Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(2): e0175323, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38259078

RESUMEN

White-rot fungi, such as Phanerochaete chrysosporium, are the most efficient degraders of lignin, a major component of plant biomass. Enzymes produced by these fungi, such as lignin peroxidases and manganese peroxidases, break down lignin polymers into various aromatic compounds based on guaiacyl, syringyl, and hydroxyphenyl units. These intermediates are further degraded, and the aromatic ring is cleaved by 1,2,4-trihydroxybenzene dioxygenases. This study aimed to characterize homogentisate dioxygenase (HGD)-like proteins from P. chrysosporium that are strongly induced by the G-unit fragment of vanillin. We overexpressed two homologous recombinant HGDs, PcHGD1 and PcHGD2, in Escherichia coli. Both PcHGD1 and PcHGD2 catalyzed the ring cleavage in methoxyhydroquinone (MHQ) and dimethoxyhydroquinone (DMHQ). The two enzymes had the highest catalytic efficiency (kcat/Km) for MHQ, and therefore, we named PcHGD1 and PcHGD2 as MHQ dioxygenases 1 and 2 (PcMHQD1 and PcMHQD2), respectively, from P. chrysosporium. This is the first study to identify and characterize MHQ and DMHQ dioxygenase activities in members of the HGD superfamily. These findings highlight the unique and broad substrate spectra of PcHGDs, rendering them attractive candidates for biotechnological applications.IMPORTANCEThis study aimed to elucidate the properties of enzymes responsible for degrading lignin, a dominant natural polymer in terrestrial lignocellulosic biomass. We focused on two homogentisate dioxygenase (HGD) homologs from the white-rot fungus, P. chrysosporium, and investigated their roles in the degradation of lignin-derived aromatic compounds. In the P. chrysosporium genome database, PcMHQD1 and PcMHQD2 were annotated as HGDs that could cleave the aromatic rings of methoxyhydroquinone (MHQ) and dimethoxyhydroquinone (DMHQ) with a preference for MHQ. These findings suggest that MHQD1 and/or MHQD2 play important roles in the degradation of lignin-derived aromatic compounds by P. chrysosporium. The preference of PcMHQDs for MHQ and DMHQ not only highlights their potential for biotechnological applications but also underscores their critical role in understanding lignin degradation by a representative of white-rot fungus, P. chrysosporium.


Asunto(s)
Dioxigenasas , Phanerochaete , Lignina/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Phanerochaete/genética , Homogentisato 1,2-Dioxigenasa/metabolismo , Proteínas/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 37, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183476

RESUMEN

A comprehensive analysis to survey heme-binding proteins produced by the white-rot fungus Phanerochaete chrysosporium was achieved using a biotinylated heme-streptavidin beads system. Mitochondrial citrate synthase (PcCS), glyceraldehyde 3-phosphate dehydrogenase (PcGAPDH), and 2-Cys thioredoxin peroxidase (mammalian HBP23 homolog) were identified as putative heme-binding proteins. Among these, PcCS and PcGAPDH were further characterized using heterologously expressed recombinant proteins. Difference spectra of PcCS titrated with hemin exhibited an increase in the Soret absorbance at 414 nm, suggesting that the axial ligand of the heme is a His residue. The activity of PcCS was strongly inhibited by hemin with Ki oxaloacetate of 8.7 µM and Ki acetyl-CoA of 5.8 µM. Since the final step of heme biosynthesis occurred at the mitochondrial inner membrane, the inhibition of PcCS by heme is thought to be a physiological event. The inhibitory mode of the heme was similar to that of CoA analogues, suggesting that heme binds to PcCS at His347 at the AcCoA-CoA binding site, which was supported by the homology model of PcCS. PcGAPDH was also inhibited by heme, with a lower concentration than that for PcCS. This might be caused by the different location of these enzymes. From the integration of these phenomena, it was concluded that metabolic regulations by heme in the central metabolic and heme synthetic pathways occurred in the mitochondria and cytosol. This novel pathway crosstalk between the central metabolic and heme biosynthetic pathways, via a heme molecule, is important in regulating the metabolic balance (heme synthesis, ATP synthesis, flux balance of the tricarboxylic acid (TCA) cycle and cellular redox balance (NADPH production) during fungal aromatic degradation. KEY POINTS: • A comprehensive survey of heme-binding proteins in P. chrysosporium was achieved. • Several heme-binding proteins including CS and GAPDH were identified. • A novel metabolic regulation by heme in the central metabolic pathways was found.


Asunto(s)
Vías Biosintéticas , Phanerochaete , Animales , Hemo , Phanerochaete/genética , Hemina , Proteínas de Unión al Hemo , Mamíferos
3.
J Hazard Mater ; 465: 133469, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38219585

RESUMEN

The bulky phenolic compound tetrabromobisphenol A (TBBPA) is a brominated flame retardant used in a wide range of products; however, it diffuses into the environment, and has been reported to have toxic effects. Although it is well-known that white-rot fungi degrade TBBPA through ligninolytic enzymes, no other metabolic enzymes have yet been identified, and the toxicity of the reaction products and their risks have not yet been examined. We found that the white-rot fungus Phanerochaete sordida YK-624 converted TBBPA to TBBPA-O-ß-D-glucopyranoside when grown under non-ligninolytic-enzyme-producing conditions. The metabolite showed less cytotoxicity and mitochondrial toxicity than TBBPA in neuroblastoma cells. From molecular biological and genetic engineering experiments, two P. sordida glycosyltransferases (PsGT1c and PsGT1e) that catalyze the glycosylation of TBBPA were newly identified; these enzymes showed dramatically different glycosylation activities for TBBPA and bisphenol A. The results of computational analyses indicated that the difference in substrate specificity is likely due to differences in the structure of the substrate-binding pocket. It appears that P. sordida YK-624 takes up TBBPA, and reduces its cytotoxicity via these glycosyltransferases.


Asunto(s)
Phanerochaete , Bifenilos Polibrominados , Biotransformación , Phanerochaete/metabolismo , Bifenilos Polibrominados/metabolismo , Glicosiltransferasas/metabolismo
4.
Water Res ; 256: 121558, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604065

RESUMEN

The biodegradation of antibiotics in aquatic environment is consistently impeded by the widespread presence of heavy metals, necessitating urgent measures to mitigate or eliminate this environmental stress. This work investigated the degradation of sulfamethoxazole (SMX) by the white-rot fungus Phanerochaete chrysosporium (WRF) under heavy metal cadmium ion (Cd2+) stress, with a focus on the protective effects of reduced graphene oxide (RGO). The pseudo-first-order rate constant and removal efficiency of 5 mg/L SMX in 48 h by WRF decrease from 0.208 h-1 and 55.6% to 0.08 h-1 and 28.6% at 16 mg/L of Cd2+, while these values recover to 0.297 h-1 and 72.8% by supplementing RGO. The results demonstrate that RGO, possessing excellent biocompatibility, effectively safeguard the mycelial structure of WRF against Cd2+ stress and provide protection against oxidative damage to WRF. Simultaneously, the production of manganese peroxidase (MnP) by WRF decreases to 38.285 U/L in the presence of 24 mg/L Cd2+, whereas it recovers to 328.51 U/L upon the supplement of RGO. RGO can induce oxidative stress in WRF, thereby stimulating the secretion of laccase (Lac) and MnP to enhance the SMX degradation. The mechanism discovered in this study provides a new strategy to mitigate heavy metal stress encountered by WRF during antibiotic degradation.


Asunto(s)
Biodegradación Ambiental , Cadmio , Grafito , Phanerochaete , Sulfametoxazol , Phanerochaete/metabolismo , Sulfametoxazol/metabolismo , Cadmio/metabolismo , Contaminantes Químicos del Agua/metabolismo
5.
Mycologia ; 116(4): 558-576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819956

RESUMEN

The inclusion of biological control in the integrated management of rice blast (Magnaporthe oryzae [Mo]) reduces pesticide application. Phanerochaete australis (Pha) has been shown to be a potential inducer of resistance to rice blast. Pha was isolated saprophytically from the rice phylloplane and studied for its interaction with Mo in the defense process of upland rice plants against the pathogen attack. Investigating the Pha × Mo interaction in a completely randomized design, the suppression of leaf blast and the epidemiological components of disease development were quantified in vivo, whereas the physiological and biochemical aspects, as defense enzymes and oxidative complex components, were evaluated in vitro during the induction of resistance. In the Pha × Mo interaction, it was found that seed treatment can significantly reduce disease severity by up to 93%, increase the photosynthetic apparatus, mobilize photoassimilates to the defense system, intensify defense enzyme and oxidant complex activities (chitinase [CHI], ß-1,3-glucanase [GLU], lipoxygenase [LOX], phenylalanine ammonia-lyase [PAL], poliphenoloxidase [PPO], peroxidase [POX], catalase [CAT], cuperoxide dismutase [SOD]), decrease phenolic compounds (TPCs), and increase photosynthetic pigment levels compared with the negative control (Mo). When treating the seed, we are referring to an induction process where there is no physical contact between the pathogens. The enzymes produced by the interaction between the microorganisms validate this process; thus, Pha acts as an inducer of resistance to upland rice plants challenged with Mo.


Asunto(s)
Oryza , Phanerochaete , Enfermedades de las Plantas , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Phanerochaete/metabolismo , Resistencia a la Enfermedad , Hojas de la Planta/microbiología , Ascomicetos
6.
Sci Total Environ ; 933: 173267, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38754504

RESUMEN

The aim of this study was to investigate the differential metabolites and core metabolic pathways caused by fungal bioaugmentation (pH regulation and Phanerochaete chrysosporium inoculation) in secondary fermentation of composting, as well as their roles in advancing humification mechanism. Metabolomics analyses showed that inoculation strengthened the expression of carbohydrate, amino acid, and aromatic metabolites, and pH regulation resulted in the up-regulation of the phosphotransferase system and its downstream carbohydrate metabolic pathways, inhibiting Toluene degradation and driving biosynthesis of aromatic amino acids via the Shikimate pathway. Partial least squares path model suggested that lignocellulose degradation, precursors especially amino acids and their metabolism process enhanced by the regulation of pH and Phanerochaete were the main direct factors for humic acid formation in composting. This finding helps to understand the regulating mechanism of fungal bioaugmentation to improve the maturity of agricultural waste composting.


Asunto(s)
Compostaje , Fermentación , Sustancias Húmicas , Metabolómica , Phanerochaete/metabolismo , Biodegradación Ambiental , Microbiología del Suelo
7.
Environ Sci Pollut Res Int ; 31(9): 13523-13534, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253835

RESUMEN

Biomineralization by phosphate minerals and phosphate solubilizing fungi (PSF) has attracted great interest as a novel remediation method for heavy metal(loid) co-contaminated soil. It was very essential to investigate the microenvironment response with the application of amendments. In this study, three grain sizes of hydroxyapatites (HAP) and Phanerochaete chrysosporium (P. chrysosporium) were used to investigate the change in heavy metal(loid) fractions, soil physicochemical properties, and bacterial community during the remediation of Mangchang and Dabaoshan acidic mine soils. The results showed that the residual fractions in the two soils increased significantly after 35 days of remediation, especially that of As and Zn in Dabaoshan soils were presented at over 87%. In addition, soil pH, organic matter (OM), and available phosphorous (AP) were almost improved. 16S rRNA sequencing analysis indicated that the introduction of culture medium and P. chrysosporium alone changed bacterial abundance, but the addition of HAP changed the bacterial diversity and community composition by altering environmental conditions. The amendments in the research showed good performance on immobilizing heavy metal(loid)s and reducing their bioavailability. Moreover, the research suggested that environmental factors and soil inherent properties could influence the microbial community structure and composition.


Asunto(s)
Metales Pesados , Phanerochaete , Contaminantes del Suelo , Suelo/química , Fosfatos/análisis , ARN Ribosómico 16S , Metales Pesados/análisis , Contaminantes del Suelo/análisis
8.
Braz. arch. biol. technol ; 64: e21200503, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1345485

RESUMEN

Abstract The textile industry demonstrates a polluting potential from the planting of cotton to the release of wastewater. The presence of dyes in water bodies decreases the passage of sun rays and directly affects the photosynthetic organisms and the ecosystem. Fungi have potential in the treatment of wastewater containing dyes with complex organic structures due to enzymes that they produce. This study evaluated the use of Phanerochaete chrisosporium in the treatment of synthetic effluent from textile industry containing indigo carmine (20 mg/L). The fungus was immobilized in a semibatch reactor. Glucose was the cosubstrate employed in the experiment and it was used in the system at 1g/L at the beginning of the process and 0.5 g /L after 24 hours of reaction. Average dye removal was 84±10% and chemical oxygen demand removal was 79±14%. For nitrogen compounds, the removal efficiencies were 87±11%, 81±11% and 91±9% for ammonia, nitrite and nitrate, respectively. The pH of the medium remained in the acidic range (2.57 to 5.00) throughout the process, with the lowest values recorded in the effluent of each cycle, justified by the release of organic acids from fungi metabolism. There was contamination of the medium by bacteria (710,000 CFU/mL), but the colonies count showed a predominance of fungi (1,365,000 CFU/mL). With the use of the semibatch system after reading of glucose it was observed that the efficiency of dye removal evolved from 72±17% to 84±10%, producing a final effluent with 3.35±1.99 mg/L of indigo, which proves that treatment configuration analyzed is satisfactory for dye removal.


Asunto(s)
Phanerochaete , Restauración y Remediación Ambiental , Glucosa , Carmin de Índigo
9.
Mycobiology ; : 217-236, 2016.
Artículo en Inglés | WPRIM | ID: wpr-729718

RESUMEN

Polyporoid and corticioid fungi are among the most important wood-decay fungi. Not only do they contribute to nutrient cycling by decomposing wood debris, but they are also valuable sources for natural products. Polyporoid and corticioid wood-inhabiting fungi were investigated in Odaesan National Park. Fruit bodies were collected and identified based on morphological and molecular analyses using 28S and internal transcribed spacer regions of DNA sequences. As a result, a total of 149 species, 69 genera, 22 families, and 11 orders were recognized. Half (74 species) of the species were polypores, and the other half (75 species) were corticioid fungi. Most of the species belonged to Polyporales (92 species) followed by Hymenochaetales (33 species) and Russulales (11 species). At the genus level, a high number of species was observed from Steccherinum, Hyphodontia, Phanerochaete, Postia, and Trametes. Concerning distribution, almost all the species could be found below 1,000 m, and only 20% of the species were observed from above 1,000 m. Stereum subtomentosum, Trametes versicolor, T. hirsuta, T. pubescens, Bjerkandera adusta, and Ganoderma applanatum had wide distribution areas. Deciduous wood was the preferred substrate for the collected species. Sixty-three species were new to this region, and 21 species were new to Korea, of which 17 species were described and illustrated.


Asunto(s)
Humanos , Secuencia de Bases , Productos Biológicos , Clasificación , Coriolaceae , Frutas , Hongos , Ganoderma , Corea (Geográfico) , Parques Recreativos , Phanerochaete , Polyporales , Trametes , Madera
10.
Chinese Journal of Biotechnology ; (12): 1449-1458, 2015.
Artículo en Zh | WPRIM | ID: wpr-337476

RESUMEN

We pretreated sawdust (Castanopsis fissa Rehd.et Wils) by solid state fermentation (SSF) with Phanerochaete chrysosporium, and then compressed it into pellets with the moisture content of 15% and the pressure of 98 MPa, to solve the problem of low density, low Meyer hardness, high water uptake, and short storage period of pellet in the woody pellet industry. We studied the effects of fermentation time on pelletization and pellets's characteristics (including energy consumption, density, Meyer hardness, and hydrophobicity). SSF affected the heating values of pellet. Compared with fresh sawdust, SSF consumed more energy at the maximal value by 6.98% but saved extrusion energy by 32.19% at the maximum. Meanwhile, SSF could improve the density, Meyer hardness and hydrophobicity of pellet. Pellet made of sawdust pretreated by SSF for 48 d had best quality, beneficial for long-term transportation and storage of pellets.


Asunto(s)
Biocombustibles , Fermentación , Interacciones Hidrofóbicas e Hidrofílicas , Phanerochaete , Agua , Madera
11.
Braz. j. microbiol ; 45(3): 1055-1063, July-Sept. 2014. ilus, graf
Artículo en Inglés | LILACS | ID: lil-727038

RESUMEN

Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination.


Asunto(s)
Aspergillus niger/metabolismo , Biodegradación Ambiental , Biotransformación , Colorantes/metabolismo , Phanerochaete/metabolismo , Microbiología del Suelo , Compuestos de Anilina/metabolismo , Aspergillus niger/crecimiento & desarrollo , Aspergillus niger/aislamiento & purificación , Concentración de Iones de Hidrógeno , Residuos Industriales , Phanerochaete/crecimiento & desarrollo , Phanerochaete/aislamiento & purificación , Colorantes de Rosanilina/metabolismo , Temperatura
12.
Mycobiology ; : 258-262, 2012.
Artículo en Inglés | WPRIM | ID: wpr-729695

RESUMEN

cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces H2O2 over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of H2O2 improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to 150 microM within 90 min.


Asunto(s)
Oxidorreductasas de Alcohol , ADN Complementario , Glioxal , Manganeso , Compuestos Organometálicos , Oxidorreductasas , Peroxidasa , Peroxidasas , Phanerochaete , Pichia , Colorantes de Rosanilina
13.
Biol. Res ; 44(4): 351-355, 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-626734

RESUMEN

Transcription factor Ace1 from Saccharomyces cerevisiae regulates the expression of target genes when the copper concentration reaches 200 ìÌ levels. We are studying the ortholog of Ace1 from fungus Phanerochaete chrysosporium PcACE1, isolated by complementation in yeast. In this report we show the localization of the transactivation region of PcACE1. Different PcACE1 fragments were ligated in frame to the GAL4 DNA-binding domain by site-directed mutagenesis in a suitable yeast expression vector. Transformation of an appropriate Saccharomyces cerevisiae strain was used as host. This strain contains the fusion GAL1:lacZ in its genome under the control of promoter sequences recognized by GAL4. Finally, we measured â-galactosidase activity in each yeast clone. The activation of the reporter gene is proportional to the transactivation capacity of the transcription factor PcACE1. The results obtained indicate that PcACE1 transactivation domain is located in the carboxy terminal half and contains an array of cysteines in the form of Cys-X-Cys and Cys-X2-Cys and a 60% of Ser. Therefore, these results show that this type of Cys motif can function as transcription activating domain not only in transcription factors that respond to minimal copper concentrations but also in those that respond to high copper concentrations. This is the first transactivation domain reported in a basidiomycete fungus.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Phanerochaete/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Secuencia de Bases , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Mycobiology ; : 121-124, 2011.
Artículo en Inglés | WPRIM | ID: wpr-729398

RESUMEN

The cDNA of endo-1,4-beta-xylanaseA, isolated from Phaenerocheate chrysosporium was expressed in Pichia pastoris. Using either the intrinsic leader peptide of XynA or the alpha-factor signal peptide of Saccharomyces cerevisiae, xylanaseA is efficiently secreted into the medium at maximum concentrations of 1,946 U/L and 2,496 U/L, respectively.


Asunto(s)
Chrysosporium , ADN Complementario , Phanerochaete , Pichia , Polisacáridos , Señales de Clasificación de Proteína , Saccharomyces cerevisiae
15.
Mycobiology ; : 238-248, 2010.
Artículo en Inglés | WPRIM | ID: wpr-729917

RESUMEN

This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered.


Asunto(s)
Humanos , Agaricales , Biodegradación Ambiental , Ecosistema , Hongos , Concentración de Iones de Hidrógeno , Tamizaje Masivo , Plaguicidas , Phanerochaete , Suelo , Trametes , Agua , Xenobióticos
16.
Electron. j. biotechnol ; 11(4): 13-14, Oct. 2008. ilus, tab
Artículo en Inglés | LILACS | ID: lil-531921

RESUMEN

Four white rot fungi (WRF) strains, Phanerochaete chrysosporium, Trametes versicolor, Coriolopsis polyzona and Pycnoporus coccineus, were tested for efficiency of treatment of Olive Oil mill wastewaters (OOMW) in relation with their cultivation mode, i.e. under the form of free mycelium, mycelium immobilized in alginate beads and solid state cultivation on Petri dishes. Study of biodegradation of phenolic compounds, chemical oxygen demand (COD) decrease and decolourisation of OOMW have shown that Coriolopsis polyzona and Pycnoporus coccineus degradation performances were apparently only slightly affected by the cell cultivation procedures experienced here. In contrast, Phanerochaete chrysosporium and Trametes versicolor showed respectively marked preferences for solid state and alginate immobilisation procedures. Both mono and polyphenolics were reduced to different extent during incubation depending on the strain, as shown by gel filtration analysis. Final pH obtained after fungal treatment of the OOMW based medium (initial pH of 5.0) was measured in order to evaluate the possibility of releasing friendly the treated wastewater in the environment. Laboratory studies as reported here may be useful for orienting the choice of a strain for treating pollution by OOMW in a particular real situation.


Asunto(s)
Basidiomycota/enzimología , Hongos/enzimología , Phanerochaete/enzimología , Purificación del Agua/métodos , Alginatos , /métodos , Peroxidasas , Grasas Vegetales
17.
Artículo en Inglés | WPRIM | ID: wpr-296021

RESUMEN

<p><b>OBJECTIVE</b>To evaluate the effect of white rot fungus Phanerochaete chrysosporium on removal of gaseous chlorobenzene.</p><p><b>METHODS</b>Fungal mycelium mixed with a liquid medium was placed into airtight bottles. A certain amount of chlorobenzene was injected into the headspace of the bottles under different conditions. At a certain interval, the concentrations in the headspace were analyzed to evaluate the degradation of chlorobenzene by P. chrysosporium.</p><p><b>RESULTS</b>The degradation effects of P. chrysosporium on chlorobenzene under different conditions were investigated. The difference in the optimum temperature for the growth of the fungi and chlorobenzene degradation was observed. The data indicated that a lower temperature (28 degrees C) would promote the degradation of chlorobenzene than the optimum temperature for the growth of the fungi (37 degrees C). A low nitrogen source concentration (30 mg N/L) had a better effect on degrading chlorobenzene than a high nitrogen source concentration (higher than 100 mg N/L). A high initial concentration (over 1100 mg/m3) of chlorobenzene showed an inhibiting effect on degradation by P. chrysosporium. A maximum removal efficiency of 95% was achieved at the initial concentration of 550 mg/m3.</p><p><b>CONCLUSION</b>P. chrysosporium has a rather good ability to remove gaseous chlorobenzene. A low nitrogen source concentration and a low temperature promote the removal of chlorobenzene by P. chrysosporium. However, a high initial chlorobenzene concentration can inhibit chlorobenzene degradation.</p>


Asunto(s)
Contaminantes Atmosféricos , Metabolismo , Biodegradación Ambiental , Clorobencenos , Metabolismo , Medios de Cultivo , Química , Técnicas Microbiológicas , Nitrógeno , Farmacología , Phanerochaete , Metabolismo , Temperatura , Factores de Tiempo
18.
Mycobiology ; : 205-209, 2007.
Artículo en Inglés | WPRIM | ID: wpr-729944

RESUMEN

Ergosterol involves in fungal cell growth as a major component in fungal cell membranes. It can be an indicator that shows the fungal activity, and its content depends on the fungal strains, culture, growth conditions and so on. In this study, fungal activities and growth patterns of three white-rot fungi strains isolated in Korea were evaluated by determination of ergosterol contents during the incubation. Wood decay test and chemical analyses of wood were also performed to verify the relationship between fungal activity and wood degrading capacity of white-rot fungi for 60 days. In the results of experiments, it is considered that the test strains selectively degrade large amount of lignin in wood at the early stage of decay. Especially, Phanerochaete chrysosporium showed the best capability on selective degradation of lignin among the test fungi. It is suggested that the determination of ergosterol content in the fungal culture during the incubation is the simple and effective screening method of white-rot fungi for the application to biopulping of wood.


Asunto(s)
Membrana Celular , Ergosterol , Hongos , Corea (Geográfico) , Lignina , Tamizaje Masivo , Phanerochaete , Madera
19.
Biol. Res ; 39(4): 641-648, 2006. ilus, graf
Artículo en Inglés | LILACS | ID: lil-456599

RESUMEN

In this report we describe the isolation and characterization of a gene encoding the transcription factor Acel (Activation protein of cup 1 Expression) in the white rot fungus Phanerochaete chrysosporium. Pc-acel encodes a predicted protein of 633 amino acids containing the copper-fist DNA binding domain typically found in fungal transcription factors such as Acel, Macl and Haal from Saccharomyces cerevisiae. The Pc-acel gene is localized in Scaffold 5, between coordinates 220841 and 222983. A S. cerevisiae acel null mutant strain unable to grow in high-copper medium was fully complemented by transformation with the cDNA of Pc-acel. Moreover, Northern blot hybridization studies indicated that Pc-acel cDNA restores copper inducibility of the yeast cup 1 gene, which encodes the metal-binding protein metallothionein implicated in copper resistance. To our knowledge, this is first report describing an Acel transcription factor in basidiomycetes.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Phanerochaete/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Northern Blotting , Clonación Molecular , Cobre/farmacología , ADN Complementario , Regulación Fúngica de la Expresión Génica , Modelos Genéticos , Phanerochaete/efectos de los fármacos , ARN Mensajero/análisis
20.
Mycobiology ; : 166-175, 2006.
Artículo en Inglés | WPRIM | ID: wpr-729382

RESUMEN

A total of 149 species and 209 strains of Korean Aphyllophorales in Seoul National University Fungus Collection (SFC) were analyzed by taxonomic and phylogenetic methods. Among those examined fungal specimens, 9 genera Abundisporus, Antrodiella, Cyphellopsis, Dendrothele, Dichomitus, Laxitextum, Piloderma, Skeletocutis and Tubulicrinis, and 23 species, Abundisporus fuscopurpureus, Antrodiella semisupina, Auriporia pileata, Cantharellus subalbidus, Clavulina cinerea, Cyphellopsis confusa, Dendrothele acerina, Dichomitus campestris, Haplotrichum aureum, Heterobasidion annosum, Hyphoderma argillaceum, Hyphodontia tropica, Inonotus dryophilus, Ischnoderma benzoinum, Laxitextum bicolor, Phanerochaete radicata, Phellinus lonicericola, Piloderma byssinum, Skeletocutis nivea, Tomentella terrestris, Trametes elegans, Trametes tenuis, and Tubulicrinis accedens were confirmed as new to Korea and registered here with descriptions.


Asunto(s)
Hongos , Corea (Geográfico) , Phanerochaete , Polyporales , Seúl , Trametes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA