase enzymes recognize glycans but hydrolyze the peptide backbone and are common in host-adapted microbes that colonize or invade mucus layers. Structural, kinetic, and mutagenic analyses point to a metzincin metalloprotease catalytic motif but with an active site that specifically recognizes a GalNAc residue α-linked to serine or threonine (i.e., the Tn-antigen). The enzyme catalyzes hydrolysis of the bond immediately N-terminal to the glycosylated residue. Additional modeling analyses suggest the presence of a carbohydrate-binding module that may assist in substrate recognition. We anticipate that these results will be fundamental to a wider understanding of the O-glycopeptidase class of enzymes and how they may contribute to host adaptation.


Asunto(s)
Akkermansia , Proteínas Bacterianas , Mucinas , Humanos , Mucinas/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Polisacáridos/metabolismo , Akkermansia/enzimología , Proteínas Bacterianas/química , Polimerizacion
14.
PLoS Genet ; 16(12): e1009258, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315951

RESUMEN

Mutations in human N-glycanase 1 (NGLY1) cause the first known congenital disorder of deglycosylation (CDDG). Patients with this rare disease, which is also known as NGLY1 deficiency, exhibit global developmental delay and other phenotypes including neuropathy, movement disorder, and constipation. NGLY1 is known to regulate proteasomal and mitophagy gene expression through activation of a transcription factor called "nuclear factor erythroid 2-like 1" (NFE2L1). Loss of NGLY1 has also been shown to impair energy metabolism, but the molecular basis for this phenotype and its in vivo consequences are not well understood. Using a combination of genetic studies, imaging, and biochemical assays, here we report that loss of NGLY1 in the visceral muscle of the Drosophila larval intestine results in a severe reduction in the level of AMP-activated protein kinase α (AMPKα), leading to energy metabolism defects, impaired gut peristalsis, failure to empty the gut, and animal lethality. Ngly1-/- mouse embryonic fibroblasts and NGLY1 deficiency patient fibroblasts also show reduced AMPKα levels. Moreover, pharmacological activation of AMPK signaling significantly suppressed the energy metabolism defects in these cells. Importantly, the reduced AMPKα level and impaired energy metabolism observed in NGLY1 deficiency models are not caused by the loss of NFE2L1 activity. Taken together, these observations identify reduced AMPK signaling as a conserved mediator of energy metabolism defects in NGLY1 deficiency and suggest AMPK signaling as a therapeutic target in this disease.


Asunto(s)
Trastornos Congénitos de Glicosilación/metabolismo , Proteínas de Drosophila/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster , Metabolismo Energético , Fibroblastos/metabolismo , Humanos , Ratones , Factor 1 Relacionado con NF-E2/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Proteínas Quinasas/genética , Transducción de Señal
15.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067490

RESUMEN

N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel drug target for antiviral therapy. In this study, structure-based virtual analysis was applied to screen candidate NGLY1 inhibitors from 2960 natural compounds. Three natural compounds, Poliumoside, Soyasaponin Bb, and Saikosaponin B2 showed significantly inhibitory activity of NGLY1, isolated from traditional heat-clearing and detoxifying Chinese herbs. Furthermore, the core structural motif of the three NGLY1 inhibitors was a disaccharide structure with glucose and rhamnose, which might exert its action by binding to important active sites of NGLY1, such as Lys238 and Trp244. In traditional Chinese medicine, many compounds containing this disaccharide structure probably targeted NGLY1. This study unveiled the leading compound of NGLY1 inhibitors with its core structure, which could guide future drug development.


Asunto(s)
Glucosa , Ramnosa , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Glicoproteínas/metabolismo , Citosol/metabolismo
16.
J Proteome Res ; 21(8): 1930-1938, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35766466

RESUMEN

Alterations to N-glycan expression are relevant to the progression of various diseases, particularly cancer. In many cases, specific N-glycan structural features such as sialylation, fucosylation, and branching are of specific interest. A novel MALDI imaging mass spectrometry workflow has been recently developed to analyze these features of N-glycosylation through the utilization of endoglycosidase enzymes to cleave N-glycans from associated glycoproteins. Enzymes that have previously been utilized to cleave N-glycans include peptide-N-glycosidase F (PNGase F) to target N-glycans indiscriminately and endoglycosidase F3 (Endo F3) to target core fucosylated N-glycans. In addition to these endoglycosidases, additional N-glycan cleaving enzymes could be used to target specific structural features. Sialidases, also termed neuraminidases, are a family of enzymes that remove terminal sialic acids from glycoconjugates. This work aims to utilize sialidase, in conjunction with PNGase F/Endo F3, to enzymatically remove sialic acids from N-glycans in an effort to increase sensitivity for nonsialylated N-glycan MALDI-IMS peaks. Improving detection of nonsialylated N-glycans allows for a more thorough analysis of specific structural features such as fucosylation or branching, particularly of low abundant structures. Sialidase utilization in MALDI-IMS dramatically increases sensitivity and increases on-tissue endoglycosidase efficiency, making it a very useful companion technique to specifically detect nonsialylated N-glycans.


Asunto(s)
Neuraminidasa , Polisacáridos , Glicoproteínas/metabolismo , Glicósido Hidrolasas/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Polisacáridos/química , Ácidos Siálicos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
17.
Glycobiology ; 32(2): 110-122, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-34939090

RESUMEN

Cytosolic peptide: N-glycanase (PNGase; NGLY1), an enzyme responsible for de-glycosylation of N-glycans on glycoproteins, is known to play pivotal roles in a variety of biological processes. In 2012, NGLY1 deficiency, a rare genetic disorder, was reported and since then, more than 100 patients have now been identified worldwide. Patients with this disease exhibit several common symptoms that are caused by the dysfunction of NGLY1. However, correlation between the severity of patient symptoms and the extent of the reduction in NGLY1 activity in these patients remains to be clarified, mainly due to the absence of a facile quantitative assay system for this enzyme, especially in a crude extract as an enzyme source. In this study, a quantitative, non-radioisotope (RI)-based assay method for measuring recombinant NGLY1 activity was established using a BODIPY-labeled asialoglycopeptide (BODIPY-ASGP) derived from hen eggs. With this assay, the activities of 27 recombinant NGLY1 mutants that are associated with the deficiency were examined. It was found that the activities of three (R469X, R458fs and H494fs) out of the 27 recombinant mutant proteins were 30-70% of the activities of wild-type NGLY1. We further developed a method for measuring endogenous NGLY1 activity in crude extracts derived from cultured cells, patients' fibroblasts, iPS cells or peripheral blood mononuclear cells (PBMCs), using a glycosylated cyclopeptide (GCP) that exhibited resistance to the endogenous proteases in the extract. Our methods will not only provide new insights into the molecular mechanism responsible for this disease but also promises to be applicable for its diagnosis.


Asunto(s)
Leucocitos Mononucleares , Péptidos Cíclicos , Animales , Pollos , Mezclas Complejas , Femenino , Glicosilación , Humanos , Leucocitos Mononucleares/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Péptidos/metabolismo , Péptidos Cíclicos/metabolismo
18.
Hum Mol Genet ; 29(10): 1635-1647, 2020 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-32259258

RESUMEN

N-glycanase 1 (NGLY1) deficiency, an autosomal recessive disease caused by mutations in the NGLY1 gene, is characterized by developmental delay, hypolacrima or alacrima, seizure, intellectual disability, movement disorders and other neurological phenotypes. Because of few animal models that recapitulate these clinical signatures, the mechanisms of the onset of the disease and its progression are poorly understood, and the development of therapies is hindered. In this study, we generated the systemic Ngly1-deficient rodent model, Ngly1-/- rats, which showed developmental delay, movement disorder, somatosensory impairment and scoliosis. These phenotypes in Ngly1-/- rats are consistent with symptoms in human patients. In accordance with the pivotal role played by NGLY1 in endoplasmic reticulum-associated degradation processes, cleaving N-glycans from misfolded glycoproteins in the cytosol before they can be degraded by the proteasome, loss of Ngly1 led to accumulation of cytoplasmic ubiquitinated proteins, a marker of misfolded proteins in the neurons of the central nervous system of Ngly1-/- rats. Histological analysis identified prominent pathological abnormalities, including necrotic lesions, mineralization, intra- and extracellular eosinophilic bodies, astrogliosis, microgliosis and significant loss of mature neurons in the thalamic lateral and the medial parts of the ventral posterior nucleus and ventral lateral nucleus of Ngly1-/- rats. Axonal degradation in the sciatic nerves was also observed, as in human subjects. Ngly1-/- rats, which mimic the symptoms of human patients, will be a useful animal model for preclinical testing of therapeutic options and understanding the detailed mechanisms of NGLY1 deficiency.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Trastornos del Movimiento/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Modelos Animales de Enfermedad , Degradación Asociada con el Retículo Endoplásmico/genética , Enfermedades Hereditarias del Ojo , Técnicas de Inactivación de Genes , Glicosilación , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Enfermedades del Aparato Lagrimal , Trastornos del Movimiento/patología , Mutación/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/patología , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Ratas
19.
Anal Chem ; 94(27): 9863-9871, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35749695

RESUMEN

N-linked glycosylation is a ubiquitous posttranslational modification of proteins. While it plays an important role in the biological function of proteins, it often poses a major challenge for their analytical characterization. Currently available peptide N-glycanases (PNGases) are often inefficient at deglycosylating proteins due to sterically inaccessible N-glycosylation sites. This usually leads to poor sequence coverage in bottom-up analysis using liquid chromatography with tandem mass spectrometry and makes it impossible to obtain an intact mass signal in top-down MS analysis. In addition, most PNGases operate optimally only in the neutral to slightly acidic pH range and are severely compromised in the presence of reducing and denaturing substances, which limits their use for advanced bioanalysis based on hydrogen-deuterium exchange in combination with mass spectrometry (HDX-MS). Here, we present a novel peptide N-glycanase from Rudaea cellulosilytica (PNGase Rc) for which we demonstrate broad substrate specificity for N-glycan hydrolysis from multiply occupied and natively folded proteins. Our results show that PNGase Rc is functional even under challenging, HDX quenching conditions (pH 2.5, 0 °C) and in the presence of 0.4 M tris(2-carboxyethyl)phosphine, 4 M urea, and 1 M guanidinium chloride. Most importantly, we successfully applied the PNGase Rc in an HDX-MS workflow to determine the epitope of a nanobody targeting the extracellular domain of human signal-regulating protein alpha (SIRPα).


Asunto(s)
Medición de Intercambio de Deuterio , Hidrógeno , Deuterio , Medición de Intercambio de Deuterio/métodos , Mapeo Epitopo , Humanos , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Espectrometría de Masas en Tándem
20.
Anal Chem ; 94(16): 6355-6362, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35420790

RESUMEN

Despite the recent success of coupling anion exchange chromatography with native mass spectrometry (AEX-MS) to study anionic proteins, the utility of AEX-MS methods in therapeutic monoclonal antibody (mAb) characterization has been limited. In this work, we developed and optimized a salt gradient-based AEX-MS method and explored its utility in charge variant analysis of therapeutic mAbs. We demonstrated that, although the developed AEX-MS method is less useful for IgG1 molecules that have higher isoelectric points (pIs), it is an attractive alternative for charge variant analysis of IgG4 molecules. By elevating the column temperature and lowering the mAb pI through PNGase F-mediated deglycosylation, the chromatographical resolution from AEX separation can be significantly improved. We also demonstrated that, after PNGase F and IdeS digestion, the AEX-MS method exhibited excellent resolving power for multiple attributes in the IgG4 Fc region, including unprocessed C-terminal Lys, N-glycosylation occupancy, and several conserved Fc deamidations, making it ideally suited for multiple attribute monitoring (MAM). Through fractionation and peptide mapping analysis, we also demonstrated that the developed AEX-MS method can provide site-specific and isoform-resolved separation of Fc deamidation products, allowing rapid and artifact-free quantitation of these modifications without performing bottom-up analysis.


Asunto(s)
Anticuerpos Monoclonales , Inmunoglobulina G , Aniones , Anticuerpos Monoclonales/química , Cromatografía por Intercambio Iónico/métodos , Inmunoglobulina G/química , Espectrometría de Masas/métodos , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA