Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 18(7): 806-815, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34211188

RESUMEN

Co-fractionation mass spectrometry (CF-MS) has emerged as a powerful technique for interactome mapping. However, there is little consensus on optimal strategies for the design of CF-MS experiments or their computational analysis. Here, we reanalyzed a total of 206 CF-MS experiments to generate a uniformly processed resource containing over 11 million measurements of protein abundance. We used this resource to benchmark experimental designs for CF-MS studies and systematically optimize computational approaches to network inference. We then applied this optimized methodology to reconstruct a draft-quality human interactome by CF-MS and predict over 700,000 protein-protein interactions across 27 eukaryotic species or clades. Our work defines new resources to illuminate proteome organization over evolutionary timescales and establishes best practices for the design and analysis of CF-MS studies.


Asunto(s)
Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas/métodos , Proteoma/análisis , Animales , Evolución Biológica , Fraccionamiento Químico , Bases de Datos de Proteínas , Humanos , Ratones , Plasmodium berghei/química , Plasmodium berghei/metabolismo , Proteómica/métodos
2.
Proc Natl Acad Sci U S A ; 117(28): 16546-16556, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601225

RESUMEN

During blood-stage development, malaria parasites are challenged with the detoxification of enormous amounts of heme released during the proteolytic catabolism of erythrocytic hemoglobin. They tackle this problem by sequestering heme into bioinert crystals known as hemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control heme crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of hemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multidirectional crystal branching. Although hemoglobin processing remains unaffected, PV5-deficient parasites generate less hemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology, neither the crystalline order nor unit cell of hemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in hemozoin formation and underscore the heme biomineralization pathway as an attractive target for therapeutic exploitation.


Asunto(s)
Hemo/metabolismo , Lipocalinas/metabolismo , Malaria/parasitología , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Hemoproteínas/genética , Hemoproteínas/metabolismo , Humanos , Lipocalinas/química , Lipocalinas/genética , Malaria/metabolismo , Ratones , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
3.
J Biol Chem ; 294(13): 4997-5007, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30700551

RESUMEN

Plasmodium falciparum (Pf) 4-nitrophenylphosphatase has been shown previously to be involved in vitamin B1 metabolism. Here, conducting a BLASTp search, we found that 4-nitrophenylphosphatase from Pf has significant homology with phosphoglycolate phosphatase (PGP) from mouse, human, and yeast, prompting us to reinvestigate the biochemical properties of the Plasmodium enzyme. Because the recombinant PfPGP enzyme is insoluble, we performed an extended substrate screen and extensive biochemical characterization of the recombinantly expressed and purified homolog from Plasmodium berghei (Pb), leading to the identification of 2-phosphoglycolate and 2-phospho-L-lactate as the relevant physiological substrates of PbPGP. 2-Phosphoglycolate is generated during repair of damaged DNA ends, 2-phospho-L-lactate is a product of pyruvate kinase side reaction, and both potently inhibit two key glycolytic enzymes, triosephosphate isomerase and phosphofructokinase. Hence, PGP-mediated clearance of these toxic metabolites is vital for cell survival and functioning. Our results differ significantly from those in a previous study, wherein the PfPGP enzyme has been inferred to act on 2-phospho-D-lactate and not on the L isomer. Apart from resolving the substrate specificity conflict through direct in vitro enzyme assays, we conducted PGP gene knockout studies in P. berghei, confirming that this conserved metabolic proofreading enzyme is essential in Plasmodium In summary, our findings establish PbPGP as an essential enzyme for normal physiological function in P. berghei and suggest that drugs that specifically inhibit Plasmodium PGP may hold promise for use in anti-malarial therapies.


Asunto(s)
Malaria/parasitología , Monoéster Fosfórico Hidrolasas/metabolismo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Técnicas de Inactivación de Genes , Glicolatos/metabolismo , Glucólisis , Humanos , Lactatos/metabolismo , Ratones , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Plasmodium berghei/química , Plasmodium berghei/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Alineación de Secuencia , Especificidad por Sustrato
4.
Infect Immun ; 86(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29866905

RESUMEN

Transmission-blocking vaccines (TBVs) interrupting malaria transmission are an integrated tool for malaria eradication. We characterized a sexual-stage-specific gene (PBANKA_060330) from Plasmodium berghei and studied its potential for use as a TBV. This gene, referred to as pbg37, encodes a protein of 37 kDa with a signal peptide and multiple transmembrane domains and is preferentially expressed in gametocytes. A recombinant Pbg37 (rPbg37) protein targeting the N-terminal 63 amino acids (amino acids 26 to 88) expressed in bacteria elicited strong antibody responses in mice. Western blotting demonstrated Pbg37 expression in gametocytes, zygotes, and, to a lesser extent, ookinetes and its predominant association with the membranes of gametocytes. Indirect immunofluorescence assay showed an abundant surface localization of Pbg37 on gametes and zygotes but reduced amounts on retorts and ookinetes. Knockout of pbg37 (Δpbg37) led to a considerable reduction in gametocytemia, which translated into a ~92.1% decrease in the oocyst number in mosquitoes. Deletion of pbg37 had a more substantial influence on the development and maturation of microgametocytes. As a result, the Δpbg37 lines exhibited a higher female/male gametocyte ratio, fewer mature male gametocytes, and defects in the exflagellation of mature microgametocytes. To test the transmission-blocking potential of Pbg37, an in vitro ookinete assay showed that the major inhibitory effects of anti-Pbg37 antiserum were on the exflagellation and fertilization processes. Direct feeding of mosquitoes on mice immunized with rPbg37 or a control protein showed that rPbg37-immunized and P. berghei-infected mice had a significant reduction (49.1%) in oocyst density compared to the controls. The conservation of this gene in Plasmodium warrants further investigations in human malaria parasites.


Asunto(s)
Transmisión de Enfermedad Infecciosa/prevención & control , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Plasmodium berghei/inmunología , Proteínas Protozoarias/inmunología , Animales , Anticuerpos Antiprotozoarios/sangre , Formación de Anticuerpos , Western Blotting , Modelos Animales de Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Eliminación de Gen , Perfilación de la Expresión Génica , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/genética , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/inmunología , Ratones Endogámicos BALB C , Mosquitos Vectores/parasitología , Carga de Parásitos , Parasitemia , Plasmodium berghei/química , Plasmodium berghei/genética , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Virulencia
5.
Malar J ; 16(1): 5, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28049524

RESUMEN

BACKGROUND: Malaria is still a major public health issue worldwide, and one of the best approaches to fight the disease remains vector control. The current methods for mosquito identification include morphological methods that are generally time-consuming and require expertise, and molecular methods that require laboratory facilities with relatively expensive running costs. Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology, routinely used for bacterial identification, has recently emerged in the field of entomology. The aim of the present study was to assess whether MALDI-TOF MS could successfully distinguish Anopheles stephensi mosquitoes according to their Plasmodium infection status. METHODS: C57BL/6 mice experimentally infected with Plasmodium berghei were exposed to An. stephensi bites. For the determination of An. stephensi infection status, mosquito cephalothoraxes were dissected and submitted to mass spectrometry analyses and DNA amplification for molecular analysis. Spectra were grouped according to mosquitoes' infection status and spectra quality was validated based on intensity and reproducibility within each group. The in-lab MALDI-TOF MS arthropod reference spectra database, upgraded with representative spectra from both groups (infected/non-infected), was subsequently queried blindly with cephalothorax spectra from specimens of both groups. RESULTS: The MALDI TOF MS profiles generated from protein extracts prepared from the cephalothorax of An. stephensi allowed distinction between infected and uninfected mosquitoes. Correct classification was obtained in blind test analysis for (79/80) 98.75% of all mosquitoes tested. Only one of 80 specimens, an infected mosquito, was misclassified in the blind test analysis. CONCLUSIONS: Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry appears to be a promising, rapid and reliable tool for the epidemiological surveillance of Anopheles vectors, including their identification and their infection status.


Asunto(s)
Anopheles/parasitología , Productos Biológicos/análisis , Entomología/métodos , Plasmodium berghei/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Anopheles/crecimiento & desarrollo , Femenino , Ratones Endogámicos C57BL
6.
Exp Parasitol ; 181: 82-87, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28803903

RESUMEN

Actin has important roles in Plasmodium parasites but its exact function in different life stages is not yet fully elucidated. Here we report the localization of ubiquitous actin I in gametocytes of the rodent model parasite P. berghei. Using an antibody specifically recognizing F-actin and deconvolution microscopy we detected actin I in a punctate pattern in gametocytes. 3D-Structured Illumination Microscopy which allows sub-diffraction limit imaging resolved the signal into structures of less than 130 nm length. A portion of actin I was soluble, but the protein was also found complexed in a stabilized form which could only be completely solubilized by treatment with SDS. An additional population of actin was pelleted at 100 000 × g, consistent with F-actin. Our results suggest that actin in this non-motile form of the parasite is present in short filaments cross-linked to other structures in a cytoskeleton.


Asunto(s)
Actinas/análisis , Plasmodium berghei/química , Actinas/inmunología , Animales , Antimaláricos/farmacología , Atovacuona/farmacología , Depsipéptidos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/inmunología , Plasmodium berghei/enzimología , Plasmodium berghei/crecimiento & desarrollo
7.
PLoS Pathog ; 10(4): e1004091, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24743229

RESUMEN

Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/química , Plasmodium berghei/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
8.
Cell Microbiol ; 17(3): 355-68, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25262869

RESUMEN

Gametogenesis is the earliest event after uptake of malaria parasites by the mosquito vector, with a decisive impact on colonization of the mosquito midgut. This process is triggered by a drop in temperature and contact with mosquito molecules. In a few minutes, male and female gametocytes escape from the host erythrocyte by rupturing the parasitophorous vacuole and the erythrocyte membranes. Electron-dense, oval-shaped organelles, the osmiophilic bodies (OB), have been implicated in the egress of female gametocytes. By comparative electron microscopy and electron tomography analyses combined with immunolocalization experiments, we here define the morphological features distinctive of male secretory organelles, hereafter named MOB (male osmiophilic bodies). These organelles appear as club-shaped, electron-dense vesicles, smaller than female OB. We found that a drop in temperature triggers MOB clustering, independently of exposure to other stimuli. MDV1/PEG3, a protein associated with OB in Plasmodium berghei females, localizes to both non-clustered and clustered MOB, suggesting that clustering precedes vesicle discharge. A P. berghei mutant lacking the OB-resident female-specific protein Pbg377 displays a dramatic reduction in size of the OB, accompanied by a delay in female gamete egress efficiency, while female gamete fertility is not affected. Immunolocalization experiments indicated that MDV1/PEG3 is still recruited to OB-remnant structures.


Asunto(s)
Orgánulos/ultraestructura , Plasmodium berghei/ultraestructura , Animales , Tomografía con Microscopio Electrónico , Femenino , Ratones , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Orgánulos/química , Plasmodium berghei/química , Proteínas Protozoarias/análisis
9.
Cell Microbiol ; 16(5): 768-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24617597

RESUMEN

Calcium is a key signalling molecule in apicomplexan parasites and plays an important role in diverse processes including gliding motility. Gliding is essential for the malaria parasite to migrate from the skin to the liver as well as to invade host tissues and cells. Here we investigated the dynamics of intracellular Ca(2+) in the motility of Plasmodium berghei sporozoites by live imaging and flow cytometry. We found that cytosolic levels of Ca(2+) increase when sporozoites are activated in suspension, which is sufficient to induce the secretion of integrin-like adhesins that are essential for gliding motility. By increasing intracellular Ca(2+) levels artificially with an ionophore, these adhesins are secreted onto the sporozoite surface, however, the parasite is not capable of gliding. A second level of Ca(2+) modulation was observed during attachment to and detachment from a solid substrate, leading to a further increase or a decrease in the cytoplasmic levels of Ca(2+) respectively. We also observed oscillations in the intracellular Ca(2+) level during gliding. Finally, an intracellular Ca(2+) chelator, an inhibitor of phosphoinositide-specific phospholipase C (PI-PLC), and an inhibitor of the inositol triphosphate (IP3) receptor blocked the rise in intracellular Ca(2+) , adhesin secretion, and motility of activated sporozoites, indicating that intracellular stores supply Ca(2+) during sporozoite gliding. Our study indicates that a rise in intracellular Ca(2+) is necessary but not sufficient to activate gliding, that Ca(2+) levels are modulated in several ways during motility, and that a PI-PLC/IP3 pathway regulates Ca(2+) release during the process of sporozoite locomotion.


Asunto(s)
Calcio/análisis , Citosol/química , Locomoción , Plasmodium berghei/fisiología , Esporozoítos/fisiología , Adhesión Celular , Citometría de Flujo , Imagen Óptica , Plasmodium berghei/química , Esporozoítos/química
10.
Mol Cell Proteomics ; 12(2): 426-48, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23197789

RESUMEN

Malaria parasites actively remodel the infected red blood cell (irbc) by exporting proteins into the host cell cytoplasm. The human parasite Plasmodium falciparum exports particularly large numbers of proteins, including proteins that establish a vesicular network allowing the trafficking of proteins onto the surface of irbcs that are responsible for tissue sequestration. Like P. falciparum, the rodent parasite P. berghei ANKA sequesters via irbc interactions with the host receptor CD36. We have applied proteomic, genomic, and reverse-genetic approaches to identify P. berghei proteins potentially involved in the transport of proteins to the irbc surface. A comparative proteomics analysis of P. berghei non-sequestering and sequestering parasites was used to determine changes in the irbc membrane associated with sequestration. Subsequent tagging experiments identified 13 proteins (Plasmodium export element (PEXEL)-positive as well as PEXEL-negative) that are exported into the irbc cytoplasm and have distinct localization patterns: a dispersed and/or patchy distribution, a punctate vesicle-like pattern in the cytoplasm, or a distinct location at the irbc membrane. Members of the PEXEL-negative BIR and PEXEL-positive Pb-fam-3 show a dispersed localization in the irbc cytoplasm, but not at the irbc surface. Two of the identified exported proteins are transported to the irbc membrane and were named erythrocyte membrane associated proteins. EMAP1 is a member of the PEXEL-negative Pb-fam-1 family, and EMAP2 is a PEXEL-positive protein encoded by a single copy gene; neither protein plays a direct role in sequestration. Our observations clearly indicate that P. berghei traffics a diverse range of proteins to different cellular locations via mechanisms that are analogous to those employed by P. falciparum. This information can be exploited to generate transgenic humanized rodent P. berghei parasites expressing chimeric P. berghei/P. falciparum proteins on the surface of rodent irbc, thereby opening new avenues for in vivo screening adjunct therapies that block sequestration.


Asunto(s)
Malaria/metabolismo , Plasmodium berghei/genética , Proteoma/genética , Proteínas Protozoarias/genética , Esquizontes/metabolismo , Trofozoítos/metabolismo , Animales , Antígenos CD36/química , Antígenos CD36/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Femenino , Genes Reporteros , Proteínas Fluorescentes Verdes , Interacciones Huésped-Parásitos , Luciferasas , Malaria/parasitología , Ratones , Mutación , Plasmodium berghei/química , Plasmodium berghei/metabolismo , Transporte de Proteínas , Proteoma/química , Proteoma/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Esquizontes/química , Espectrometría de Masas en Tándem , Transfección , Trofozoítos/química
11.
Malar J ; 13: 315, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25124718

RESUMEN

BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.


Asunto(s)
Metabolismo Energético , Flagelos/fisiología , Células Germinativas/química , Glucólisis , Plasmodium berghei/química , Plasmodium berghei/fisiología , Proteoma/análisis , Animales , Femenino , Locomoción , Masculino , Ratones
12.
Mol Microbiol ; 83(6): 1229-43, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22329949

RESUMEN

The importance of pathogen-induced host cell remodelling has been well established for red blood cell infection by the human malaria parasite Plasmodium falciparum. Exported parasite-encoded proteins, which often possess a signature motif, termed Plasmodium export element (PEXEL) or host-targeting (HT) signal, are critical for the extensive red blood cell modifications. To what extent remodelling of erythrocyte membranes also occurs in non-primate hosts and whether it is in fact a hallmark of all mammalian Plasmodium parasites remains elusive. Here we characterize a novel Plasmodium berghei PEXEL/HT-containing protein, which we term IBIS1. Temporal expression and spatial localization determined by fluorescent tagging revealed the presence of IBIS1 at the parasite/host interface during both liver and blood stages of infection. Targeted deletion of the IBIS1 protein revealed a mild impairment of intra-erythrocytic growth indicating a role for these structures in the rapid expansion of the parasite population in the blood in vivo. In red blood cells, the protein localizes to dynamic, punctate structures external to the parasite. Biochemical and microscopic data revealed that these intra-erythrocytic P. berghei-induced structures (IBIS) are membranous indicating that P. berghei, like P. falciparum, creates an intracellular membranous network in infected red blood cells.


Asunto(s)
Membrana Celular/química , Eritrocitos/química , Malaria/parasitología , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Membrana Celular/parasitología , Eritrocitos/parasitología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/química , Plasmodium berghei/genética , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
13.
J Biol Chem ; 286(32): 28256-64, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21832095

RESUMEN

Apicomplexan parasites, such as the malaria-causing Plasmodium, utilize an actin-based motor for motility and host cell invasion. The actin filaments of these parasites are unusually short, and actin polymerization is under strict control of a small set of regulatory proteins, which are poorly conserved with their mammalian orthologs. Actin depolymerization factors (ADFs) are among the most important actin regulators, affecting the rates of filament turnover in a multifaceted manner. Plasmodium has two ADFs that display low sequence homology with each other and with the higher eukaryotic family members. Here, we show that ADF2, like canonical ADF proteins but unlike ADF1, binds to both globular and filamentous actin, severing filaments and inducing nucleotide exchange on the actin monomer. The crystal structure of Plasmodium ADF1 shows major differences from the ADF consensus, explaining the lack of F-actin binding. Plasmodium ADF2 structurally resembles the canonical members of the ADF/cofilin family.


Asunto(s)
Destrina/química , Plasmodium berghei/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Cristalografía por Rayos X , Destrina/metabolismo , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo , Estructura Terciaria de Proteína , Proteínas Protozoarias/metabolismo , Especificidad de la Especie , Relación Estructura-Actividad
14.
J Biol Chem ; 285(48): 37388-95, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20852334

RESUMEN

Malaria-associated pathology is caused by the continuous expansion of Plasmodium parasites inside host erythrocytes. To maintain a reducing intracellular milieu in an oxygen-rich environment, malaria parasites have evolved a complex antioxidative network based on two central electron donors, glutathione and thioredoxin. Here, we dissected the in vivo roles of both redox pathways by gene targeting of the respective NADPH-dependent disulfide reductases. We show that Plasmodium berghei glutathione reductase and thioredoxin reductase are dispensable for proliferation of the pathogenic blood stages. Intriguingly, glutathione reductase is vital for extracellular parasite development inside the insect vector, whereas thioredoxin reductase is dispensable during the entire parasite life cycle. Our findings suggest that glutathione reductase is the central player of the parasite redox network, whereas thioredoxin reductase fulfils a specialized and dispensable role for P. berghei. These results also indicate redundant roles of the Plasmodium redox pathways during the pathogenic blood phase and query their suitability as promising drug targets for antimalarial intervention strategies.


Asunto(s)
Silenciador del Gen , Glutatión Reductasa/metabolismo , NADP/metabolismo , Plasmodium berghei/enzimología , Plasmodium berghei/genética , Proteínas Protozoarias/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Animales , Proliferación Celular , Glutatión Reductasa/química , Glutatión Reductasa/genética , Humanos , Malaria/parasitología , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/química , Plasmodium berghei/citología , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Ratas , Ratas Sprague-Dawley , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética
15.
Malar J ; 10: 71, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21453484

RESUMEN

BACKGROUND: The Plasmodium Cysteine Repeat Modular Proteins (PCRMP) are a family of four conserved proteins of malaria parasites, that contain a number of motifs implicated in host-parasite interactions. Analysis of mutants of the rodent parasite Plasmodium berghei lacking expression of PCRMP1 or 2 showed that these proteins are essential for targeting of P. berghei sporozoites to the mosquito salivary gland and, hence, for transmission from the mosquito to the mouse. METHODS: In this work, the role of the remaining PCRMP family members, PCRMP3 and 4, has been investigated throughout the Plasmodium life cycle by generation and analysis of P. berghei gene deletion mutants, Δpcrmp3 and Δpcrmp4. The role of PCRMP members during the transmission and hepatic stages of the Plasmodium lifecycle has been evaluated by light- and electron microscopy and by analysis of liver stage development in HEPG2 cells in vitro and by infecting mice with mutant sporozoites. In addition, mice were immunized with live Δpcrmp3 and Δpcrmp4 sporozoites to evaluate their immunization potential as a genetically-attenuated parasite-based vaccine. RESULTS: Disruption of pcrmp3 and pcrmp4 in P. berghei revealed that they are also essential for transmission of the parasite through the mosquito vector, although acting in a distinct way to pbcrmp1 and 2. Mutants lacking expression of PCRMP3 or PCRMP4 show normal blood stage development and oocyst formation in the mosquito and develop into morphologically normal sporozoites, but these have a defect in egress from oocysts and do not enter the salivary glands. Sporozoites extracted from oocysts perform gliding motility and invade and infect hepatocytes but do not undergo further development and proliferation. Furthermore, the study shows that immunization with Δcrmp3 and Δcrmp4 sporozoites does not confer protective immunity upon subsequent challenge. CONCLUSIONS: PCRMP3 and 4 play multiple roles during the Plasmodium life cycle; they are essential for the establishment of sporozoite infection in the mosquito salivary gland, and subsequently for development in hepatocytes. However, although Δpcrmp3 and Δpcrmp4 parasites are completely growth-impaired in the liver, immunization with live sporozoites does not induce the protective immune responses that have been shown for other genetically-attenuated parasites.


Asunto(s)
Estadios del Ciclo de Vida , Malaria/parasitología , Malaria/transmisión , Plasmodium berghei/química , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/química , Proteínas Protozoarias/fisiología , Secuencia de Aminoácidos , Animales , Culicidae/parasitología , Cisteína/química , Cisteína/genética , Cisteína/fisiología , Células Hep G2 , Hepatocitos/parasitología , Humanos , Ratones , Datos de Secuencia Molecular , Oocistos/química , Oocistos/crecimiento & desarrollo , Plasmodium berghei/genética , Plasmodium berghei/fisiología , Proteínas Protozoarias/genética , Alineación de Secuencia , Esporozoítos/química , Esporozoítos/crecimiento & desarrollo
16.
PLoS Pathog ; 4(10): e1000195, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18974882

RESUMEN

Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans.


Asunto(s)
Plasmodium falciparum/química , Plasmodium falciparum/crecimiento & desarrollo , Proteoma/análisis , Proteínas Protozoarias/análisis , Animales , Anopheles/parasitología , Bases de Datos Genéticas , Humanos , Malaria Falciparum/parasitología , Ratones , Ratones Noqueados , Oocistos/química , Oocistos/crecimiento & desarrollo , Plasmodium berghei/química , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Proteómica , Proteínas Protozoarias/genética , Glándulas Salivales/parasitología , Esporozoítos/química , Esporozoítos/crecimiento & desarrollo
17.
Artículo en Inglés | MEDLINE | ID: mdl-20445265

RESUMEN

The malaria parasite Plasmodium depends on its actin-based motor system for motility and host-cell invasion. Actin-depolymerization factors are important regulatory proteins that affect the rate of actin turnover. Plasmodium has two actin-depolymerization factors which seem to have different functions and display low sequence homology to the higher eukaryotic family members. Plasmodium actin-depolymerization factors 1 and 2 have been crystallized. The crystals diffracted X-rays to maximum resolutions of 2.0 and 2.1 A and belonged to space groups P3(1)21 or P3(2)21, with unit-cell parameters a = b = 68.8, c = 76.0 A, and P2(1)2(1)2, with unit-cell parameters a = 111.6, b = 57.9, c = 40.5 A, respectively, indicating the presence of one or two molecules per asymmetric unit in both cases.


Asunto(s)
Plasmodium berghei/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Cristalografía por Rayos X , Modelos Moleculares
18.
mSphere ; 5(4)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32817376

RESUMEN

In the Plasmodium life cycle, two infectious stages of parasites, merozoites and sporozoites, share rhoptry and microneme apical structures. A crucial step during merozoite invasion of erythrocytes is the discharge to the host cell membrane of some rhoptry neck proteins as a complex, followed by the formation of a moving junction involving the parasite-secreted protein AMA1 on the parasite membrane. Components of the merozoite rhoptry neck protein complex are also expressed in sporozoites, namely, RON2, RON4, and RON5, suggesting that invasion mechanism elements might be conserved between these infective stages. Recently, we demonstrated that RON2 is required for sporozoite invasion of mosquito salivary gland cells and mammalian hepatocytes, using a sporozoite stage-specific gene knockdown strategy in the rodent malaria parasite model, Plasmodium berghei Here, we use a coimmunoprecipitation assay and oocyst-derived sporozoite extracts to demonstrate that RON2, RON4, and RON5 also form a complex in sporozoites. The sporozoite stage-specific gene knockdown strategy revealed that both RON4 and RON5 have crucial roles during sporozoite invasion of salivary glands, including a significantly reduced attachment ability required for the onset of gliding. Further analyses indicated that RON2 and RON4 reciprocally affect trafficking to rhoptries in developing sporozoites, while RON5 is independently transported. These findings indicate that the interaction between RON2 and RON4 contributes to their stability and trafficking to rhoptries, in addition to involvement in sporozoite attachment.IMPORTANCE Sporozoites are the motile infectious stage that mediates malaria parasite transmission from mosquitoes to the mammalian host. This study addresses the question whether the rhoptry neck protein complex forms and functions in sporozoites, in addition to its role in merozoites. By applying coimmunoprecipitation and sporozoite stage-specific gene knockdown assays, it was demonstrated that RON2, RON4, and RON5 form a complex and are involved in sporozoite invasion of salivary glands via their attachment ability. These findings shed light on the conserved invasion mechanisms among apicomplexan infective stages. In addition, the sporozoite stage-specific gene knockdown system has revealed for the first time in Plasmodium that the RON2 and RON4 interaction reciprocally affects their stability and trafficking to rhoptries. Our study raises the possibility that the RON complex functions during sporozoite maturation as well as migration toward and invasion of target cells.


Asunto(s)
Interacciones Huésped-Parásitos , Plasmodium berghei/química , Proteínas Protozoarias/química , Glándulas Salivales/parasitología , Esporozoítos/fisiología , Animales , Culicidae/parasitología , Femenino , Ratones , Ratones Endogámicos ICR , Plasmodium berghei/genética , Plasmodium berghei/fisiología , Transporte de Proteínas , Proteínas Protozoarias/genética , Ratas , Esporozoítos/química
19.
BMC Bioinformatics ; 10: 148, 2009 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-19445703

RESUMEN

BACKGROUND: Advances in high-throughput technologies available to modern biology have created an increasing flood of experimentally determined facts. Ordering, managing and describing these raw results is the first step which allows facts to become knowledge. Currently there are limited ways to automatically annotate such data, especially utilizing information deposited in published literature. RESULTS: To aid researchers in describing results from high-throughput experiments we developed HT-SAS, a web service for automatic annotation of proteins using general English words. For each protein a poll of Medline abstracts connected to homologous proteins is gathered using the UniProt-Medline link. Overrepresented words are detected using binomial statistics approximation. We tested our automatic approach with a protein test set from SGD to determine the accuracy and usefulness of our approach. We also applied the automatic annotation service to improve annotations of proteins from Plasmodium bergei expressed exclusively during the blood stage. CONCLUSION: Using HT-SAS we created new, or enriched already established annotations for over 20% of proteins from Plasmodium bergei expressed in the blood stage, deposited in PlasmoDB. Our tests show this approach to information extraction provides highly specific keywords, often also when the number of abstracts is limited. Our service should be useful for manual curators, as a complement to manually curated information sources and for researchers working with protein datasets, especially from poorly characterized organisms.


Asunto(s)
Indización y Redacción de Resúmenes , Sistemas de Administración de Bases de Datos , Proteómica/métodos , Análisis de Secuencia de Proteína , Programas Informáticos , Algoritmos , Secuencia de Aminoácidos , Animales , Interpretación Estadística de Datos , Bases de Datos de Proteínas , Internet , MEDLINE , Plasmodium berghei/química , Plasmodium berghei/genética , Proteínas/análisis , Proteínas Protozoarias/química , Interfaz Usuario-Computador
20.
J Cell Biol ; 167(3): 425-32, 2004 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-15533999

RESUMEN

Membrane skeletons are structural elements that provide mechanical support to the plasma membrane and define cell shape. Here, we identify and characterize a putative protein component of the membrane skeleton of the malaria parasite. The protein, named PbIMC1a, is the structural orthologue of the Toxoplasma gondii inner membrane complex protein 1 (TgIMC1), a component of the membrane skeleton in tachyzoites. Using targeted gene disruption in the rodent malaria species Plasmodium berghei, we show that PbIMC1a is involved in sporozoite development, is necessary for providing normal sporozoite cell shape and mechanical stability, and is essential for sporozoite infectivity in insect and vertebrate hosts. Knockout of PbIMC1a protein expression reduces, but does not abolish, sporozoite gliding locomotion. We identify a family of proteins related to PbIMC1a in Plasmodium and other apicomplexan parasites. These results provide new functional insight in the role of membrane skeletons in apicomplexan parasite biology.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Plasmodium berghei/química , Proteínas Protozoarias/fisiología , Esporozoítos/química , Secuencia de Aminoácidos , Animales , Culicidae/parasitología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Componentes del Gen , Locomoción , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Morfogénesis , Plasmodium berghei/citología , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/fisiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esporozoítos/citología , Esporozoítos/crecimiento & desarrollo , Esporozoítos/fisiología , Transcripción Genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA