Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Trends Immunol ; 45(5): 322-324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38644134

RESUMEN

Interferons and central nervous system resident macrophages, microglia, are well-known for their respective roles in antiviral defense and phagocytosis. Using a classic experimental paradigm for examining activity-dependent neural plasticity, Escoubas, Dorman, et al. recently identified a role for microglial type I interferon signaling in the clearance of unwanted neurons during mouse brain development.


Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Encéfalo/inmunología , Encéfalo/crecimiento & desarrollo , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Ratones , Microglía/inmunología , Microglía/metabolismo , Humanos , Transducción de Señal/inmunología , Neuronas/inmunología , Neuronas/metabolismo , Fagocitosis/inmunología , Plasticidad Neuronal/inmunología
2.
Proc Natl Acad Sci U S A ; 117(50): 32145-32154, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257576

RESUMEN

Numerous studies demonstrate that neuroinflammation is a key player in the progression of Alzheimer's disease (AD). Interleukin (IL)-1ß is a main inducer of inflammation and therefore a prime target for therapeutic options. The inactive IL-1ß precursor requires processing by the the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome into a mature and active form. Studies have shown that IL-1ß is up-regulated in brains of patients with AD, and that genetic inactivation of the NLRP3 inflammasome improves behavioral tests and synaptic plasticity phenotypes in a murine model of the disease. In the present study, we analyzed the effect of pharmacological inhibition of the NLRP3 inflammasome using dapansutrile (OLT1177), an oral NLRP3-specific inhibitor that is safe in humans. Six-month-old WT and APP/PS1 mice were fed with standard mouse chow or OLT1177-enriched chow for 3 mo. The Morris water maze test revealed an impaired learning and memory ability of 9-mo-old APP/PS1 mice (P = 0.001), which was completely rescued by OLT1177 fed to mice (P = 0.008 to untreated APP/PS1). Furthermore, our findings revealed that 3 mo of OLT1177 diet can rescue synaptic plasticity in this mouse model of AD (P = 0.007 to untreated APP/PS1). In addition, microglia were less activated (P = 0.07) and the number of plaques was reduced in the cortex (P = 0.03) following NLRP3 inhibition with OLT1177 administration. We also observed an OLT1177 dose-dependent normalization of plasma metabolic markers of AD to those of WT mice. This study suggests the therapeutic potential of treating neuroinflammation with an oral inhibitor of the NLRP3 inflammasome.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Inflamasomas/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Nitrilos/farmacología , Administración Oral , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Precursor de Proteína beta-Amiloide/genética , Animales , Técnicas de Observación Conductual , Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Corteza Cerebral/patología , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Humanos , Inflamasomas/inmunología , Masculino , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/inmunología , Nitrilos/uso terapéutico , Presenilina-1/genética , Memoria Espacial/efectos de los fármacos
3.
Nat Rev Neurosci ; 17(8): 497-511, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277867

RESUMEN

Data from clinical and preclinical studies indicate that immune dysregulation, specifically of inflammatory processes, is associated with symptoms of major depressive disorder (MDD). In particular, increased levels of circulating pro-inflammatory cytokines and concomitant activation of brain-resident microglia can lead to depressive behavioural symptoms. Repeated exposure to psychological stress has a profound impact on peripheral immune responses and perturbs the function of brain microglia, which may contribute to neurobiological changes underlying MDD. Here, we review these findings and discuss ongoing studies examining neuroimmune mechanisms that influence neuronal activity as well as synaptic plasticity. Interventions targeting immune-related cellular and molecular pathways may benefit subsets of MDD patients with immune dysregulation.


Asunto(s)
Encéfalo/metabolismo , Citocinas/metabolismo , Trastorno Depresivo Mayor/inmunología , Neuroinmunomodulación/inmunología , Plasticidad Neuronal/inmunología , Animales , Encéfalo/inmunología , Citocinas/inmunología , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/fisiopatología , Humanos , Neurobiología/métodos , Plasticidad Neuronal/fisiología
4.
Cell Tissue Res ; 382(1): 15-45, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32944867

RESUMEN

The neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and tissue are associated with, e.g., neurodegenerative, neurological, or even cardiovascular diseases. The changes in BDNF concentration are caused by altered dynamics in BDNF expression and release. To understand the relevance of major variations of BDNF levels, detailed knowledge regarding physiological and pathophysiological stimuli affecting intra- and extracellular BDNF concentration is important. Most work addressing the molecular and cellular regulation of BDNF expression and release have been performed in neuronal preparations. Therefore, this review will summarize the stimuli inducing release of BDNF, as well as molecular mechanisms regulating the efficacy of BDNF release, with a focus on cells originating from the brain. Further, we will discuss the current knowledge about the distinct stimuli eliciting regulated release of BDNF under physiological conditions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Plasticidad Neuronal/inmunología , Neuronas/metabolismo , Humanos
5.
Cell Tissue Res ; 382(1): 101-111, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32936344

RESUMEN

The sensitivity of the nervous system to receive and respond to events, both internal and in the environment, depends on the ability of neural structures to remodel in response to experience (Kandel 2001; Mayford et al. 2012)⁠. Neural plasticity depends on rapid, tightly controlled rearrangements of cytoskeleton, membrane morphology, and protein content. Neurons regulate plasticity across orders of structural organization, from changes in molecular machinery that calls forth the synaptic alterations that underlie learning and memory, to events that evoke mesoscale alterations in neurite architecture, and to the birth and death of neurons. We address the concept that the events responsible for such diverse modification of neurons originate from local changes in signaling and that understanding the underlying mechanisms requires an appreciation of the nature of constraints placed upon spatial and temporal activity. During development and in the adult, both the remodeling of specific subcellular structures and induction of synaptic plasticity require local control and regulation of signaling, including those initiated by activation of surface receptors (Reichardt 2006). As an example, the receptor tyrosine kinase TrkB, activated by its ligand brain-derived neurotrophic factor (BDNF), has emerged as a potent modulator of plasticity in both development and adulthood, from neurite pruning and branching events during PNS and CNS development, to learning and memory. Here, we review the mechanisms by which TrkB signaling engages in local remodeling to support neural plasticity.


Asunto(s)
Glicoproteínas de Membrana/inmunología , Plasticidad Neuronal/inmunología , Receptor trkB/inmunología , Humanos , Transducción de Señal
6.
Cell Tissue Res ; 382(1): 5-14, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32556728

RESUMEN

Neurotrophin signaling via receptor tyrosine kinases is essential for the development and function of the nervous system in vertebrates. TrkB activation and signaling show substantial differences to other receptor tyrosine kinases of the Trk family that mediate the responses to nerve growth factor and neurotrophin-3. Growing evidence suggests that TrkB cell surface expression is highly regulated and determines the sensitivity of neurons to brain-derived neurotrophic factor (BDNF). This translocation of TrkB depends on co-factors and modulators of cAMP levels, N-glycosylation, and receptor transactivation. This process can occur in very short time periods and the resulting rapid modulation of target cell sensitivity to BDNF could represent a mechanism for fine-tuning of synaptic plasticity and communication in complex neuronal networks. This review focuses on those modulatory mechanisms in neurons that regulate responsiveness to BDNF via control of TrkB surface expression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Plasticidad Neuronal/inmunología , Neuronas/metabolismo , Receptor trkB/metabolismo , Humanos , Transducción de Señal
8.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G853-G861, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604034

RESUMEN

Intestinal functions, including motility and secretion, are locally controlled by enteric neural networks housed within the wall of the gut. The fidelity of these functions depends on the precision of intercellular signaling among cellular elements, including enteric neurons, epithelial cells, immune cells, and glia, all of which are vulnerable to disruptive influences during inflammatory events. This review article describes current knowledge regarding inflammation-induced neuroplasticity along key elements of enteric neural circuits, what is known about the causes of these changes, and possible therapeutic targets for protecting and/or repairing the integrity of intrinsic enteric neurotransmission. Changes that have been detected in response to inflammation include increased epithelial serotonin availability, hyperexcitability of intrinsic primary afferent neurons, facilitation of synaptic activity among enteric neurons, and attenuated purinergic neuromuscular transmission. Dysfunctional propulsive motility has been detected in models of colitis, where causes include the changes described above, and in models of multiple sclerosis and other autoimmune conditions, where autoantibodies are thought to mediate dysmotility. Other cells implicated in inflammation-induced neuroplasticity include muscularis macrophages and enteric glia. Targeted treatments that are discussed include 5-hydroxytryptamine receptor 4 agonists, cyclooxygenase inhibitors, antioxidants, B cell depletion therapy, and activation of anti-inflammatory pathways.


Asunto(s)
Comunicación Celular/fisiología , Sistema Nervioso Entérico , Motilidad Gastrointestinal/inmunología , Inflamación , Plasticidad Neuronal/inmunología , Animales , Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/fisiopatología , Humanos , Inflamación/inmunología , Inflamación/fisiopatología , Inflamación/terapia , Enfermedad Autoinmune Experimental del Sistema Nervioso
9.
Brain Behav Immun ; 79: 39-55, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30872093

RESUMEN

The female brain is highly dynamic and can fundamentally remodel throughout the normal ovarian cycle as well as in critical life stages including perinatal development, pregnancy and old-age. As such, females are particularly vulnerable to infections, psychological disorders, certain cancers, and cognitive impairments. We will present the latest evidence on the female brain; how it develops through the neonatal period; how it changes through the ovarian cycle in normal individuals; how it adapts to pregnancy and postpartum; how it responds to illness and disease, particularly cancer; and, finally, how it is shaped by old age. Throughout, we will highlight female vulnerability to and resilience against disease and dysfunction in the face of environmental challenges.


Asunto(s)
Encéfalo/metabolismo , Neuroinmunomodulación/fisiología , Plasticidad Neuronal/fisiología , Factores de Edad , Encéfalo/inmunología , Femenino , Humanos , Longevidad , Plasticidad Neuronal/inmunología , Embarazo , Mujeres Embarazadas , Psiconeuroinmunología , Psicopatología , Resiliencia Psicológica
10.
Brain Behav Immun ; 81: 484-494, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31279682

RESUMEN

An increasing number of studies show that both inflammation and neural plasticity act as key players in the vulnerability and recovery from psychiatric disorders and neurodegenerative diseases. However, the interplay between these two players has been limitedly explored. In fact, while a few studies reported an immune activation, others conveyed an immune suppression, associated with an impairment in neural plasticity. Therefore, we hypothesized that deviations in inflammatory levels in both directions may impair neural plasticity. We tested this hypothesis experimentally, by acute treatment of C57BL/6 adult male mice with different doses of two inflammatory modulators: lipopolysaccharide (LPS), an endotoxin, and ibuprofen (IBU), a nonselective cyclooxygenase inhibitor, which are respectively a pro- and an anti-inflammatory agent. The results showed that LPS and IBU have different effects on behavior and inflammatory response. LPS treatment induced a reduction of body temperature, a decrease of body weight and a reduced food and liquid intake. In addition, it led to increased levels of inflammatory markers expression, both in the total hippocampus and in isolated microglia cells, including Interleukin (IL)-1ß, and enhanced the concentration of prostaglandin E2 (PGE2). On the other hand, IBU increased the level of anti-inflammatory markers, decreased tryptophan 2,3-dioxygenase (TDO2), the first step in the kynurenine pathway known to be activated during inflammatory conditions, and PGE2 levels. Though LPS and IBU administration differently affected mediators related with pro- or anti-inflammatory responses, they produced overlapping effects on neural plasticity. Indeed, higher doses of both LPS and IBU induced a statistically significant decrease in the amplitude of long-term potentiation (LTP), in Brain-Derived Neurotrophic Factor (BDNF) expression levels and in the phosphorylation of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit GluR1, compared to the control group. Such effect appears to be dose-dependent since only the higher, but not the lower, dose of both compounds led to a plasticity impairment. Overall, the present findings indicate that acute treatment with pro- and anti-inflammatory agents impair neural plasticity in a dose dependent manner.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Inflamación/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Animales , Antiinflamatorios/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Citocinas/inmunología , Citocinas/metabolismo , Dinoprostona/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ibuprofeno/farmacología , Inflamación/inmunología , Interleucina-1beta/metabolismo , Quinurenina/metabolismo , Lipopolisacáridos/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Plasticidad Neuronal/inmunología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
11.
Neurochem Res ; 44(3): 609-616, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29353373

RESUMEN

Maternal immune challenge has proved to induce moderate to severe behavioral disabilities in the offspring. Cognitive/behavioral deficits are supported by changes in synaptic plasticity in different brain areas. We have reported previously that prenatal exposure to bacterial LPS could induce inhibition of hippocampal long-term potentiation (LTP) in the CA1 area of the juvenile/adult male offspring associated with spatial learning inabilities. Nevertheless, deficits in plasticity could be observed at earlier stages as shown by the early loss of long-term depression (LTD) in immature animals. Moreover, aberrant forms of plasticity were also evidenced such as the transient occurrence of LTP instead of LTD in 15-25 day-old animals. This switch from LTD to LTP seemed to involve the activation of metabotropic glutamate receptor subtype 1 and 5 (mGlu1/5). We have thus investigated here whether the long-term depression elicited by the direct activation of these receptors (mGlu-LTD) with a selective agonist was also disturbed after prenatal stress. We find that in prenatally stressed rats, mGlu1/5 stimulation elicits long-term potentiation (mGlu-LTP) independently of N-methyl-D-aspartate receptors. Both mGlu5 and mGlu1 receptors are involved in this switch of plasticity. Moreover, this mGlu-LTP is still observed at later developmental stages than previously reported, i.e. after 25 day-old. In addition, increasing synaptic GABA with tiagabine tends to inhibit mGlu-LTP occurrence. By contrast, long-term depression induced with the activation of CB1 cannabinoid receptor is unaffected by prenatal stress. Therefore, prenatal stress drastically alters mGlu1/5-associated plasticity throughout development. MGlu-mediated plasticity is an interesting parameter to probe the long-lasting deficits reported in this model.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Receptores de Glutamato Metabotrópico/inmunología , Transmisión Sináptica/fisiología , Animales , Depresión/inmunología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Hipocampo/inmunología , Potenciación a Largo Plazo/inmunología , Plasticidad Neuronal/inmunología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/inmunología , Transmisión Sináptica/inmunología
13.
PLoS Genet ; 12(5): e1006035, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27171438

RESUMEN

During postnatal life the cerebral cortex passes through critical periods of plasticity allowing its physiological adaptation to the environment. In the visual cortex, critical period onset and closure are influenced by the non-cell autonomous activity of the Otx2 homeoprotein transcription factor, which regulates the maturation of parvalbumin-expressing inhibitory interneurons (PV cells). In adult mice, the maintenance of a non-plastic adult state requires continuous Otx2 import by PV cells. An important source of extra-cortical Otx2 is the choroid plexus, which secretes Otx2 into the cerebrospinal fluid. Otx2 secretion and internalization requires two small peptidic domains that are part of the DNA-binding domain. Thus, mutating these "transfer" sequences also modifies cell autonomous transcription, precluding this approach to obtain a cell autonomous-only mouse. Here, we develop a mouse model with inducible secretion of an anti-Otx2 single-chain antibody to trap Otx2 in the extracellular milieu. Postnatal secretion of this single-chain antibody by PV cells delays PV maturation and reduces plasticity gene expression. Induced adult expression of this single-chain antibody in cerebrospinal fluid decreases Otx2 internalization by PV cells, strongly induces plasticity gene expression and reopens physiological plasticity. We provide the first mammalian genetic evidence for a signaling mechanism involving intercellular transfer of a homeoprotein transcription factor. Our single-chain antibody mouse model is a valid strategy for extracellular neutralization that could be applied to other homeoproteins and signaling molecules within and beyond the nervous system.


Asunto(s)
Especificidad de Anticuerpos/inmunología , Interneuronas/inmunología , Factores de Transcripción Otx/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Especificidad de Anticuerpos/genética , Corteza Cerebral/inmunología , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Plasticidad Neuronal/inmunología , Factores de Transcripción Otx/genética , Parvalbúminas/biosíntesis , Transducción de Señal , Anticuerpos de Cadena Única/genética , Corteza Visual/inmunología , Corteza Visual/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(1): 212-7, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699475

RESUMEN

Microglia (tissue-resident macrophages) represent the main cell type of the innate immune system in the CNS; however, the mechanisms that control the activation of microglia are widely unknown. We systematically explored microglial activation and functional microglia-neuron interactions in organotypic hippocampal slice cultures, i.e., postnatal cortical tissue that lacks adaptive immunity. We applied electrophysiological recordings of local field potential and extracellular K(+) concentration, immunohistochemistry, design-based stereology, morphometry, Sholl analysis, and biochemical analyses. We show that chronic activation with either bacterial lipopolysaccharide through Toll-like receptor 4 (TLR4) or leukocyte cytokine IFN-γ induces reactive phenotypes in microglia associated with morphological changes, population expansion, CD11b and CD68 up-regulation, and proinflammatory cytokine (IL-1ß, TNF-α, IL-6) and nitric oxide (NO) release. Notably, these reactive phenotypes only moderately alter intrinsic neuronal excitability and gamma oscillations (30-100 Hz), which emerge from precise synaptic communication of glutamatergic pyramidal cells and fast-spiking, parvalbumin-positive GABAergic interneurons, in local hippocampal networks. Short-term synaptic plasticity and extracellular potassium homeostasis during neural excitation, also reflecting astrocyte function, are unaffected. In contrast, the coactivation of TLR4 and IFN-γ receptors results in neuronal dysfunction and death, caused mainly by enhanced microglial inducible nitric oxide synthase (iNOS) expression and NO release, because iNOS inhibition is neuroprotective. Thus, activation of TLR4 in microglia in situ requires concomitant IFN-γ receptor signaling from peripheral immune cells, such as T helper type 1 and natural killer cells, to unleash neurotoxicity and inflammation-induced neurodegeneration. Our findings provide crucial mechanistic insight into the complex process of microglia activation, with relevance to several neurologic and psychiatric disorders.


Asunto(s)
Neuronas GABAérgicas/inmunología , Neuronas GABAérgicas/patología , Interferón gamma/inmunología , Microglía/inmunología , Enfermedades Neurodegenerativas/inmunología , Receptor Toll-Like 4/inmunología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Astrocitos/inmunología , Antígeno CD11b/metabolismo , Muerte Celular/inmunología , Células Cultivadas , Hipocampo/inmunología , Hipocampo/patología , Inflamación/inmunología , Inflamación/patología , Interferón gamma/agonistas , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Interneuronas/inmunología , Interneuronas/patología , Lipopolisacáridos/inmunología , Plasticidad Neuronal/inmunología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Ratas Wistar , Receptores de Interferón/inmunología , Receptor Toll-Like 4/agonistas , Factor de Necrosis Tumoral alfa/inmunología
15.
Neurobiol Learn Mem ; 155: 379-389, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30195050

RESUMEN

Viral infection during early stage of life influences brain development and results in several neurodevelopmental disorders such as schizophrenia, autism and behavioral abnormalities. However, the mechanism through which infection causes long-term behavioral defects is not well known. To elucidate this, we have used synthetic polyinosinic-polycytidylic acid [poly (I:C)] which acts as a dsRNA molecule and interacts with toll-like receptor-3 (TLR-3) of microglia cells to evoke the immune system, thus mimicking the viral infection. Rat pups of postnatal day (PND) 7 were infused with a single dose of poly (I:C) (5 mg/kg BW) and vehicle alone to controls. When these pups grew to 3, 6 and 12 weeks, their spatial and fear conditioning memory were impaired as assessed by Morris water maze and passive avoidance test, respectively. We checked the immune activation by staining of TNF-α in the hippocampus and observed that poly (I:C) exposure elevated the number of TNF-α positive cells immediately after 12 h of infusion in one week rat and it persisted up to postnatal age of 3 and 12 weeks. Moreover, poly (I:C) significantly decreased the binding of 3H-QNB to the cholinergic receptors in the frontal cortex and hippocampus of 3 and 6 weeks rats as compared to control but did not change significantly in 12 weeks rats. RT-PCR and immunoblotting results showed that poly (I:C) exposure upregulated the expression of memory associated genes (BDNF, Arc, EGR1) at mRNA and protein level in frontal cortex and hippocampus of 3 weeks rats as compared to control. However, long-time persistence of poly (I:C) effects significantly decreased the expression of these genes in both brain regions of 12 weeks rats. Taken together, it is evident that early life exposure to poly (I:C) has a long-term effect and impairs learning and memory, probably through TNF-α mediated neuroinflammation and alteration in the expression of memory associated genes in frontal cortex and hippocampus of rats.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/inmunología , Memoria/fisiología , Plasticidad Neuronal/genética , Plasticidad Neuronal/inmunología , Aprendizaje Espacial/fisiología , Animales , Encéfalo/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Femenino , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/inmunología , Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Masculino , Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Poli I-C/administración & dosificación , Ratas Wistar , Receptores Muscarínicos/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
16.
Ann Neurol ; 80(3): 388-400, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27399303

RESUMEN

OBJECTIVE: To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity. METHODS: One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus. RESULTS: Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity. INTERPRETATION: Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Anticuerpos/efectos de los fármacos , Región CA1 Hipocampal/efectos de los fármacos , Depresión/prevención & control , Efrina-B2/farmacología , Trastornos de la Memoria/prevención & control , Plasticidad Neuronal/efectos de los fármacos , Animales , Encefalitis Antirreceptor N-Metil-D-Aspartato/líquido cefalorraquídeo , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Anticuerpos/inmunología , Conducta Animal , Región CA1 Hipocampal/inmunología , Depresión/etiología , Depresión/inmunología , Modelos Animales de Enfermedad , Humanos , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/inmunología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/inmunología , Receptor EphB2
17.
Brain Behav Immun ; 63: 88-98, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27697456

RESUMEN

Environmental challenges to the maternal immune system during pregnancy have been associated with an increase in the frequency of neurodevelopmental disorders such as Autism Spectrum Disorders (ASD) appearing in the offspring. Microglia, the brain's resident immune-cells, are now known to be critically involved in normal brain development, shaping connections between neurons by pruning superfluous synaptic spines. Our aim was to investigate whether maternal infection during critical stages of gestation compromises the role of microglia in sculpting neuronal circuits. Using a mouse model of maternal immune activation (MIA) induced by bacterial Lipopolysaccharide (LPS), we assayed the offspring's behavior during postnatal development. Additionally, we quantified spines within the offspring's brain and assessed alterations in some molecular signals involved in pruning. LPS-induced MIA led to behavioral changes relevant to ASD in the offspring in the absence of gross neurological problems. Prenatal LPS resulted in a significant increase in the number of spines in the granule cells of the dentate gyrus, as well as a reduction in hippocampal expression of the fractalkine microglial receptor (CX3CR1), involved in mediating the pruning process in the offspring. Interestingly, these changes were only noted in the male progeny of the LPS challenged dams. These results provide an early indicator that microglial function is altered in the brain of offspring from immune challenged mothers and that the effects in the brain appear to be specific along sex lines.


Asunto(s)
Trastorno del Espectro Autista/inmunología , Plasticidad Neuronal/fisiología , Efectos Tardíos de la Exposición Prenatal/inmunología , Animales , Trastorno del Espectro Autista/metabolismo , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía , Trastornos del Neurodesarrollo/inmunología , Plasticidad Neuronal/inmunología , Neuronas , Embarazo , Complicaciones Infecciosas del Embarazo
18.
Acta Neuropathol ; 131(2): 235-246, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26724934

RESUMEN

To successfully treat Alzheimer's disease (AD), pathophysiological events in preclinical stages need to be identified. Preclinical AD refers to the stages that exhibit amyloid deposition in the brain but have normal cognitive function, which are replicated in young adult APPswe/PS1deltaE9 (deltaE9) mice. By long-term in vivo two-photon microscopy, we demonstrate impaired adaptive spine plasticity in these transgenic mice illustrated by their failure to increase dendritic spine density and form novel neural connections when housed in enriched environment (EE). Decrease of amyloid plaques by reducing BACE1 activity restores the gain of spine density upon EE in deltaE9 mice, but not the remodeling of neural networks. On the other hand, anti-inflammatory treatment with pioglitazone or interleukin 1 receptor antagonist in deltaE9 mice successfully rescues the impairments in increasing spine density and remodeling of neural networks during EE. Our data suggest that neuroinflammation disrupts experience-dependent structural plasticity of dendritic spines in preclinical stages of AD.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Espinas Dendríticas/inmunología , Neuroinmunomodulación/inmunología , Plasticidad Neuronal/inmunología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Antiinflamatorios/farmacología , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroinmunomodulación/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Pioglitazona , Células Piramidales/efectos de los fármacos , Células Piramidales/inmunología , Células Piramidales/patología , Receptores Tipo I de Interleucina-1/antagonistas & inhibidores , Receptores Tipo I de Interleucina-1/metabolismo , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/inmunología , Corteza Somatosensorial/patología , Tiazolidinedionas/farmacología
19.
Brain Behav Immun ; 57: 151-160, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27002704

RESUMEN

Environmental enrichment (EE) has been successful at rescuing the brain from a variety of early-life psychogenic stressors. However, its ability to reverse the behavioral and neural alterations induced by a prenatal maternal infection model of schizophrenia is less clear. Moreover, the specific interactions between the components (i.e. social enhancement, novelty, physical activity) of EE that lead to its success as a supportive intervention have not been adequately identified. In the current study, standard housed female Sprague-Dawley rats were administered either the inflammatory endotoxin lipopolysaccharide (LPS; 100µg/kg) or pyrogen-free saline (equivolume) on gestational day 15. On postnatal day 50, offspring were randomized into one of three conditions: EE (group housed in a large multi-level cage with novel toys, tubes and ramps), Colony Nesting (CN; socially-housed in a larger style cage), or Standard Care (SC; pair-housed in standard cages). Six weeks later we scored social engagement and performance in the object-in-place task. Afterwards hippocampus and prefrontal cortex (n=7-9) were collected and evaluated for excitatory amino acid transporter (EAAT) 1-3, brain-derived neurotrophic factor (BDNF), and neurotrophic tyrosine kinase, receptor type 2 (TrkB) gene expression (normalized to GAPDH) using qPCR methods. Overall, we show that gestational inflammation downregulates genes critical to synaptic transmission and plasticity, which may underlie the pathogenesis of neurodevelopmental disorders such as schizophrenia and autism. Additionally, we observed disruptions in both social engagement and spatial discrimination. Importantly, behavioral and neurophysiological effects were rescued in an experience dependent manner. Given the evidence that schizophrenia and autism may be associated with infection during pregnancy, these data have compelling implications for the prevention and reversibility of the consequences that follow immune activation in early in life.


Asunto(s)
Conducta Animal , Ambiente , Hipocampo/metabolismo , Inflamación , Plasticidad Neuronal , Corteza Prefrontal/metabolismo , Efectos Tardíos de la Exposición Prenatal , Conducta Social , Transmisión Sináptica , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/fisiopatología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/fisiopatología , Lipopolisacáridos/farmacología , Masculino , Plasticidad Neuronal/inmunología , Corteza Prefrontal/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/inmunología
20.
Ann Neurol ; 76(1): 108-19, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24916964

RESUMEN

OBJECTIVE: A severe but treatable form of immune-mediated encephalitis is associated with antibodies in serum and cerebrospinal fluid (CSF) against the GluN1 subunit of the N-methyl-D-aspartate receptor (NMDAR). Prolonged exposure of hippocampal neurons to antibodies from patients with anti-NMDAR encephalitis caused a reversible decrease in the synaptic localization and function of NMDARs. However, acute effects of the antibodies, fate of the internalized receptors, type of neurons affected, and whether neurons develop compensatory homeostatic mechanisms were unknown and are the focus of this study. METHODS: Dissociated hippocampal neuron cultures and rodent brain sections were used for immunocytochemical, physiological, and molecular studies. RESULTS: Patient antibodies bind to NMDARs throughout the rodent brain, and decrease NMDAR cluster density in both excitatory and inhibitory hippocampal neurons. They rapidly increase the internalization rate of surface NMDAR clusters, independent of receptor activity. This internalization likely accounts for the observed decrease in NMDAR-mediated currents, as no evidence of direct blockade was detected. Once internalized, antibody-bound NMDARs traffic through both recycling endosomes and lysosomes, similar to pharmacologically induced NMDAR endocytosis. The antibodies are responsible for receptor internalization, as their depletion from CSF abrogates these effects in hippocampal neurons. We find that although anti-NMDAR antibodies do not induce compensatory changes in glutamate receptor gene expression, they cause a decrease in inhibitory synapse density onto excitatory hippocampal neurons. INTERPRETATION: Our data support an antibody-mediated mechanism of disease pathogenesis driven by immunoglobulin-induced receptor internalization. Antibody-mediated downregulation of surface NMDARs engages homeostatic synaptic plasticity mechanisms, which may inadvertently contribute to disease progression.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Encefalitis Antirreceptor N-Metil-D-Aspartato/patología , Autoanticuerpos/sangre , Hipocampo/inmunología , Neuronas/inmunología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Encefalitis Antirreceptor N-Metil-D-Aspartato/sangre , Autoanticuerpos/líquido cefalorraquídeo , Células Cultivadas , Regulación hacia Abajo/inmunología , Hipocampo/patología , Humanos , Plasticidad Neuronal/inmunología , Neuronas/metabolismo , Neuronas/patología , Técnicas de Placa-Clamp , Ratas , Receptores de N-Metil-D-Aspartato/inmunología , Sinapsis/inmunología , Sinapsis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA