Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.158
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 82: 531-50, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23746262

RESUMEN

Methylamine dehydrogenase (MADH) catalyzes the oxidative deamination of methylamine to formaldehyde and ammonia. Tryptophan tryptophylquinone (TTQ) is the protein-derived cofactor of MADH required for this catalytic activity. TTQ is biosynthesized through the posttranslational modification of two tryptophan residues within MADH, during which the indole rings of two tryptophan side chains are cross-linked and two oxygen atoms are inserted into one of the indole rings. MauG is a c-type diheme enzyme that catalyzes the final three reactions in TTQ formation. In total, this is a six-electron oxidation process requiring three cycles of MauG-dependent two-electron oxidation events using either H2O2 or O2. The MauG redox form responsible for the catalytic activity is an unprecedented bis-Fe(IV) species. The amino acids of MADH that are modified are ≈ 40 Å from the site where MauG binds oxygen, and the reaction proceeds by a hole hopping electron transfer mechanism. This review addresses these highly unusual aspects of the long-range catalytic reaction mediated by MauG.


Asunto(s)
Hemo/metabolismo , Indolquinonas/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Paracoccus denitrificans/enzimología , Procesamiento Proteico-Postraduccional/fisiología , Triptófano/análogos & derivados , Triptófano/metabolismo , Catálisis , Transporte de Electrón , Oxidación-Reducción , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Triptófano/biosíntesis
2.
J Bacteriol ; 206(4): e0008124, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38501746

RESUMEN

Paracoccus denitrificans is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde. Catabolism of some complex organic substrates (e.g., choline and L-proline betaine) also generates formaldehyde. Thus, flhS and flhR mutants that fail to induce expression of the formaldehyde catabolic enzymes cannot grow on methanol, methylamine, and choline. Choline is oxidized to glycine via glycine betaine, dimethylglycine, and sarcosine. By exploring flhSR growth phenotypes and the activities of a promoter and enzyme known to be upregulated by formaldehyde, we identify the oxidative demethylations of glycine betaine, dimethylglycine, and sarcosine as sources of formaldehyde. Growth on glycine betaine, dimethylglycine, and sarcosine is accompanied by the production of up to three, two, and one equivalents of formaldehyde, respectively. Genetic evidence implicates two orthologous monooxygenases in the oxidation of glycine betaine. Interestingly, one of these appears to be a bifunctional enzyme that also oxidizes L-proline betaine (stachydrine). We present preliminary evidence to suggest that growth on L-proline betaine induces expression of a formaldehyde dehydrogenase distinct from the enzyme induced during growth on other formaldehyde-generating substrates.IMPORTANCEThe bacterial degradation of one-carbon compounds (methanol and methylamine) and some complex multi-carbon compounds (e.g., choline) generates formaldehyde. Formaldehyde is toxic and must be removed, which can be done by oxidation to formate and then to carbon dioxide. These oxidations provide a source of energy; in some species, the CO2 thus generated can be assimilated into biomass. Using the Gram-negative bacterium Paracoccus denitrificans as the experimental model, we infer that oxidation of choline to glycine generates up to three equivalents of formaldehyde, and we identify the three steps in the catabolic pathway that are responsible. Our work sheds further light on metabolic pathways that are likely important in a variety of environmental contexts.


Asunto(s)
Betaína , Paracoccus denitrificans , Betaína/metabolismo , Sarcosina/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Metanol , Colina/metabolismo , Glicina , Formaldehído , Formiatos , Metilaminas
3.
Arch Biochem Biophys ; 756: 109988, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631502

RESUMEN

Paracoccus denitrificans has a classical cytochrome-dependent electron transport chain and two alternative oxidases. The classical transport chain is very similar to that in eukaryotic mitochondria. Thus, P. denitrificans can serve as a model of the mammalian mitochondrion that may be more tractable in elucidating mechanisms of regulation of energy production than are mitochondria. In a previous publication we reported detailed studies on respiration in P. denitrificans grown aerobically on glucose or malate. We noted that P. denitrificans has large stores of lactate under various growth conditions. This is surprising because P. denitrificans lacks an NAD+-dependent lactate dehydrogenase. The aim of this study was to investigate the mechanisms of lactate oxidation in P. denitrificans. We found that the bacterium grows well on either d-lactate or l-lactate. Growth on lactate supported a rate of maximum respiration that was equal to that of cells grown on glucose or malate. We report proteomic, metabolomic, and biochemical studies that establish that the metabolism of lactate by P. denitrificans is mediated by two non-NAD+-dependent lactate dehydrogenases. One prefers d-lactate over l-lactate (D-iLDH) and the other prefers l-lactate (L-iLDH). We cloned and produced the D-iLDH and characterized it. The Km for d-lactate was 34 µM, and for l-lactate it was 3.7 mM. Pyruvate was not a substrate, rendering the reaction unidirectional with lactate being converted to pyruvate for entry into the TCA cycle. The intracellular lactate was ∼14 mM such that both isomers could be metabolized by the enzyme. The enzyme has 1 FAD per molecule and utilizes a quinone rather than NAD + as an electron acceptor. D-iLDH provides a direct entry of lactate reducing equivalents into the cytochrome chain, potentially explaining the high respiratory capacity of P. denitrificans in the presence of lactate.


Asunto(s)
Ácido Láctico , Oxidación-Reducción , Paracoccus denitrificans , Paracoccus denitrificans/metabolismo , Ácido Láctico/metabolismo , Glucosa/metabolismo
4.
BMC Biol ; 21(1): 47, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855050

RESUMEN

BACKGROUND: NorQ, a member of the MoxR-class of AAA+ ATPases, and NorD, a protein containing a Von Willebrand Factor Type A (VWA) domain, are essential for non-heme iron (FeB) cofactor insertion into cytochrome c-dependent nitric oxide reductase (cNOR). cNOR catalyzes NO reduction, a key step of bacterial denitrification. This work aimed at elucidating the specific mechanism of NorQD-catalyzed FeB insertion, and the general mechanism of the MoxR/VWA interacting protein families. RESULTS: We show that NorQ-catalyzed ATP hydrolysis, an intact VWA domain in NorD, and specific surface carboxylates on cNOR are all features required for cNOR activation. Supported by BN-PAGE, low-resolution cryo-EM structures of NorQ and the NorQD complex show that NorQ forms a circular hexamer with a monomer of NorD binding both to the side and to the central pore of the NorQ ring. Guided by AlphaFold predictions, we assign the density that "plugs" the NorQ ring pore to the VWA domain of NorD with a protruding "finger" inserting through the pore and suggest this binding mode to be general for MoxR/VWA couples. CONCLUSIONS: Based on our results, we present a tentative model for the mechanism of NorQD-catalyzed cNOR remodeling and suggest many of its features to be applicable to the whole MoxR/VWA family.


Asunto(s)
Proteínas AAA , Paracoccus denitrificans , Chaperonas Moleculares , Noretindrona , Relación Estructura-Actividad
5.
J Bacteriol ; 205(4): e0002723, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36920204

RESUMEN

The periplasmic (NAP) and membrane-associated (Nar) nitrate reductases of Paracoccus denitrificans are responsible for nitrate reduction under aerobic and anaerobic conditions, respectively. Expression of NAP is elevated in cells grown on a relatively reduced carbon and energy source (such as butyrate); it is believed that NAP contributes to redox homeostasis by coupling nitrate reduction to the disposal of excess reducing equivalents. Here, we show that deletion of either dksA1 (one of two dksA homologs in the P. denitrificans genome) or relA/spoT (encoding a bifunctional ppGpp synthetase and hydrolase) eliminates the butyrate-dependent increase in nap promoter and NAP enzyme activity. We conclude that ppGpp likely signals growth on a reduced substrate and, together with DksA1, mediates increased expression of the genes encoding NAP. Support for this model comes from the observation that nap promoter activity is increased in cultures exposed to a protein synthesis inhibitor that is known to trigger ppGpp synthesis in other organisms. We also show that, under anaerobic growth conditions, the redox-sensing RegAB two-component pair acts as a negative regulator of NAP expression and as a positive regulator of expression of the membrane-associated nitrate reductase Nar. The dksA1 and relA/spoT genes are conditionally synthetically lethal; the double mutant has a null phenotype for growth on butyrate and other reduced substrates while growing normally on succinate and citrate. We also show that the second dksA homolog (dksA2) and relA/spoT have roles in regulation of expression of the flavohemoglobin Hmp and in biofilm formation. IMPORTANCE Paracoccus denitrificans is a metabolically versatile Gram-negative bacterium that is used as a model for studies of respiratory metabolism. The organism can utilize nitrate as an electron acceptor for anaerobic respiration, reducing it to dinitrogen via nitrite, nitric oxide, and nitrous oxide. This pathway (known as denitrification) is important as a route for loss of fixed nitrogen from soil and as a source of the greenhouse gas nitrous oxide. Thus, it is important to understand those environmental and genetic factors that govern flux through the denitrification pathway. Here, we identify four proteins and a small molecule (ppGpp) which function as previously unknown regulators of expression of enzymes that reduce nitrate and oxidize nitric oxide.


Asunto(s)
Nitratos , Paracoccus denitrificans , Nitratos/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Guanosina Tetrafosfato/metabolismo , Óxido Nitroso/metabolismo , Óxido Nítrico/metabolismo , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitrato Reductasas/genética , Nitrato Reductasas/metabolismo , Respiración , Butiratos/metabolismo
6.
Appl Environ Microbiol ; 89(7): e0023823, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37318336

RESUMEN

Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.


Asunto(s)
Paracoccus denitrificans , Acetilcoenzima A/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(47): 29647-29657, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168750

RESUMEN

The rotation of Paracoccus denitrificans F1-ATPase (PdF1) was studied using single-molecule microscopy. At all concentrations of adenosine triphosphate (ATP) or a slowly hydrolyzable ATP analog (ATPγS), above or below Km, PdF1 showed three dwells per turn, each separated by 120°. Analysis of dwell time between steps showed that PdF1 executes binding, hydrolysis, and probably product release at the same dwell. The comparison of ATP binding and catalytic pauses in single PdF1 molecules suggested that PdF1 executes both elementary events at the same rotary position. This point was confirmed in an inhibition experiment with a nonhydrolyzable ATP analog (AMP-PNP). Rotation assays in the presence of adenosine diphosphate (ADP) or inorganic phosphate at physiological concentrations did not reveal any obvious substeps. Although the possibility of the existence of substeps remains, all of the datasets show that PdF1 is principally a three-stepping motor similar to bacterial vacuolar (V1)-ATPase from Thermus thermophilus This contrasts with all other known F1-ATPases that show six or nine dwells per turn, conducting ATP binding and hydrolysis at different dwells. Pauses by persistent Mg-ADP inhibition or the inhibitory ζ-subunit were also found at the same angular position of the rotation dwell, supporting the simplified chemomechanical scheme of PdF1 Comprehensive analysis of rotary catalysis of F1 from different species, including PdF1, suggests a clear trend in the correlation between the numbers of rotary steps of F1 and Fo domains of F-ATP synthase. F1 motors with more distinctive steps are coupled with proton-conducting Fo rings with fewer proteolipid subunits, giving insight into the design principle the F1Fo of ATP synthase.


Asunto(s)
Mitocondrias/metabolismo , Paracoccus denitrificans/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Hidrólisis , Cinética , Rotación , Thermus thermophilus/metabolismo
8.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835143

RESUMEN

The Pden_5119 protein oxidizes NADH with oxygen under mediation by the bound flavin mononucleotide (FMN) and may be involved in the maintenance of the cellular redox pool. In biochemical characterization, the curve of the pH-rate dependence was bell-shaped with pKa1 = 6.6 and pKa2 = 9.2 at 2 µM FMN while it contained only a descending limb pKa of 9.7 at 50 µM FMN. The enzyme was found to undergo inactivation by reagents reactive with histidine, lysine, tyrosine, and arginine. In the first three cases, FMN exerted a protective effect against the inactivation. X-ray structural analysis coupled with site-directed mutagenesis identified three amino acid residues important to the catalysis. Structural and kinetic data suggest that His-117 plays a role in the binding and positioning of the isoalloxazine ring of FMN, Lys-82 fixes the nicotinamide ring of NADH to support the proS-hydride transfer, and Arg-116 with its positive charge promotes the reaction between dioxygen and reduced flavin.


Asunto(s)
Paracoccus denitrificans , Paracoccus denitrificans/metabolismo , NAD/metabolismo , Oxidación-Reducción , Catálisis , Flavinas/química , Mononucleótido de Flavina/química , Cinética
9.
J Biol Chem ; 296: 100666, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33862082

RESUMEN

Heme oxygenases (HOs) play a critical role in recouping iron from the labile heme pool. The acquisition and liberation of heme iron are especially important for the survival of pathogenic bacteria. All characterized HOs, including those belonging to the HugZ superfamily, preferentially cleave free b-type heme. Another common form of heme found in nature is c-type heme, which is covalently linked to proteinaceous cysteine residues. However, mechanisms for direct iron acquisition from the c-type heme pool are unknown. Here we identify a HugZ homolog from the oligopeptide permease (opp) gene cluster of Paracoccus denitrificans that lacks any observable reactivity with heme b and show that it instead rapidly degrades c-type hemopeptides. This c-type heme oxygenase catalyzes the oxidative cleavage of the model substrate microperoxidase-11 at the ß- and/or δ-meso position(s), yielding the corresponding peptide-linked biliverdin, CO, and free iron. X-ray crystallographic analysis suggests that the switch in substrate specificity from b-to c-type heme involves loss of the N-terminal α/ß domain and C-terminal loop containing the coordinating histidine residue characteristic of HugZ homologs, thereby accommodating a larger substrate that provides its own iron ligand. These structural features are also absent in certain heme utilization/storage proteins from human pathogens that exhibit low or no HO activity with free heme. This study thus expands the scope of known iron acquisition strategies to include direct oxidative cleavage of heme-containing proteolytic fragments of c-type cytochromes and helps to explain why certain oligopeptide permeases show specificity for the import of heme in addition to peptides.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biliverdina/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo/análogos & derivados , Hemo/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Paracoccus denitrificans/enzimología , Catálisis , Cristalografía por Rayos X , Hemo Oxigenasa (Desciclizante)/química , Especificidad por Sustrato
10.
Appl Environ Microbiol ; 88(21): e0105322, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36250705

RESUMEN

Adaptation to anoxia by synthesizing a denitrification proteome costs metabolic energy, and the anaerobic respiration conserves less energy per electron than aerobic respiration. This implies a selective advantage of the stringent O2 repression of denitrification gene transcription, which is found in most denitrifying bacteria. In some bacteria, the metabolic burden of adaptation can be minimized further by phenotypic diversification, colloquially termed "bet-hedging," where all cells synthesize the N2O reductase (NosZ) but only a minority synthesize nitrite reductase (NirS), as demonstrated for the model strain Paracoccus denitrificans. We hypothesized that the cells lacking NirS would be entrapped in anoxia but with the possibility of escape if supplied with O2 or N2O. To test this, cells were exposed to gradual O2 depletion or sudden anoxia and subsequent spikes of O2 and N2O. The synthesis of NirS in single cells was monitored by using an mCherry-nirS fusion replacing the native nirS, and their growth was detected as dilution of green, fluorescent fluorescein isothiocyanate (FITC) stain. We demonstrate anoxic entrapment due to e--acceptor deprivation and show that O2 spiking leads to bet-hedging, while N2O spiking promotes NirS synthesis and growth in all cells carrying NosZ. The cells rescued by the N2O spike had much lower respiration rates than those rescued by the O2 spike, however, which could indicate that the well-known autocatalytic synthesis of NirS via NO production requires O2. Our results bring into relief a fitness advantage of pairing restrictive nirS expression with universal NosZ synthesis in energy-limited systems. IMPORTANCE Denitrifying bacteria have evolved elaborate regulatory networks securing their respiratory metabolism in environments with fluctuating oxygen concentrations. Here, we provide new insight regarding their bet-hedging in response to hypoxia, which minimizes their N2O emissions because all cells express NosZ, reducing N2O to N2, while a minority express NirS + Nor, reducing NO2- to N2O. We hypothesized that the cells without Nir were entrapped in anoxia, without energy to synthesize Nir, and that they could be rescued by short spikes of O2 or N2O. We confirm such entrapment and the rescue of all cells by an N2O spike but only a fraction by an O2 spike. The results shed light on the role of O2 repression in bet-hedging and generated a novel hypothesis regarding the autocatalytic nirS expression via NO production. Insight into the regulation of denitrification, including bet-hedging, holds a clue to understanding, and ultimately curbing, the escalating emissions of N2O, which contribute to anthropogenic climate forcing.


Asunto(s)
Oxidorreductasas , Paracoccus denitrificans , Bacterias/genética , Desnitrificación/genética , Hipoxia , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Óxido Nitroso/metabolismo , Oxidorreductasas/metabolismo , Paracoccus denitrificans/metabolismo
11.
Biochemistry (Mosc) ; 87(8): 742-751, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36171655

RESUMEN

Proton-translocating Fo×F1-ATPase/synthase that catalyzes synthesis and hydrolysis of ATP is commonly considered to be a reversibly functioning complex. We have previously shown that venturicidin, a specific Fo-directed inhibitor, blocks the synthesis and hydrolysis of ATP with a significant difference in the affinity [Zharova, T. V. and Vinogradov, A. D. (2017) Biochim. Biophys. Acta, 1858, 939-944]. In this paper, we have studied in detail inhibition of Fo×F1-ATPase/synthase by venturicidin in tightly coupled membranes of Paracoccus denitrificans under conditions of membrane potential generation. ATP hydrolysis was followed by the ATP-dependent succinate-supported NAD+ reduction (potential-dependent reverse electron transfer) catalyzed by the respiratory chain complex I. It has been demonstrated that membrane energization did not affect the affinity of Fo×F1-ATPase/synthase for venturicidin. The dependence of the residual ATP synthase activity on the concentration of venturicidin approximated a linear function, whereas the dependence of ATP hydrolysis was sigmoidal: at low inhibitor concentrations venturicidin strongly inhibited ATP synthesis without decrease in the rate of ATP hydrolysis. A model is proposed suggesting that ATP synthesis and ATP hydrolysis are catalyzed by two different forms of Fo×F1.


Asunto(s)
Paracoccus denitrificans , Adenosina Trifosfato , Cinética , NAD , ATPasas de Translocación de Protón/metabolismo , Protones , Succinatos , Venturicidinas
12.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36012437

RESUMEN

Denitrification consists of the sequential reduction of nitrate to nitrite, nitric oxide, nitrous oxide, and dinitrogen. Nitrous oxide escapes to the atmosphere, depending on copper availability and other environmental factors. Iron is also a key element because many proteins involved in denitrification contain iron-sulfur or heme centers. The NtrYX two-component regulatory system mediates the responses in a variety of metabolic processes, including denitrification. A quantitative proteomic analysis of a Paracoccus denitrificans NtrY mutant grown under denitrifying conditions revealed the induction of different TonB-dependent siderophore transporters and proteins related to iron homeostasis. This mutant showed lower intracellular iron content than the wild-type strain, and a reduced growth under denitrifying conditions in iron-limited media. Under iron-rich conditions, it releases higher concentrations of siderophores and displayes lower nitrous oxide reductase (NosZ) activity than the wild-type, thus leading to nitrous oxide emission. Bioinformatic and qRT-PCR analyses revealed that NtrYX is a global transcriptional regulatory system that responds to iron starvation and, in turn, controls expression of the iron-responsive regulators fur, rirA, and iscR, the denitrification regulators fnrP and narR, the nitric oxide-responsive regulator nnrS, and a wide set of genes, including the cd1-nitrite reductase NirS, nitrate/nitrite transporters and energy electron transport proteins.


Asunto(s)
Paracoccus denitrificans , Desnitrificación , Homeostasis , Hierro/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Óxido Nitroso/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteómica
13.
Biotechnol Bioeng ; 118(3): 1330-1341, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33305820

RESUMEN

Nitrous oxide (N2 O), a potent greenhouse gas, is reduced to N2 gas by N2 O-reducing bacteria (N2 ORB), a process which represents an N2 O sink in natural and engineered ecosystems. The N2 O sink activity by N2 ORB depends on temperature and O2 exposure, yet the specifics are not yet understood. This study explores the effects of temperature and oxygen exposure on biokinetics of pure culture N2 ORB. Four N2 ORB, representing either clade I type nosZ (Pseudomonas stutzeri JCM5965 and Paracoccus denitrificans NBRC102528) or clade II type nosZ (Azospira sp. strains I09 and I13), were individually tested. The higher activation energy for N2 O by Azospira sp. strain I13 (114.0 ± 22.6 kJ mol-1 ) compared with the other tested N2 ORB (38.3-60.1 kJ mol-1 ) indicates that N2 ORB can adapt to different temperatures. The O2 inhibition constants (KI ) of Azospira sp. strain I09 and Ps. stutzeri JCM5965 increased from 0.06 ± 0.05 and 0.05 ± 0.02 µmol L-1 to 0.92 ± 0.24 and 0.84 ± 0.31 µmol L-1 , respectively, as the temperature increased from 15°C to 35°C, while that of Azospira sp. strain I13 was temperature-independent (p = 0.106). Within the range of temperatures examined, Azospira sp. strain I13 had a faster recovery after O2 exposure compared with Azospira sp. strain I09 and Ps. stutzeri JCM5965 (p < 0.05). These results suggest that temperature and O2 exposure result in the growth of ecophysiologically distinct N2 ORB as N2 O sinks. This knowledge can help develop a suitable N2 O mitigation strategy according to the physiologies of the predominant N2 ORB.


Asunto(s)
Óxido Nitroso/metabolismo , Paracoccus denitrificans/metabolismo , Pseudomonas stutzeri/metabolismo , Rhodocyclaceae/metabolismo , Temperatura
14.
Proc Natl Acad Sci U S A ; 115(46): 11820-11825, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30385636

RESUMEN

When oxygen becomes limiting, denitrifying bacteria must prepare for anaerobic respiration by synthesizing the reductases NAR (NO3- → NO2-), NIR (NO2- → NO), NOR (2NO → N2O), and NOS (N2O → N2), either en bloc or sequentially, to avoid entrapment in anoxia without energy. Minimizing the metabolic burden of this precaution is a plausible fitness trait, and we show that the model denitrifier Paracoccus denitrificans achieves this by synthesizing NOS in all cells, while only a minority synthesize NIR. Phenotypic diversification with regards to NIR is ascribed to stochastic initiation of gene transcription, which becomes autocatalytic via NO production. Observed gas kinetics suggest that such bet hedging is widespread among denitrifying bacteria. Moreover, in response to oxygenation, P. denitrificans preserves NIR in the poles of nongrowing persister cells, ready to switch to anaerobic respiration in response to sudden anoxia. Our findings add dimensions to the regulatory biology of denitrification and identify regulatory traits that decrease N2O emissions.


Asunto(s)
Desnitrificación/fisiología , Nitratos/metabolismo , Paracoccus denitrificans/metabolismo , Bacterias/metabolismo , Hipoxia/metabolismo , Óxido Nitroso/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo
15.
Ecotoxicol Environ Saf ; 219: 112355, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34049225

RESUMEN

Florfenicol (FF) is widely used in aquaculture and can interfere with denitrification when released into natural ecosystems. The aim of this study was to analyze the response characteristics of nirS-type denitrifier Paracoccus denitrificans under FF stress and further mine antibiotic-responsive factors in aquatic environment. Phenotypic analysis revealed that FF delayed the nitrate removal with a maximum inhibition value of 82.4% at exponential growth phase, leading to nitrite accumulation reached to 21.9-fold and biofilm biomass decreased by ~38.6%, which were due to the lower bacterial population count (P < 0.01). RNA-seq transcriptome analyses indicated that FF treatment decreased the expression of nirS, norB, nosD and nosZ genes that encoded enzymes required for NO2- to N2 conversion from 1.02- to 2.21-fold (P < 0.001). Furthermore, gene associated with the flagellar system FlgL was also down-regulated by 1.03-fold (P < 0.001). Moreover, 10 confirmed sRNAs were significantly induced, which regulated a wide range of metabolic pathways and protein expression. Interestingly, different bacteria contained the same sRNAs means that sRNAs can spread between them. Overall, this study suggests that the denitrification of nirS-type denitrifiers can be hampered widely by FF and the key sRNAs have great potential to be antibiotic-responsive factors.


Asunto(s)
Antibacterianos/toxicidad , Desnitrificación/efectos de los fármacos , Paracoccus denitrificans/efectos de los fármacos , Tianfenicol/análogos & derivados , Bacterias/metabolismo , Ecosistema , Nitratos/metabolismo , Nitritos , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Tianfenicol/toxicidad
16.
Mol Microbiol ; 111(6): 1592-1603, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30875449

RESUMEN

Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum-dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Paracoccus denitrificans/enzimología , Aerobiosis , Anaerobiosis , Proteínas Bacterianas/genética , Chaperonas Moleculares/metabolismo , Molibdeno/metabolismo , Nitrato-Reductasa/genética , Oxidación-Reducción , Paracoccus denitrificans/genética
17.
Mol Microbiol ; 112(1): 166-183, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30977245

RESUMEN

Pden_5119, annotated as an NADPH-dependent FMN reductase, shows homology to proteins assisting in utilization of alkanesulfonates in other bacteria. Here, we report that inactivation of the pden_5119 gene increased susceptibility to oxidative stress, decreased growth rate and increased growth yield; growth on lower alkanesulfonates as sulfur sources was not specifically influenced. Pden_5119 transcript rose in response to oxidative stressors, respiratory chain inhibitors and terminal oxidase downregulation. Kinetic analysis of a fusion protein suggested a sequential mechanism in which FMN binds first, followed by NADH. The affinity of flavin toward the protein decreased only slightly upon reduction. The observed strong viscosity dependence of kcat demonstrated that reduced FMN formed tends to remain bound to the enzyme where it can be re-oxidized by oxygen or, less efficiently, by various artificial electron acceptors. Stopped flow data were consistent with the enzyme-FMN complex being a functional oxidase that conducts the reduction of oxygen by NADH. Hydrogen peroxide was identified as the main product. As shown by isotope effects, hydride transfer occurs from the pro-S C4 position of the nicotinamide ring and partially limits the overall turnover rate. Collectively, our results point to a role for the Pden_5119 protein in maintaining the cellular redox state.


Asunto(s)
FMN Reductasa/genética , FMN Reductasa/metabolismo , Secuencia de Aminoácidos/genética , Transporte de Electrón , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/metabolismo , NADP , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxidación-Reducción , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Estructura Terciaria de Proteína
18.
Microbiology (Reading) ; 166(10): 909-917, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32886603

RESUMEN

Nitrous oxide (N2O) is a potent greenhouse gas that is produced naturally as an intermediate during the process of denitrification carried out by some soil bacteria. It is consumed by nitrous oxide reductase (N2OR), the terminal enzyme of the denitrification pathway, which catalyses a reduction reaction to generate dinitrogen. N2OR contains two important copper cofactors (CuA and CuZ centres) that are essential for activity, and in copper-limited environments, N2OR fails to function, contributing to rising levels of atmospheric N2O and a major environmental challenge. Here we report studies of nosX, one of eight genes in the nos cluster of the soil dwelling α-proteobaterium Paraccocus denitrificans. A P. denitrificans ΔnosX deletion mutant failed to reduce N2O under both copper-sufficient and copper-limited conditions, demonstrating that NosX plays an essential role in N2OR activity. N2OR isolated from nosX-deficient cells was found to be unaffected in terms of the assembly of its copper cofactors, and to be active in in vitro assays, indicating that NosX is not required for the maturation of the enzyme; in particular, it plays no part in the assembly of either of the CuA and CuZ centres. Furthermore, quantitative Reverse Transcription PCR (qRT-PCR) studies showed that NosX does not significantly affect the expression of the N2OR-encoding nosZ gene. NosX is a homologue of the FAD-binding protein ApbE from Pseudomonas stutzeri, which functions in the flavinylation of another N2OR accessory protein, NosR. Thus, it is likely that NosX is a system-specific maturation factor of NosR, and so is indirectly involved in maintaining the reaction cycle of N2OR and cellular N2O reduction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Óxido Nitroso/metabolismo , Paracoccus denitrificans/metabolismo , Proteínas Bacterianas/genética , Coenzimas/metabolismo , Cobre/metabolismo , Desnitrificación , Proteínas de la Membrana/metabolismo , Mutación , Oxidación-Reducción , Oxidorreductasas/metabolismo , Paracoccus denitrificans/enzimología , Paracoccus denitrificans/genética
19.
Appl Microbiol Biotechnol ; 104(6): 2427-2433, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32002601

RESUMEN

Most bacteria form biofilms, which are thick multicellular communities covered in extracellular matrix. Biofilms can become thick enough to be even observed by the naked eye, and biofilm formation is a tightly regulated process. Paracoccus denitrificans is a non-motile, Gram-negative bacterium that forms a very thin, unique biofilm. A key factor in the biofilm formed by this bacterium is a large surface protein named biofilm-associated protein A (BapA), which was recently reported to be regulated by cyclic diguanosine monophosphate (cyclic-di-GMP or c-di-GMP). Cyclic-di-GMP is a major second messenger involved in biofilm formation in many bacteria. Though cyclic-di-GMP is generally reported as a positive regulatory factor in biofilm formation, it represses biofilm formation in P. denitrificans. Furthermore, quorum sensing (QS) represses biofilm formation in this bacterium, which is also reported as a positive regulator of biofilm formation in most bacteria. The QS signal used in P. denitrificans is hydrophobic and is delivered through membrane vesicles. Studies on QS show that P. denitrificans can potentially form a thick biofilm but maintains a thin biofilm under normal growth conditions. In this review, we discuss the peculiarities of biofilm formation by P. denitrificans with the aim of deepening the overall understanding of bacterial biofilm formation and functions.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Paracoccus denitrificans/fisiología , Percepción de Quorum , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteínas de la Membrana/metabolismo
20.
Lett Appl Microbiol ; 70(4): 263-273, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31879967

RESUMEN

Bioaugmentation is an effective treatment method to reduce nitrogenous pollutants from wastewater. A strain of DYTN-1, which could effectively remove TN from sewage, was isolated from the sludge of a wastewater treatment plant and was identified as Paracoccus denitrificans. The TN in wastewater reduced to <20 mg l-1 within 12 h under optimal conditions by free cells of P. denitrificans DYTN-1. To enhance the removal of TN, P. denitrificans DYTN-1 cells were immobilized in sodium alginate (SA) using different divalent metal ions as cross-linking agents. It was found that the immobilized P. denitrificans DYTN-1 cells could reduce the TN concentration from 100 to below 20 mg l-1 within 8 h. After the optimization of an orthogonal experiment, the immobilized P. denitrificans DYTN-1 cells could reduce the TN concentration from 100 mg l-1 to below 20 mg l-1 within 1 h and significantly reduce the fermentation cycle. These findings would provide an economical and effective method for the removal of total nitrogen in wastewater by immobilized cells of P. denitrificans DYTN-1. SIGNIFICANCE AND IMPACT OF THE STUDY: We identified a new Paracoccus denitrificans strain (DYTN-1) for removal of the total nitrogen in wastewater. The total nitrogen could be removed effectively by P. denitrificans DYTN-1 within 12 h in wastewater. Using sodium alginate as the carrier and Ba2+ as cross-linking agent, the immobilized P. denitrificans DYTN-1 cells could improve the removal efficiency of total nitrogen in wastewater and significantly reduce the fermentation cycle. The assay has provided an economical and effective method for the removal of total nitrogen in wastewater by immobilized cell.


Asunto(s)
Nitrógeno/metabolismo , Paracoccus denitrificans/metabolismo , Aguas Residuales/microbiología , Purificación del Agua/métodos , Biodegradación Ambiental , Reactores Biológicos/microbiología , Células Inmovilizadas/química , Células Inmovilizadas/metabolismo , Desnitrificación , Fermentación , Paracoccus denitrificans/química , Paracoccus denitrificans/genética , Paracoccus denitrificans/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Purificación del Agua/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA