RESUMEN
Carnivore parvoviruses infect wild and domestic carnivores, and cross-species transmission is believed to occur. However, viral dynamics are not well understood, nor are the consequences for wild carnivore populations of the introduction of new strains into wild ecosystems. To clarify the ecology of these viruses in a multihost system such as the Serengeti ecosystem and identify potential threats for wildlife conservation, we analyzed, through real-time PCR, 152 samples belonging to 14 wild carnivore species and 62 samples from healthy domestic dogs. We detected parvovirus DNA in several wildlife tissues. Of the wild carnivore and domestic dog samples tested, 13% and 43%, respectively, were positive for carnivore parvovirus infection, but little evidence of transmission between the wild and domestic carnivores was detected. Instead, we describe two different epidemiological scenarios with separate routes of transmission: first, an endemic feline parvovirus (FPV) route of transmission maintained by wild carnivores inside the Serengeti National Park (SNP) and, second, a canine parvovirus (CPV) route of transmission among domestic dogs living around the periphery of the SNP. Twelve FPV sequences were characterized; new host-virus associations involving wild dogs, jackals, and hyenas were discovered; and our results suggest that mutations in the fragment of the vp2 gene were not required for infection of different carnivore species. In domestic dogs, 6 sequences belonged to the CPV-2a strain, while 11 belonged to the CPV-2 vaccine-derived strain. This is the first description of a vaccine-derived parvovirus strain being transmitted naturally.IMPORTANCE Carnivore parvoviruses are widespread among wild and domestic carnivores, which are vulnerable to severe disease under certain circumstances. This study furthers the understanding of carnivore parvovirus epidemiology, suggesting that feline parvoviruses are endemic in wild carnivores in the Serengeti National Park (SNP), with new host species identified, and that canine parvoviruses are present in the dog population living around the SNP. Little evidence of transmission of canine parvoviruses into wild carnivore species was found; however, the detection of vaccine-derived virus (described here for the first time to be circulating naturally in domestic dogs) highlights the importance of performing epidemiological research in the region.
Asunto(s)
Ecología , Ecosistema , Especificidad del Huésped , Infecciones por Parvoviridae/virología , Parvovirus/fisiología , Vacunas , Animales , Animales Salvajes , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Gatos , Perros , Virus de la Panleucopenia Felina/genética , Virus de la Panleucopenia Felina/fisiología , Epidemiología Molecular , Mutación , Parvovirus/genética , Parvovirus/inmunología , Parvovirus Canino/genética , Parvovirus Canino/fisiología , Filogenia , Análisis de Secuencia , TanzaníaRESUMEN
Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in â¼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE: Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity.
Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Infecciones por Parvoviridae/virología , Parvovirus/fisiología , Conformación Proteica , Secuencia de Aminoácidos , Proteínas de la Cápside/genética , Endopeptidasas/metabolismo , Interacciones Huésped-Patógeno , Modelos Moleculares , Mutación , Transporte de Proteínas , Proteolisis , Receptores Virales/metabolismo , Relación Estructura-Actividad , Acoplamiento ViralRESUMEN
Progeny particles of non-enveloped lytic parvoviruses were previously shown to be actively transported to the cell periphery through vesicles in a gelsolin-dependent manner. This process involves rearrangement and destruction of actin filaments, while microtubules become protected throughout the infection. Here the focus is on the intracellular egress pathway, as well as its impact on the properties and release of progeny virions. By colocalization with cellular marker proteins and specific modulation of the pathways through over-expression of variant effector genes transduced by recombinant adeno-associated virus vectors, we show that progeny PV particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane. Besides known factors like sar1, sec24, rab1, the ERM family proteins, radixin and moesin play (an) essential role(s) in the formation/loading and targeting of virus-containing COPII-vesicles. These proteins also contribute to the transport through ER and Golgi of the well described analogue of cellular proteins, the secreted Gaussia luciferase in absence of virus infection. It is therefore likely that radixin and moesin also serve for a more general function in cellular exocytosis. Finally, parvovirus egress via ER and Golgi appears to be necessary for virions to gain full infectivity through post-assembly modifications (e.g. phosphorylation). While not being absolutely required for cytolysis and progeny virus release, vesicular transport of parvoviruses through ER and Golgi significantly accelerates these processes pointing to a regulatory role of this transport pathway.
Asunto(s)
Linfocitos B/virología , Retículo Endoplásmico/virología , Aparato de Golgi/virología , Interacciones Huésped-Patógeno , Parvovirus/fisiología , Virión/fisiología , Ensamble de Virus , Sustitución de Aminoácidos , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/ultraestructura , Transporte Biológico , Proteínas de la Cápside/metabolismo , Efecto Citopatogénico Viral , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Hibridomas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mutación , Infecciones por Parvoviridae/inmunología , Infecciones por Parvoviridae/metabolismo , Infecciones por Parvoviridae/patología , Infecciones por Parvoviridae/virología , Parvovirus/inmunología , Parvovirus/ultraestructura , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Virión/inmunología , Virión/ultraestructura , Liberación del VirusRESUMEN
Accumulated evidence gathered over recent decades demonstrated that some members of the Parvoviridae family, in particular the rodent protoparvoviruses H-1PV, the minute virus of mice and LuIII have natural anticancer activity while being nonpathogenic to humans. These studies have laid the foundations for the launch of a first phase I/IIa clinical trial, in which the rat H-1 parvovirus is presently undergoing evaluation for its safety and first signs of efficacy in patients with glioblastoma multiforme. After a brief overview of the biology of parvoviruses, this review focuses on the studies which unraveled the antineoplastic properties of these agents and supported their clinical use as anticancer therapeutics. Furthermore, the development of novel parvovirus-based anticancer strategies with enhanced specificity and efficacy is discussed, in particular the development of second and third generation vectors and the combination of parvoviruses with other anticancer agents. Lastly, we address the key challenges that remain towards a more rational and efficient use of oncolytic parvoviruses in clinical settings, and discuss how a better understanding of the virus life-cycle and of the cellular factors involved in virus infection, replication and cytotoxicity may promote the further development of parvovirus-based anticancer therapies, open new prospects for treatment and hopefully improve clinical outcome.
Asunto(s)
Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/fisiología , Parvovirus/fisiología , Animales , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , HumanosRESUMEN
BACKGROUND: The transmission routes for human parvovirus 4 (PARV4) infections in areas with high seroprevalence are not known. In the work described here, persistent PARV4 viral replication was investigated by conducting a longitudinal study. METHODS: Ten healthcare workers each provided a blood sample at the beginning of the study (first sample) and 12 months later (second sample). The paired samples were tested for PARV4-positivity by immunoblotting analysis and nested polymerase chain reactions. RESULTS: IgG antibodies against PARV4 were detected in six participants, three of whom also had IgM antibodies against PARV4. The immunoblotting results did not vary over time. PARV4 DNA was detected in the first blood sample from one participant who had IgG antibodies against PARV4 and in the second blood samples from 2 participants who had IgG and IgM antibodies against PARV4. CONCLUSIONS: Detection of PARV4 DNA in the second blood samples from two seropositive participants suggests the existence of persistent PARV4 replication or reactivation of inactive virus in the tissues. The finding of persistent or intermittent PARV4 replication in individuals with past infections provides an important clue toward unraveling the non-parenteral transmission routes of PARV4 infection in areas where the virus is endemic.
Asunto(s)
Sangre/virología , Infecciones por Parvoviridae/virología , Parvovirus/aislamiento & purificación , Parvovirus/fisiología , Viremia/virología , Adulto , Anticuerpos Antivirales/sangre , ADN Viral/sangre , Femenino , Personal de Salud , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Estudios Longitudinales , Masculino , Activación Viral , Replicación Viral , Adulto JovenRESUMEN
Inoculation of specific-pathogen-free chickens and turkeys with five chicken parvoviruses (ChPV) and five turkey parvoviruses (TuPV) resulted in productive virus replication only in the homologous host species. A phylogenetic tree based on nucleotide sequences of the VP1 gene segment revealed a host-specific clustering of the virus strains. These results suggest that the VP1 gene plays an essential role in host specificity of ChPV and TuPV strains and could be a relevant target sequence for strain classification.
Asunto(s)
Pollos/virología , Especificidad del Huésped , Infecciones por Parvoviridae/veterinaria , Parvovirus/genética , Filogenia , Pavos/virología , Animales , Secuencia de Bases , Infecciones por Parvoviridae/virología , Parvovirus/fisiología , Enfermedades de las Aves de Corral/virología , Proteínas no Estructurales Virales/genética , Replicación ViralRESUMEN
Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.
Asunto(s)
Fosfatos de Dinucleósidos/genética , Evolución Molecular , Interacciones Huésped-Patógeno , Invertebrados/virología , Infecciones por Parvoviridae/veterinaria , Infecciones por Parvoviridae/virología , Parvovirus/genética , Vertebrados/virología , Animales , Metilación de ADN , Fosfatos de Dinucleósidos/metabolismo , Genoma Viral , Humanos , Invertebrados/genética , Invertebrados/metabolismo , Metilación , Datos de Secuencia Molecular , Infecciones por Parvoviridae/genética , Infecciones por Parvoviridae/metabolismo , Parvovirus/clasificación , Parvovirus/fisiología , Filogenia , Vertebrados/genética , Vertebrados/metabolismoRESUMEN
The 3.5-Å resolution X-ray crystal structure of mature cricket parvovirus (Acheta domesticus densovirus [AdDNV]) has been determined. Structural comparisons show that vertebrate and invertebrate parvoviruses have evolved independently, although there are common structural features among all parvovirus capsid proteins. It was shown that raising the temperature of the AdDNV particles caused a loss of their genomes. The structure of these emptied particles was determined by cryo-electron microscopy to 5.5-Å resolution, and the capsid structure was found to be the same as that for the full, mature virus except for the absence of the three ordered nucleotides observed in the crystal structure. The viral protein 1 (VP1) amino termini could be externalized without significant damage to the capsid. In vitro, this externalization of the VP1 amino termini is accompanied by the release of the viral genome.
Asunto(s)
Invertebrados/virología , Infecciones por Parvoviridae/virología , Parvovirus/ultraestructura , Virión/ultraestructura , Internalización del Virus , Secuencia de Aminoácidos , Animales , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Genoma Viral , Humanos , Datos de Secuencia Molecular , Parvovirus/clasificación , Parvovirus/genética , Parvovirus/fisiología , Filogenia , Alineación de Secuencia , Virión/química , Virión/genética , Virión/fisiologíaRESUMEN
Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by hydrophobic contacts and non-covalent interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some cases, non-symmetric interactions among intermediates are involved in assembly, highlighting the remarkable capacity of capsid proteins to fold into demanding conformations compatible with a closed protein shell. In this chapter, the morphogenesis of structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses or polyomaviruses as paradigms, is described in some detail. Icosahedral virus assembly may occur in different subcellular compartments and involve a panoplia of cellular and viral factors, chaperones, and protein modifications that, in general, are still poorly characterized. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. High stability of intermediates and proteolytic cleavages during viral maturation usually contribute to the overall irreversible character of the assembly process. These and other simple icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger viruses and cellular and synthetic macromolecular complexes.
Asunto(s)
Parvovirus/fisiología , Picornaviridae/fisiología , Poliomavirus/fisiología , Ensamble de Virus , Animales , HumanosRESUMEN
The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)ß(3) and α(v)ß(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)ß(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.
Asunto(s)
Proteínas de la Cápside/genética , Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/genética , Parvovirus/genética , Animales , Células CHO , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Línea Celular Tumoral , Cricetinae , Ingeniería Genética , Humanos , Modelos Moleculares , Neoplasias/virología , Virus Oncolíticos/química , Virus Oncolíticos/fisiología , Infecciones por Parvoviridae/virología , Parvovirus/química , Parvovirus/fisiología , Ratas , Replicación ViralRESUMEN
Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence.
Asunto(s)
Transmisión de Enfermedad Infecciosa/veterinaria , Especificidad del Huésped , Pandemias/veterinaria , Infecciones por Parvoviridae/veterinaria , Parvovirus/fisiología , Mapaches/virología , Animales , Evolución Biológica , Proteínas de la Cápside/genética , Gatos , Línea Celular , Perros , Datos de Secuencia Molecular , Infecciones por Parvoviridae/epidemiología , Infecciones por Parvoviridae/transmisión , Infecciones por Parvoviridae/virología , Parvovirus/clasificación , Parvovirus/genética , Parvovirus/aislamiento & purificación , Filogenia , Estados Unidos/epidemiologíaRESUMEN
Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.
Asunto(s)
Muerte Celular , Glioblastoma/virología , Especificidad del Huésped , Neuroglía/virología , Virus Oncolíticos/fisiología , Parvovirus/fisiología , Replicación Viral , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Ratones , Viroterapia Oncolítica/efectos adversos , Viroterapia Oncolítica/métodos , Virus Oncolíticos/crecimiento & desarrollo , Virus Oncolíticos/patogenicidad , Parvovirus/crecimiento & desarrollo , Parvovirus/patogenicidad , Resultado del TratamientoRESUMEN
UNLABELLED: Currently one of the most promising approaches in development of cancer virotherapy is based on the ability of oncolytic viruses to selective infection and lysis of tumor cells. AIM: The goal of the study was to identify and evaluate perspective oncolytic viruses capable of selectively destroying human glioma cells. PATIENTS AND METHODS: Original GB2m, GA14m and GB22m glioma cell cultures derived from patients were used for evaluating in vitro oncolytic activity of some typical orthopoxviruses, adenoviruses and parvoviruses. RESULTS: The oncolytic activity in the human glioma cell models was confirmed for LIVP and WR strains of vaccinia virus, Adel2 and Ad2del strains with deletions within E1B/55K gene and derived from human adenoviruses type 2 and 5, respectively. CONCLUSIONS: We consider these oncolytic viruses as promising agents for the treatment of human malignant glioma.
Asunto(s)
Glioma , Viroterapia Oncolítica/métodos , Virus Oncolíticos/fisiología , Adenoviridae/fisiología , Técnicas de Cultivo de Célula , Glioma/terapia , Glioma/virología , Humanos , Orthopoxvirus/fisiología , Parvovirus/fisiología , Células Tumorales Cultivadas/virología , Fenómenos Fisiológicos de los VirusRESUMEN
Minute Virus of Mice (MVM) is an autonomous parvovirus of the Parvoviridae family that replicates in mouse cells and transformed human cells. MVM genomes localize to cellular sites of DNA damage with the help of their essential non-structural phosphoprotein NS1 to establish viral replication centers. MVM replication induces a cellular DNA damage response that is mediated by signaling through the ATM kinase pathway, while inhibiting induction of the ATR kinase signaling pathway. However, the cellular signals regulating virus localization to cellular DNA damage response sites has remained unknown. Using chemical inhibitors to DNA damage response proteins, we have discovered that NS1 localization to cellular DDR sites is independent of ATM or DNA-PK signaling but is dependent on ATR signaling. Pulsing cells with an ATR inhibitor after S-phase entry leads to attenuated MVM replication. These observations suggest that the initial localization of MVM to cellular DDR sites depends on ATR signaling before it is inactivated by vigorous virus replication.
Asunto(s)
Virus Diminuto del Ratón , Infecciones por Parvoviridae , Parvovirus , Humanos , Animales , Ratones , Virus Diminuto del Ratón/fisiología , Línea Celular , Parvovirus/fisiología , Transducción de Señal , Daño del ADN , Replicación Viral/fisiología , Replicación del ADN , Proteínas de la Ataxia Telangiectasia Mutada/metabolismoRESUMEN
The introduction of dual viral inactivation of clotting factor concentrates has practically eliminated infections by viruses associated with significant pathogenicity over the last 20 years. Despite this, theoretical concerns about transmission of infection have remained, as it is known that currently available viral inactivation methods are unable to eliminate parvovirus B19 or prions from these products. Recently, concern has been raised following the identification of the new parvoviruses, human parvovirus 4 (PARV4) and new genotypes of parvovirus B19, in blood products. Parvoviruses do not cause chronic pathogenicity similar to human immunodeficiency virus or hepatitis C virus, but nevertheless may cause clinical manifestations, especially in immunosuppressed patients. Manufacturers should institute measures, such as minipool polymerase chain reaction testing, to ensure that their products contain no known viruses. So far, human bocavirus, another new genus of parvovirus, has not been detected in fractionated blood products, and unless their presence can be demonstrated, routine testing during manufacture is not essential. Continued surveillance of the patients and of the safety of blood products remains an important ongoing issue.
Asunto(s)
Factores de Coagulación Sanguínea/química , Infecciones por Parvoviridae/sangre , Infecciones por Parvoviridae/transmisión , Parvovirus/fisiología , Animales , ADN Viral/sangre , Contaminación de Medicamentos , Humanos , Infecciones por Parvoviridae/virología , Inactivación de VirusRESUMEN
Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells.
Asunto(s)
Daño del ADN , Virus Diminuto del Ratón/fisiología , Replicación Viral/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Células CHO , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Células Cultivadas , Cricetinae , Cricetulus , Daño del ADN/fisiología , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Proteína Homóloga de MRE11 , Ratones , Infecciones por Parvoviridae/genética , Infecciones por Parvoviridae/virología , Parvovirus/fisiología , Fosfotransferasas/metabolismo , Fosfotransferasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Estrés Fisiológico/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología , Replicación Viral/genéticaAsunto(s)
Infecciones por Parvoviridae/epidemiología , Parvovirus/fisiología , Animales , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Humanos , Infecciones por Parvoviridae/diagnóstico , Infecciones por Parvoviridae/transmisión , Parvovirus/patogenicidad , Latencia del VirusRESUMEN
To infect a cell, the parvovirus or adeno-associated virus (AAV) genome must be delivered from outside the plasma membrane to the nucleus, and in the process, the capsid must follow a series of binding and trafficking steps and also undergo necessary changes that result in exposure or release the ssDNA genome at the appropriate time and place within the cell. The 25 nm parvovirus capsid is comprised of two or three forms of a single protein, and although it is robust and stable, it is still sufficiently flexible to allow the exposure of several internal components at appropriate times during cell infection. The capsid can also accommodate insertion of peptides into surface loops, and capsid proteins from different viral serotypes can be shuffled to create novel functional variants. The capsids of the different viruses bind to one or more cell receptors, and for at least some viruses, the insertion of additional or alternative receptor binding sequences or structures into the capsid can expand or redirect its tropism. The infection process after cell binding involves receptor-mediated endocytosis followed by viral trafficking through the endosomal systems. That endosomal trafficking may be complex and prolonged for hours or be relatively brief. Generally only a small proportion of the particles taken up enter the cytoplasm after altering the endosomal membrane through the activity of a VP1-encoded phospholipase A2 domain that becomes released to the outside of the viral particle. Modifications to the capsid that can occur within the endosome or cytoplasm include structural changes to expose internal components, ubiquination and proteosomal processing, and possible trafficking of particles on molecular motors. It is still not clear how the genomes enter the nucleus, but nuclear pore-dependent entry of particles or permeabilization of nuclear membranes have been proposed. Those processes control the infection, pathogenesis, and host ranges of the autonomous viruses and determine the effectiveness of gene therapy using AAV capsids.
Asunto(s)
Cápside/química , Cápside/fisiología , Parvovirus/fisiología , Internalización del Virus , Animales , Sitios de Unión , Endosomas/virología , Humanos , Ensamble de VirusRESUMEN
Previous results had documented oncolytic capacity of reovirus, parvovirus and Newcastle disease virus (NDV) on several tumor cell types. To test whether combinations of these viruses may increase this capacity, human U87- and U373-glioblastoma cells, in vitro or xenografted into immuno-compromised mice, were subjected to simultaneous double infections and analyzed. Our results show that reovirus (serotype-3) plus NDV (Hitcher-B1) and reovirus plus parvovirus-H1 lead to a significant increase in tumor cell killing in vitro in both cell lines (Kruskal-Wallis test, P < 0.01) and in vivo. Immunofluorescence and flow cytometry analyses demonstrated the simultaneous replication of the viruses in nearly all cells (>95%) after combined infection. These data thus indicate that a synergistic anti-tumor effect can be achieved by the combined infection with oncolytic viruses.
Asunto(s)
Glioma/virología , Virus de la Enfermedad de Newcastle/fisiología , Virus Oncolíticos/fisiología , Parvovirus/fisiología , Animales , Encéfalo/patología , Encéfalo/virología , Neoplasias Encefálicas , Muerte Celular , Línea Celular Tumoral , Medios de Cultivo , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Glioma/patología , Humanos , Ratones , Ratones SCID , Virus de la Enfermedad de Newcastle/genética , Virus Oncolíticos/genética , Parvovirus/genética , Sales de Tetrazolio , Tiazoles , Carga Viral , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
The first human parvoviruses to be described (1960s) were the adeno-associated viruses (AAVs, now classed as dependoviruses), originally identified as contaminants of cell cultures, followed by parvovirus B19 (B19V) in 1974, the first parvovirus to be definitively shown to be pathogenic. More recently two new groups of parvoviruses, the human bocaviruses (HuBoV) and the Parv4 viruses have been identified. These four groups of human viruses are all members of different genera within the Parvovirus family, and have very different biology, epidemiology and disease associations from each other. This review will provide an overview of the virological, pathogenic and clinical features of the different human paroviruses, and how these new viruses and their variants fit into the current understanding of parvovirus infection.