Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.079
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 48(2): 350-363.e7, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29426701

RESUMEN

Despite evidence that γδ T cells play an important role during malaria, their precise role remains unclear. During murine malaria induced by Plasmodium chabaudi infection and in human P. falciparum infection, we found that γδ T cells expanded rapidly after resolution of acute parasitemia, in contrast to αß T cells that expanded at the acute stage and then declined. Single-cell sequencing showed that TRAV15N-1 (Vδ6.3) γδ T cells were clonally expanded in mice and had convergent complementarity-determining region 3 sequences. These γδ T cells expressed specific cytokines, M-CSF, CCL5, CCL3, which are known to act on myeloid cells, indicating that this γδ T cell subset might have distinct functions. Both γδ T cells and M-CSF were necessary for preventing parasitemic recurrence. These findings point to an M-CSF-producing γδ T cell subset that fulfills a specialized protective role in the later stage of malaria infection when αß T cells have declined.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos/fisiología , Malaria/prevención & control , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/inmunología , Animales , Femenino , Humanos , Activación de Linfocitos , Malaria/inmunología , Ratones , Parasitemia/prevención & control , Recurrencia
2.
N Engl J Med ; 387(5): 397-407, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35921449

RESUMEN

BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).


Asunto(s)
Anticuerpos Monoclonales , Malaria , Administración Cutánea , Administración Intravenosa , Adulto , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Niño , Preescolar , Humanos , Malaria/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Parasitemia/parasitología , Plasmodium falciparum
3.
Immunity ; 45(2): 333-45, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27533014

RESUMEN

Many pathogens, including Plasmodium spp., exploit the interaction of programmed death-1 (PD-1) with PD-1-ligand-1 (PD-L1) to "deactivate" T cell functions, but the role of PD-L2 remains unclear. We studied malarial infections to understand the contribution of PD-L2 to immunity. Here we have shown that higher PD-L2 expression on blood dendritic cells, from Plasmodium falciparum-infected individuals, correlated with lower parasitemia. Mechanistic studies in mice showed that PD-L2 was indispensable for establishing effective CD4(+) T cell immunity against malaria, because it not only inhibited PD-L1 to PD-1 activity but also increased CD3 and inducible co-stimulator (ICOS) expression on T cells. Importantly, administration of soluble multimeric PD-L2 to mice with lethal malaria was sufficient to dramatically improve immunity and survival. These studies show immuno-regulation by PD-L2, which has the potential to be translated into an effective treatment for malaria and other diseases where T cell immunity is ineffective or short-lived due to PD-1-mediated signaling.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Adamantano/análogos & derivados , Adamantano/uso terapéutico , Adulto , Animales , Antimaláricos/uso terapéutico , Antígeno B7-H1/genética , Células Cultivadas , Ensayos Clínicos como Asunto , Células Dendríticas/parasitología , Femenino , Humanos , Inmunidad Celular , Activación de Linfocitos , Malaria Falciparum/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Parasitemia/inmunología , Peróxidos/uso terapéutico , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/genética , Pirimidinas/uso terapéutico , Triazoles/uso terapéutico , Adulto Joven
4.
J Infect Dis ; 229(6): 1913-1918, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38349649

RESUMEN

A large body of evidence suggests that low parasite carriage in Plasmodium falciparum asymptomatic infection is required for the maintenance of malaria immunity. However, the fact that treating such infections has little to no impact on subsequent clinical malaria is rarely noted. In this paper, we review data and argue that low-density parasite carriage in asymptomatic infection may not support host immune processes and that parasites are virtually under the host's immunological radar. We also discuss factors that may be constraining parasitemia in asymptomatic infections from reaching the threshold required to cause clinical symptoms. A thorough understanding of this infectious reservoir is essential for malaria control and eradication because asymptomatic infections contribute significantly to Plasmodium transmission.


Persistent asymptomatic Plasmodium falciparum parasite carriage has been recognized as one of the major contributors to malaria transmission that impedes worldwide elimination efforts. Asymptomatic infection is required for maintaining clinical immunity, hence the controversy regarding its treatment. Evidence from transcriptional and cellular profiling indicates asymptomatic low parasite carriage may not support host immune processes. Interventions targeted at persistent asymptomatic infections may be crucial for malaria control.


Asunto(s)
Infecciones Asintomáticas , Malaria Falciparum , Plasmodium falciparum , Humanos , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Animales , Interacciones Huésped-Parásitos/inmunología , Parasitemia/inmunología , Portador Sano/parasitología , Portador Sano/inmunología
5.
J Infect Dis ; 230(2): 497-504, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38874098

RESUMEN

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Coinfection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G, K540E, and A581G) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in 2 previously little-studied countries.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Refugiados , Humanos , Uganda/epidemiología , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Prevalencia , Preescolar , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico , Femenino , Masculino , Niño , Proteínas Protozoarias/genética , Lactante , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Sudán/epidemiología , Biomarcadores/sangre , Artemisininas/uso terapéutico , Artemisininas/farmacología , Parasitemia/epidemiología , Parasitemia/tratamiento farmacológico , Plasmodium malariae/genética , Plasmodium malariae/efectos de los fármacos
6.
J Infect Dis ; 230(4): 1013-1022, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-38885291

RESUMEN

BACKGROUND: Many insect-borne pathogens appear to manipulate the odors of their hosts in ways that influence vector behaviors. In our prior work, we identified characteristic changes in volatile emissions of cultured Plasmodium falciparum parasites in vitro and during natural human falciparum malaria. In the current study, we prospectively evaluate the reproducibility of these findings in an independent cohort of children in Blantyre, Malawi. METHODS: We enrolled febrile children under evaluation for malaria and collected breath from children with and without malaria, as well as healthy controls. Using gas chromatography/mass spectrometry, we characterized breath volatiles associated with malaria. By repeated sampling of children with malaria before and after antimalarial use, we determined how breath profiles respond to treatment. In addition, we investigated the stage-specificity of biomarkers through correlation with asexual and sexual-stage parasitemia. RESULTS: Our data provide robust evidence that P. falciparum infection leads to specific, reproducible changes in breath compounds. While no individual compound served as an adequate classifier in isolation, selected volatiles together yielded high sensitivity for diagnosis of malaria. Overall, the results of our predictive models suggest the presence of volatile signatures that reproducibly predict malaria infection status and determine response to therapy, even in cases of low parasitemia.


Asunto(s)
Antimaláricos , Biomarcadores , Pruebas Respiratorias , Malaria Falciparum , Plasmodium falciparum , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/diagnóstico , Preescolar , Pruebas Respiratorias/métodos , Femenino , Masculino , Biomarcadores/análisis , Antimaláricos/uso terapéutico , Lactante , Estudios Prospectivos , Reproducibilidad de los Resultados , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Malaui , Niño , Cromatografía de Gases y Espectrometría de Masas , Parasitemia/tratamiento farmacológico
7.
Infect Immun ; 92(3): e0036023, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38299826

RESUMEN

Malaria is strongly predisposed to bacteremia, which is associated with increased gastrointestinal permeability and a poor clinical prognosis. We previously identified mast cells (MCs) as mediators of intestinal permeability in malaria and described multiple cytokines that rise with parasitemia, including interleukin (IL)-10, which could protect the host from an inflammatory response and alter parasite transmission to Anopheles mosquitoes. Here, we used the Cre-loxP system and non-lethal Plasmodium yoelii yoelii 17XNL to study the roles of MC-derived IL-10 in malaria immunity and transmission. Our data suggest a sex-biased and local inflammatory response mediated by MC-derived IL-10, supported by early increased number and activation of MCs in females relative to males. Increased parasitemia in female MC IL-10 (-) mice was associated with increased ileal levels of chemokines and plasma myeloperoxidase (MPO). We also observed increased intestinal permeability in female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice but no differences in blood bacterial 16S DNA levels. Transmission success of P. yoelii to A. stephensi was higher in female relative to male mice and from female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice. These patterns were associated with increased plasma levels of pro-inflammatory cytokines in female MC IL-10 (-) mice and increased plasma levels of chemokines and markers of neutrophil activation in male MC IL-10 (-) mice. Overall, these data suggest that MC-derived IL-10 protects intestinal barrier integrity, regulates parasite transmission, and controls local and systemic host immune responses during malaria, with a female bias.


Asunto(s)
Anopheles , Malaria , Parásitos , Plasmodium yoelii , Animales , Masculino , Femenino , Ratones , Interleucina-10/genética , Anopheles/parasitología , Mastocitos , Parasitemia , Citocinas , Quimiocinas , Inmunidad
8.
Clin Infect Dis ; 79(1): 240-246, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38193647

RESUMEN

BACKGROUND: People with human immunodeficiency virus (PWH) with recurrent visceral leishmaniasis (VL) could potentially drive Leishmania transmission in areas with anthroponotic transmission such as East Africa, but studies are lacking. Leishmania parasitemia has been used as proxy for infectiousness. METHODS: This study is nested within the Predicting Visceral Leishmaniasis in HIV-InfectedPatients (PreLeisH) prospective cohort study, following 490 PWH free of VL at enrollment for up to 24-37 months in northwest Ethiopia. Blood Leishmania polymerase chain reaction (PCR) was done systematically. This case series reports on 10 PWH with chronic VL (≥3 VL episodes during follow-up) for up to 37 months, and 3 individuals with asymptomatic Leishmania infection for up to 24 months. RESULTS: All 10 chronic VL cases were male, on antiretroviral treatment, with 0-11 relapses before enrollment. Median baseline CD4 count was 82 cells/µL. They displayed 3-6 VL treatment episodes over a period up to 37 months. Leishmania blood PCR levels were strongly positive for almost the entire follow-up (median cycle threshold value, 26 [interquartile range, 23-30]), including during periods between VL treatment. Additionally, we describe 3 PWH with asymptomatic Leishmania infection and without VL history, with equally strong Leishmania parasitemia over a period of up to 24 months without developing VL. All were on antiretroviral treatment at enrollment, with baseline CD4 counts ranging from 78 to 350 cells/µL. CONCLUSIONS: These are the first data on chronic parasitemia in PWH from Leishmania donovani-endemic areas. PWH with asymptomatic and symptomatic Leishmania infection could potentially be highly infectious and constitute Leishmania superspreaders. Xenodiagnosis studies are required to confirm infectiousness.


Asunto(s)
Infecciones por VIH , Leishmaniasis Visceral , Parasitemia , Humanos , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/transmisión , Etiopía/epidemiología , Masculino , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Adulto , Parasitemia/epidemiología , Parasitemia/parasitología , Estudios Prospectivos , Persona de Mediana Edad , Enfermedades Endémicas , Recuento de Linfocito CD4 , Reacción en Cadena de la Polimerasa
9.
Immunology ; 171(3): 413-427, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38150744

RESUMEN

Toll-like receptors (TLRs) play an important role in inducing innate and acquired immune responses against infection. However, the effect of Toll-like receptor 7 (TLR7) on follicular helper T (Tfh) cells in mice infected with Plasmodium is still not clear. The results showed that the splenic CD4+ CXCR5+ PD-1+ Tfh cells were accumulated after Plasmodium yoelii NSM infection, the content of splenic Tfh cells was correlated to parasitemia and/or the red blood cells (RBCs) counts in the blood. Moreover, the expression of TLR7 was found higher than TLR2, TLR3 and TLR4 in splenic Tfh cells of the WT mice. TLR7 agonist R848 and the lysate of red blood cells of infected mice (iRBCs) could induce the activation and differentiation of splenic Tfh cells. Knockout of TLR7 leads to a decrease in the proportion of Tfh cells, down-regulated expression of functional molecules CD40L, IFN-γ, IL-21 and IL-10 in Tfh cells; decreased the proportion of plasma cells and antibody production and reduces the expression of STAT3 and Ikzf2 in Tfh cells. Administration of R848 could inhibit parasitemia, enhance splenic Tfh cell activation and increase STAT3 and Ikzf2 expression in Tfh cells. In summary, this study shows that TLR7 could regulate the function of Tfh cells, affecting the immune response in the spleen of Plasmodium yoelii NSM-infected mice.


Asunto(s)
Malaria , Plasmodium yoelii , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Parasitemia/metabolismo , Plasmodium yoelii/metabolismo , Células T Auxiliares Foliculares/metabolismo , Linfocitos T Colaboradores-Inductores , Receptor Toll-Like 7/metabolismo
10.
Antimicrob Agents Chemother ; 68(9): e0086324, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39136464

RESUMEN

The rise of multidrug-resistant malaria requires accelerated development of novel antimalarial drugs. Pharmacokinetic-pharmacodynamic (PK-PD) models relate blood antimalarial drug concentrations with the parasite-time profile to inform dosing regimens. We performed a simulation study to assess the utility of a Bayesian hierarchical mechanistic PK-PD model for predicting parasite-time profiles for a Phase 2 study of a new antimalarial drug, cipargamin. We simulated cipargamin concentration- and malaria parasite-profiles based on a Phase 2 study of eight volunteers who received cipargamin 7 days after inoculation with malaria parasites. The cipargamin profiles were generated from a two-compartment PK model and parasite profiles from a previously published biologically informed PD model. One thousand PK-PD data sets of eight patients were simulated, following the sampling intervals of the Phase 2 study. The mechanistic PK-PD model was incorporated in a Bayesian hierarchical framework, and the parameters were estimated. Population PK model parameters describing absorption, distribution, and clearance were estimated with minimal bias (mean relative bias ranged from 1.7% to 8.4%). The PD model was fitted to the parasitaemia profiles in each simulated data set using the estimated PK parameters. Posterior predictive checks demonstrate that our PK-PD model adequately captures the simulated PD profiles. The bias of the estimated population average PD parameters was low-moderate in magnitude. This simulation study demonstrates the viability of our PK-PD model to predict parasitological outcomes in Phase 2 volunteer infection studies. This work will inform the dose-effect relationship of cipargamin, guiding decisions on dosing regimens to be evaluated in Phase 3 trials.


Asunto(s)
Antimaláricos , Teorema de Bayes , Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Adulto , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Malaria/tratamiento farmacológico , Masculino , Simulación por Computador , Femenino
11.
Lancet ; 402(10417): 2101-2110, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-37979594

RESUMEN

BACKGROUND: In areas co-endemic for Plasmodium vivax and Plasmodium falciparum there is an increased risk of P vivax parasitaemia following P falciparum malaria. Radical cure is currently only recommended for patients presenting with P vivax malaria. Expanding the indication for radical cure to patients presenting with P falciparum malaria could reduce their risk of subsequent P vivax parasitaemia. METHODS: We did a multicentre, open-label, superiority randomised controlled trial in five health clinics in Bangladesh, Indonesia, and Ethiopia. In Bangladesh and Indonesia, patients were excluded if they were younger than 1 year, whereas in Ethiopia patients were excluded if they were younger than 18 years. Patients with uncomplicated P falciparum monoinfection who had fever or a history of fever in the 48 h preceding clinic visit were eligible for enrolment and were required to have a glucose-6-dehydrogenase (G6PD) activity of 70% or greater. Patients received blood schizontocidal treatment (artemether-lumefantrine in Ethiopia and Bangladesh and dihydroartemisinin-piperaquine in Indonesia) and were randomly assigned (1:1) to receive either high-dose short-course oral primaquine (intervention arm; total dose 7 mg/kg over 7 days) or standard care (standard care arm; single dose oral primaquine of 0·25 mg/kg). Random assignment was done by an independent statistician in blocks of eight by use of sealed envelopes. All randomly assigned and eligible patients were included in the primary and safety analyses. The per-protocol analysis excluded those who did not complete treatment or had substantial protocol violations. The primary endpoint was the incidence risk of P vivax parasitaemia on day 63. This trial is registered at ClinicalTrials.gov, NCT03916003. FINDINGS: Between Aug 18, 2019, and March 14, 2022, a total of 500 patients were enrolled and randomly assigned, and 495 eligible patients were included in the intention-to-treat analysis (246 intervention and 249 control). The incidence risk of P vivax parasitaemia at day 63 was 11·0% (95% CI 7·5-15·9) in the standard care arm compared with 2·5% (1·0-5·9) in the intervention arm (hazard ratio 0·20, 95% CI 0·08-0·51; p=0·0009). The effect size differed with blood schizontocidal treatment and site. Routine symptom reporting on day 2 and day 7 were similar between groups. In the first 42 days, there were a total of four primaquine-related adverse events reported in the standard care arm and 26 in the intervention arm; 132 (92%) of all 143 adverse events were mild. There were two serious adverse events in the intervention arm, which were considered unrelated to the study drug. None of the patients developed severe anaemia (defined as haemoglobin <5 g/dL). INTERPRETATION: In patients with a G6PD activity of 70% or greater, high-dose short-course primaquine was safe and relatively well tolerated and reduced the risk of subsequent P vivax parasitaemia within 63 days by five fold. Universal radical cure therefore potentially offers substantial clinical, public health, and operational benefits, but these benefits will vary with endemic setting. FUNDING: Australian Academy of Science Regional Collaborations Program, Bill & Melinda Gates Foundation, and National Health and Medical Research Council.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Primaquina/efectos adversos , Antimaláricos/efectos adversos , Plasmodium vivax , Arteméter/farmacología , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Australia , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Malaria/tratamiento farmacológico , Plasmodium falciparum , Parasitemia/tratamiento farmacológico , Parasitemia/epidemiología
12.
Biochem Soc Trans ; 52(3): 1025-1034, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38752830

RESUMEN

Despite having the highest risk of progressing to severe disease due to lack of acquired immunity, the youngest children living in areas of highly intense malaria transmission have long been observed to be infected at lower rates than older children. Whether this observation is due to reduced exposure to infectious mosquito bites from behavioral and biological factors, maternally transferred immunity, genetic factors, or enhanced innate immunity in the young child has intrigued malaria researchers for over half a century. Recent evidence suggests that maternally transferred immunity may be limited to early infancy and that the young child's own immune system may contribute to control of malarial symptoms early in life and prior to the development of more effective adaptive immunity. Prospective studies of active and passive detection of Plasmodium falciparum blood-stage infections have identified young children (<5 years old) who remain uninfected through a defined surveillance period despite living in settings of highly intense malaria transmission. Yet, little is known about the potential immunological basis for this 'aparasitemic' phenotype. In this review, we summarize the observational evidence for this phenotype in field studies and examine potential reasons why these children escape detection of parasitemia, covering factors that are either extrinsic or intrinsic to their developing immune system. We discuss the challenges of distinguishing malaria protection from lack of malaria exposure in field studies. We also identify gaps in our knowledge regarding cellular immunity in the youngest age group and propose directions that researchers may take to address these gaps.


Asunto(s)
Malaria Falciparum , Parasitemia , Plasmodium falciparum , Humanos , Preescolar , Malaria Falciparum/transmisión , Plasmodium falciparum/inmunología , Lactante , Malaria/transmisión , Inmunidad Innata , Animales
13.
Immunity ; 42(3): 580-90, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25786180

RESUMEN

Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity.


Asunto(s)
Anticuerpos Antiprotozoarios/biosíntesis , Complemento C1q/metabolismo , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Merozoítos/inmunología , Parasitemia/prevención & control , Plasmodium falciparum/inmunología , Adolescente , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Niño , Preescolar , Pruebas de Fijación del Complemento , Vía Clásica del Complemento , Eritrocitos/inmunología , Eritrocitos/parasitología , Femenino , Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inmunoglobulina G/biosíntesis , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Proteína 1 de Superficie de Merozoito/antagonistas & inhibidores , Proteína 1 de Superficie de Merozoito/genética , Proteína 1 de Superficie de Merozoito/inmunología , Parasitemia/inmunología , Parasitemia/parasitología , Estudios Prospectivos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
14.
Malar J ; 23(1): 70, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459560

RESUMEN

BACKGROUND: Birds chronically infected with avian malaria parasites often show relapses of parasitaemia after latent stages marked by absence of parasites in the peripheral circulation. These relapses are assumed to result from the activation of dormant exo-erythrocytic stages produced during secondary (post-erythrocytic) merogony of avian Plasmodium spp. Yet, there is no morphological proof of persistent or dormant tissue stages in the avian host during latent infections. This study investigated persistence of Plasmodium relictum pSGS1 in birds with latent infections during winter, with the goal to detect presumed persisting tissue stages using a highly sensitive RNAscope® in situ hybridization technology. METHODS: Fourteen domestic canaries were infected with P. relictum pSGS1 by blood-inoculation in spring, and blood films examined during the first 4 months post infection, and during winter and spring of the following year. After parasitaemia was no longer detectable, half of the birds were dissected, and tissue samples investigated for persisting tissue stages using RNAscope ISH and histology. The remaining birds were blood-checked and dissected after re-appearance of parasitaemia, and their tissues equally examined. RESULTS: Systematic examination of tissues showed no exo-erythrocytic stages in birds exhibiting latent infections by blood-film microscopy, indicating absence of dormant tissue stages in P. relictum pSGS1-infected canaries. Instead, RNAscope ISH revealed rare P. relictum blood stages in capillaries of various tissues and organs, demonstrating persistence of the parasites in the microvasculature. Birds examined after re-appearance of parasitemia showed higher numbers of P. relictum blood stages in both capillaries and larger blood vessels, indicating replication during early spring and re-appearance in the peripheral circulation. CONCLUSIONS: The findings suggest that persistence of P. relictum pSGS1 during latent infection is mediated by continuous low-level erythrocytic merogony and possibly tissue sequestration of infected blood cells. Re-appearance of parasitaemia in spring seems to result from increased erythrocytic merogony, therefore representing recrudescence and not relapse in blood-inoculated canaries. Further, the study highlights strengths and limitations of the RNAscope ISH technology for the detection of rare parasite stages in tissues, providing directions for future research on persistence and tissue sequestration of avian malaria and related haemosporidian parasites.


Asunto(s)
Infección Latente , Malaria Aviar , Plasmodium , Animales , Canarios/parasitología , Malaria Aviar/parasitología , Plasmodium/genética , Aves , Hibridación in Situ , Parasitemia/parasitología , Recurrencia
15.
Malar J ; 23(1): 188, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880870

RESUMEN

BACKGROUND: Effective testing for malaria, including the detection of infections at very low densities, is vital for the successful elimination of the disease. Unfortunately, existing methods are either inexpensive but poorly sensitive or sensitive but costly. Recent studies have shown that mid-infrared spectroscopy coupled with machine learning (MIRs-ML) has potential for rapidly detecting malaria infections but requires further evaluation on diverse samples representative of natural infections in endemic areas. The aim of this study was, therefore, to demonstrate a simple AI-powered, reagent-free, and user-friendly approach that uses mid-infrared spectra from dried blood spots to accurately detect malaria infections across varying parasite densities and anaemic conditions. METHODS: Plasmodium falciparum strains NF54 and FCR3 were cultured and mixed with blood from 70 malaria-free individuals to create various malaria parasitaemia and anaemic conditions. Blood dilutions produced three haematocrit ratios (50%, 25%, 12.5%) and five parasitaemia levels (6%, 0.1%, 0.002%, 0.00003%, 0%). Dried blood spots were prepared on Whatman™ filter papers and scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) for machine-learning analysis. Three classifiers were trained on an 80%/20% split of 4655 spectra: (I) high contrast (6% parasitaemia vs. negative), (II) low contrast (0.00003% vs. negative) and (III) all concentrations (all positive levels vs. negative). The classifiers were validated with unseen datasets to detect malaria at various parasitaemia levels and anaemic conditions. Additionally, these classifiers were tested on samples from a population survey in malaria-endemic villages of southeastern Tanzania. RESULTS: The AI classifiers attained over 90% accuracy in detecting malaria infections as low as one parasite per microlitre of blood, a sensitivity unattainable by conventional RDTs and microscopy. These laboratory-developed classifiers seamlessly transitioned to field applicability, achieving over 80% accuracy in predicting natural P. falciparum infections in blood samples collected during the field survey. Crucially, the performance remained unaffected by various levels of anaemia, a common complication in malaria patients. CONCLUSION: These findings suggest that the AI-driven mid-infrared spectroscopy approach holds promise as a simplified, sensitive and cost-effective method for malaria screening, consistently performing well despite variations in parasite densities and anaemic conditions. The technique simply involves scanning dried blood spots with a desktop mid-infrared scanner and analysing the spectra using pre-trained AI classifiers, making it readily adaptable to field conditions in low-resource settings. In this study, the approach was successfully adapted to field use, effectively predicting natural malaria infections in blood samples from a population-level survey in Tanzania. With additional field trials and validation, this technique could significantly enhance malaria surveillance and contribute to accelerating malaria elimination efforts.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Malaria Falciparum/diagnóstico , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Plasmodium falciparum/aislamiento & purificación , Parasitemia/diagnóstico , Parasitemia/parasitología , Anemia/diagnóstico , Anemia/sangre , Anemia/parasitología , Espectrofotometría Infrarroja/métodos , Aprendizaje Automático , Carga de Parásitos , Adulto , Inteligencia Artificial , Sensibilidad y Especificidad , Femenino , Adulto Joven , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Adolescente , Masculino , Persona de Mediana Edad , Tamizaje Masivo/métodos
16.
Malar J ; 23(1): 190, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886782

RESUMEN

BACKGROUND: Well-built housing limits mosquito entry and can reduce malaria transmission. The association between community-level housing and malaria burden in Uganda was assessed using data from randomly selected households near 64 health facilities in 32 districts. METHODS: Houses were classified as 'improved' (synthetic walls and roofs, eaves closed or absent) or 'less-improved' (all other construction). Associations between housing and parasitaemia were made using mixed effects logistic regression (individual-level) and multivariable fractional response logistic regression (community-level), and between housing and malaria incidence using multivariable Poisson regression. RESULTS: Between November 2021 and March 2022, 4.893 children aged 2-10 years were enrolled from 3.518 houses; of these, 1.389 (39.5%) were classified as improved. Children living in improved houses had 58% lower odds (adjusted odds ratio = 0.42, 95% CI 0.33-0.53, p < 0.0001) of parasitaemia than children living in less-improved houses. Communities with > 67% of houses improved had a 63% lower parasite prevalence (adjusted prevalence ratio 0.37, 95% CI 0.19-0.70, p < 0.0021) and 60% lower malaria incidence (adjusted incidence rate ratio 0.40, 95% CI 0.36-0.44, p < 0.0001) compared to communities with < 39% of houses improved. CONCLUSIONS: Improved housing was strongly associated with lower malaria burden across a range of settings in Uganda and should be utilized for malaria control.


Asunto(s)
Vivienda , Mosquiteros Tratados con Insecticida , Malaria , Control de Mosquitos , Uganda/epidemiología , Preescolar , Vivienda/estadística & datos numéricos , Niño , Humanos , Malaria/epidemiología , Malaria/prevención & control , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Femenino , Control de Mosquitos/estadística & datos numéricos , Masculino , Incidencia , Prevalencia , Parasitemia/epidemiología , Parasitemia/parasitología
17.
Malar J ; 23(1): 183, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858696

RESUMEN

BACKGROUND: Plasmodium vivax malaria is a leading cause of morbidity in Ethiopia. The first-line treatment for P. vivax is chloroquine (CQ) and primaquine (PQ), but there have been local reports of CQ resistance. A clinical study was conducted to determine the efficacy of CQ for the treatment of P. vivax malaria in southern Ethiopia. METHODS: In 2021, patients with P. vivax mono-infection and uncomplicated malaria were enrolled and treated with 25 mg/kg CQ for 3 consecutive days. Patients were followed for 28 days according to WHO guidelines. The data were analysed using per-protocol (PP) and Kaplan‒Meier (K‒M) analyses to estimate the risk of recurrent P. vivax parasitaemia on day 28. RESULTS: A total of 88 patients were enrolled, 78 (88.6%) of whom completed the 28 days of follow-up. Overall, 76 (97.4%) patients had adequate clinical and parasitological responses, and two patients had late parasitological failures. The initial therapeutic response was rapid, with 100% clearance of asexual parasitaemia within 48 h. CONCLUSION: Despite previous reports of declining chloroquine efficacy against P. vivax, CQ retains high therapeutic efficacy in southern Ethiopia, supporting the current national treatment guidelines. Ongoing clinical monitoring of CQ efficacy supported by advanced molecular methods is warranted to inform national surveillance and ensure optimal treatment guidelines.


Asunto(s)
Antimaláricos , Cloroquina , Malaria Vivax , Malaria Vivax/tratamiento farmacológico , Cloroquina/uso terapéutico , Etiopía , Humanos , Antimaláricos/uso terapéutico , Masculino , Adulto , Femenino , Adolescente , Adulto Joven , Niño , Persona de Mediana Edad , Preescolar , Plasmodium vivax/efectos de los fármacos , Resultado del Tratamiento , Anciano , Parasitemia/tratamiento farmacológico
18.
Malar J ; 23(1): 40, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317164

RESUMEN

BACKGROUND: Artemisinin-based combination therapy (ACT) has been effective in the supervised treatment of uncomplicated malaria in Ghana. Since ACT usage is primarily unsupervised, this study aimed to determine the effectiveness of artemether-lumefantrine (AL) for treating malaria patients in two transmission settings in Ghana. METHODS: Eighty-four individuals with uncomplicated Plasmodium falciparum malaria were recruited from Lekma Hospital (LH) in Accra (low-transmission area; N = 28), southern Ghana, and King's Medical Centre (KMC) in Kumbungu (high-transmission area; N = 56), northern Ghana. Participants were followed up for 28 days after unsupervised treatment with AL. The presence of asexual parasites was determined by microscopic examination of Giemsa-stained blood smears. Plasmodium species identification was confirmed using species-specific primers targeting the 18S rRNA gene. Parasite recrudescence or reinfection was determined by genotyping the Pfmsp 1 and Pfmsp 2 genes. RESULTS: After AL treatment, 3.6% (2/56) of the patients from KMC were parasitaemic on day 3 compared to none from the LH patients. One patient from KMC with delayed parasite clearance on day 3 remained parasite-positive by microscopy on day 7 but was parasite-free by day 14. While none of the patients from LH experienced parasite recurrence during the 28-day follow-up, three and two patients from KMC had recurrent parasitaemia on days 21 and 28, respectively. Percentage reduction in parasite densities from day 1, 2, and 3 for participants from the KMC was 63.2%, 89.5%, and 84.5%. Parasite densities for participants from the LH reduced from 98.2%, 99.8% on day 1, and 2 to 100% on day 3. The 28-day cumulative incidence rate of treatment failure for KMC was 12.8% (95% confidence interval: 1.9-23.7%), while the per-protocol effectiveness of AL in KMC was 89.47%. All recurrent cases were assigned to recrudescence after parasite genotyping by Pfmsp 1 and Pfmsp 2. CONCLUSION: While AL is efficacious in treating uncomplicated malaria in Ghana, when taken under unsupervised conditions, it showed an 89.4% PCR-corrected cure rate in northern Ghana, which is slightly below the WHO-defined threshold.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Combinación Arteméter y Lumefantrina/uso terapéutico , Antimaláricos/uso terapéutico , Ghana , Artemisininas/uso terapéutico , Combinación de Medicamentos , Arteméter/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Recurrencia , Parasitemia/tratamiento farmacológico , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Plasmodium falciparum/genética
19.
Eur J Clin Microbiol Infect Dis ; 43(5): 915-926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38472520

RESUMEN

PURPOSE: During malarial infection, both parasites and host red blood cells (RBCs) come under severe oxidative stress due to the production of free radicals. The host system responds in protecting the RBCs against the oxidative damage caused by these free radicals by producing antioxidants. In this study, we investigated the antioxidant enzyme; superoxide dismutase (SOD) activity and cytokine interactions with parasitaemia in Ghanaian children with severe and uncomplicated malaria. METHODOLOGY: One hundred and fifty participants aged 0-12 years were administered with structured questionnaires. Active case finding approach was used in participating hospitals to identify and interview cases before treatment was applied. Blood samples were taken from each participant and used to quantify malaria parasitaemia, measure haematological parameters and SOD activity. Cytokine levels were measured by commercial ELISA kits. DNA comet assay was used to evaluate the extent of parasite DNA damage due to oxidative stress. RESULTS: Seventy - Nine (79) and Twenty- Six (26) participants who were positive with malaria parasites were categorized as severe (56.75 × 103 ± 57.69 parasites/µl) and uncomplicated malaria (5.87 × 103 ± 2.87 parasites/µl) respectively, showing significant difference in parasitaemia (p < 0.0001). Significant negative correlation was found between parasitaemia and SOD activity levels among severe malaria study participants (p = 0.0428). Difference in cytokine levels (IL-10) amongst the control, uncomplicated and severe malaria groups was significant (p < 0.0001). The IFN-γ/IL-10 /TNF-α/IL-10 ratio differed significantly between the malaria infected and non- malaria infected study participants. DNA comet assay revealed damage to Plasmodium parasite DNA. CONCLUSION: Critical roles played by SOD activity and cytokines as anti-parasitic defense during P. falciparum malaria infection in children were established.


Asunto(s)
Citocinas , Interacciones Huésped-Parásitos , Estrés Oxidativo , Parasitemia , Humanos , Ghana/epidemiología , Preescolar , Masculino , Lactante , Femenino , Niño , Citocinas/sangre , Superóxido Dismutasa/sangre , Malaria/parasitología , Malaria/sangre , Recién Nacido , Daño del ADN , Malaria Falciparum/parasitología , Malaria Falciparum/sangre , Malaria Falciparum/epidemiología , Plasmodium falciparum
20.
Infection ; 52(3): 707-722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319556

RESUMEN

BACKGROUND AND OBJECTIVE: Despite the significant burden of Plasmodium falciparum (Pf) malaria and the licensure of two vaccines for use in infants and young children that are partially effective in preventing clinical malaria caused by Pf, a highly effective vaccine against Pf infection is still lacking. Live attenuated vaccines using Pf sporozoites as the immunogen (PfSPZ Vaccines) hold promise for addressing this gap. Here we review the safety and efficacy of two of the most promising PfSPZ approaches: PfSPZ Vaccine (radiation attenuated PfSPZ) and PfSPZ-CVac (chemo-attenuated PfSPZ). METHODS: We conducted a systematic review and meta-analysis by searching PubMed, EMBASE, SCOPUS, CENTRAL, and WOS until 22nd December 2021. We included randomized controlled trials (RCTs) of these two vaccine approaches that measured protection against parasitaemia following controlled human malaria infection (CHMI) in malaria-naive and malaria-exposed adults or following exposure to naturally transmitted Pf malaria in African adults and children (primary outcome) and that also measured the incidence of solicited and unsolicited adverse events as indicators of safety and tolerability after vaccination (secondary outcome). We included randomized controlled trials (RCTs) that measured the detected parasitaemia after vaccination (primary outcome) and the incidence of various solicited and unsolicited adverse events (secondary outcome). The quality of the included RCTs using the Cochrane ROB 1 tool and the quality of evidence using the GRADE system were evaluated. We pooled dichotomous data using the risk ratio (RR) for development of parasitemia in vaccinees relative to controls as a measure of vaccine efficacy (VE), including the corresponding confidence interval (CI). This study was registered with PROSPERO (CRD42022308057). RESULTS: We included 19 RCTs. Pooled RR favoured PfSPZ Vaccine (RR: 0.65 with 95% CI [0.53, 0.79], P = 0.0001) and PfSPZ-table (RR: 0.42 with 95% CI [0.27, 0.67], P = 0.0002) for preventing parasitaemia, relative to normal saline placebo. Pooled RR showed no difference between PfSPZ Vaccine and the control in the occurrence of any solicited adverse event (RR: 1.00 with 95% CI [0.82, 1.23], P = 0.98), any local solicited adverse events (RR: 0.73 with 95% CI [0.49, 1.08], P = 0.11), any systemic solicited adverse events (RR: 0.94 with 95% CI [0.75, 1.17], P = 0.58), and any unsolicited adverse event (RR: 0.93 with 95% CI [0.78, 1.10], P = 0.37). CONCLUSION: PfSPZ and PfSPZ-CVacs showed comparable efficacy. Therefore, they can introduce a promising strategy for malaria prophylaxis, but more large-scale field trials are required to sustain efficacy and yield clinically applicable findings.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Ensayos Clínicos Controlados Aleatorios como Asunto , Esporozoítos , Vacunas Atenuadas , Humanos , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Malaria Falciparum/inmunología , Parasitemia/prevención & control , Plasmodium falciparum/inmunología , Esporozoítos/inmunología , Vacunas Atenuadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA