Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EMBO Rep ; 20(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30940648

RESUMEN

The bromodomain-containing protein 7 (BRD7) is a tumour suppressor protein with critical roles in cell cycle transition and transcriptional regulation. Whether BRD7 is regulated by post-translational modifications remains poorly understood. Here, we find that chemotherapy-induced DNA damage leads to the rapid degradation of BRD7 in various cancer cell lines. PARP-1 binds and poly(ADP)ribosylates BRD7, which enhances its ubiquitination and degradation through the PAR-binding E3 ubiquitin ligase RNF146. Moreover, the PARP1 inhibitor Olaparib significantly enhances the sensitivity of BRD7-positive cancer cells to chemotherapeutic drugs, while it has little effect on cells with low BRD7 expression. Taken together, our findings show that PARP1 induces the degradation of BRD7 resulting in cancer cell resistance to DNA-damaging agents. BRD7 might thus serve as potential biomarker in clinical trial for the prediction of synergistic effects between chemotherapeutic drugs and PARP inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación/efectos de los fármacos , Células A549 , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
2.
J Biochem Mol Toxicol ; 35(12): e22915, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34519134

RESUMEN

Increased levels of reactive oxygen and nitrogen species play an important role in the development and progression of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The overproduction of these highly reactive chemical species leads to DNA damage and subsequent activation of the poly(ADP-ribose)polymerase (PARP) enzyme. Several studies have demonstrated the potential use of PARP inhibitors for neuroprotection. We previously reported that the dual Src/Abl kinase inhibitor bosutinib (BOS) decreases PARP activity and acts as a chemosensitizer in cancer cells. In this study, we evaluated the neuroprotective potential of BOS with respect to its inhibitory effect on cellular poly(ADP-ribos)ylation (PARylation) using a 3-morpholinosydnonimine (SIN1)-mediated cellular toxicity model. Our data suggest that pretreatment with BOS, especially at lower doses, significantly decreased the level of SIN1-induced cellular PARylation. This regulation pattern of PARylation was found to be associated with the protective effect of BOS against SIN1 on the viability of retinoic acid-differentiated SH-SY5Y cells. Furthermore, while PARP-1 expression was decreased, phosphorylation of SAPK/JNK was not reverted at the observed neuroprotective doses of BOS. In conclusion, we suggest a novel mechanism for the neuroprotective effect of BOS involving the inhibition of cellular PARylation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Compuestos de Anilina/farmacología , Fármacos Neuroprotectores/farmacología , Nitrilos/farmacología , Poli ADP Ribosilación/efectos de los fármacos , Quinolinas/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Poli(ADP-Ribosa) Polimerasas/efectos de los fármacos , Tretinoina/farmacología
3.
Mol Biol Rep ; 47(10): 8331-8337, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33006712

RESUMEN

An effect of low-dose resveratrol treatment on lipid metabolism and pro-inflammatory processes has been studied, using an in vitro model of Non-Alcoholic-Fatty Liver Disease. The model system consisted of lipid-loaded monolayer cultures of hepatocytes (Hepa1-6) and macrophages (RAW264.7), as both cell types are present in the liver. Also a tridimensional model of hepatic spheroids has been created to mimic spatial adhesive contacts between cells. Treatment with resveratrol (5 µM, 10 µM) for 3 h caused a decrease in lipid load in all three model systems. This decrease wasn't accompanied by any changes in surface expression of lipid transporter-CD36. The response to resveratrol (RSV) was cell type- and cell environment-dependent. In both cell types an increase of the peroxisome proliferator-activated receptor-γ (PPAR-γ) protein level has been revealed. The increase of the PPAR-γ protein level appeared to be poly (ADP)-ribosylation-dependent. It has been revealed, that in the resveratrol-induced signaling pathway, leading to the decrease of intracellular lipid load, an activation of poly (ADP)-ribose polymerase should happen upstream of PPAR-γ protein expression.The decrease of lipid load isn't accompanied by changes in the surface expression of lipid transporter CD36.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/enzimología , PPAR gamma/biosíntesis , Poli ADP Ribosilación/efectos de los fármacos , Resveratrol/farmacología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Células RAW 264.7
4.
Biochemistry ; 57(4): 429-440, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29327913

RESUMEN

Poly-ADP-ribosylation (PARylation) is a protein posttranslational modification (PTM) that is critically involved in many biological processes that are linked to cell stress responses. It is catalyzed by a class of enzymes known as poly-ADP-ribose polymerases (PARPs). In particular, PARP1 is a nuclear protein that is activated upon sensing nicked DNA. Once activated, PARP1 is responsible for the synthesis of a large number of PARylated proteins and initiation of the DNA damage response mechanisms. This observation provided the rationale for developing PARP1 inhibitors for the treatment of human malignancies. Indeed, three PARP1 inhibitors (Olaparib, Rucaparib, and Niraparib) have recently been approved by the Food and Drug Administration for the treatment of ovarian cancer. Moreover, in 2017, both Olaparib and Niraparib have also been approved for the treatment of fallopian tube cancer and primary peritoneal cancer. Despite this very exciting progress in the clinic, the basic signaling mechanism that connects PARP1 to a diverse array of biological processes is still poorly understood. This is, in large part, due to the inherent technical difficulty associated with the analysis of protein PARylation, which is a low-abundance, labile, and heterogeneous PTM. The study of PARylation has been greatly facilitated by the recent advances in mass spectrometry-based proteomic technologies tailored to the analysis of this modification. In this Perspective, we discuss these breakthroughs, including their technical development, and applications that provide a global view of the many biological processes regulated by this important protein modification.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1/fisiología , Poli ADP Ribosilación , Proteómica , Transducción de Señal , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ensayos Clínicos como Asunto , Diseño de Fármacos , Activación Enzimática , Femenino , Humanos , Masculino , Espectrometría de Masas , Terapia Molecular Dirigida , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/fisiología , Neoplasias/tratamiento farmacológico , Poli ADP Ribosilación/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Transducción de Señal/efectos de los fármacos
5.
J Appl Toxicol ; 37(5): 573-582, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27813108

RESUMEN

Long-term exposure to arsenic has been known to induce neoplastic initiation and progression in several organs; however, the role of arsenic (As2 O3 ) in oxidative stress-mediated DNA damage remains elusive. One of the immediate cellular responses to DNA damage is poly(ADP-ribosyl)ation (PARylation), which mediates DNA repair and enhances cell survival. In this study, we found that oxidative stress (H2 O2 )-induced PARylation was suppressed by As2 O3 exposure in different human cancer cells. Moreover, As2 O3 treatment promoted H2 O2 -induced DNA damage and apoptosis, leading to increased cell death. We found that N-ethylmaleimide (NEM), an organic compound derived from maleic acid, could reverse As2 O3 -mediated effects, thus enhancing PARylation with attenuated cell death and increased cell survival. Pharmacologic inhibition of glutathione with l-buthionine-sulfoximine blocked the antagonistic effect of NEM on As2 O3 , thereby continuing As2 O3 -mediated suppression of PARylation and causing DNA damage. Our findings identify NEM as a potential antidote against As2 O3 -mediated DNA damage in a glutathione-dependent manner. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Antídotos/farmacología , Arsenicales/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Etilmaleimida/farmacología , Estrés Oxidativo/efectos de los fármacos , Óxidos/antagonistas & inhibidores , Poli ADP Ribosilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Trióxido de Arsénico , Butionina Sulfoximina/farmacología , Línea Celular Tumoral , Ensayo de Unidades Formadoras de Colonias , Ensayo Cometa , Daño del ADN , Reparación del ADN/efectos de los fármacos , Etilmaleimida/antagonistas & inhibidores , Humanos , Óxidos/toxicidad
6.
Biochem Pharmacol ; 227: 116445, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053638

RESUMEN

The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/ß-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.


Asunto(s)
Transición Epitelial-Mesenquimal , Hepatocitos , Tanquirasas , Humanos , Tanquirasas/antagonistas & inhibidores , Tanquirasas/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/fisiología , Poli ADP Ribosilación/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fenantrenos/farmacología
7.
Chem Biol Interact ; 401: 111186, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39116916

RESUMEN

Studies on the molecular mechanisms of heavy metal toxicity in invertebrate reproduction are limited. Given that PARP-catalysed ADP-ribosylation is also involved in counteracting heavy metal toxicity and maintaining genomic integrity, and that PARylation is implicated in chromatin remodelling but its role in sperm chromatin remains to be elucidated, we investigated the effects of chromium(VI) at 1, 10 and 100 nM on the reproductive health of Mytilus galloprovincialis. The damage to the gonads was assessed by morphological analyses and the damage indices PARP and É£H2A.X were measured. Changes in the binding of protamine-like (PL) to DNA and the possibility of poly(ADP-ribosyl)ation of PL proteins were also investigated. Gonadal chromium accumulation and morphological damage were found, especially when the mussels were exposed to the highest dose of chromium(VI). In addition, the maximum expression of gonadal É£H2A.X and PARP were obtained at 100 and 10 nM Cr(VI), respectively. Interestingly, for the first time in all exposed conditions, poly(ADP)-ribosylation was detected on PL-II, which, together with PL-III and PL-IV, are the major nuclear basic proteins of Mytilus galloprovincialis sperm chromatin. Since PL-II is involved in the final high level of sperm chromatin compaction, this post-translational modification altered the binding of the PL protein to DNA, favouring the action of micrococcal nuclease on sperm chromatin. This study provides new insights into the effects of chromium(VI) on Mytilus galloprovincialis reproductive system and proposes a molecular mechanism hypothesis describing the toxic effects of this metal on PL-DNA binding, sperm chromatin and gonads.


Asunto(s)
Cromo , Mytilus , Protaminas , Animales , Mytilus/efectos de los fármacos , Mytilus/metabolismo , Masculino , Cromo/toxicidad , Protaminas/metabolismo , Poli ADP Ribosilación/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Histonas/metabolismo , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Reproducción/efectos de los fármacos , ADN/metabolismo , ADN/efectos de los fármacos
8.
Nat Commun ; 11(1): 2174, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358582

RESUMEN

Poly-ADP-ribosylation (PARylation) is a fully reversible post-translational modification with key roles in cellular physiology. Due to the multi-domain structure of poly(ADP-ribose) polymerase-1 (PARP1) and the highly dynamic nature of the PARylation reaction, studies on the biochemical mechanism and structural dynamics remain challenging. Here, we report label-free, time-resolved monitoring of PARP1-dependent PARylation using ATR-FTIR spectroscopy. This includes PARP1 activation by binding to DNA strand break models, NAD+ substrate binding, PAR formation, and dissociation of automodified PARP1 from DNA. Analyses of PARP1 activation at different DNA models demonstrate a strong positive correlation of PARylation and PARP1 dissociation, with the strongest effects observed for DNA nicks and 3' phosphorylated ends. Moreover, by examining dynamic structural changes of PARP1, we reveal changes in the secondary structure of PARP1 induced by NAD+ and PARP inhibitor binding. In summary, this approach enables holistic and dynamic insights into PARP1-dependent PARylation with molecular and temporal resolution.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación/genética , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Humanos , Cinética , NAD/análogos & derivados , NAD/biosíntesis , NAD/metabolismo , Oligonucleótidos/química , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli ADP Ribosilación/efectos de los fármacos , Poli ADP Ribosilación/fisiología , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier/métodos
9.
Cell Rep ; 32(5): 107985, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32755579

RESUMEN

PARP inhibitors (PARPi) cause synthetic lethality in BRCA-deficient tumors. Whether specific vulnerabilities to PARPi exist beyond BRCA mutations and related defects in homology-directed repair (HDR) is not well understood. Here, we identify the ubiquitin E3 ligase TRIP12 as negative regulator of PARPi sensitivity. We show that TRIP12 controls steady-state PARP1 levels and limits PARPi-induced cytotoxic PARP1 trapping. Upon loss of TRIP12, elevated PARPi-induced PARP1 trapping causes increased DNA replication stress, DNA damage, cell cycle arrest, and cell death. Mechanistically, we demonstrate that TRIP12 binds PARP1 via a central PAR-binding WWE domain and, using its carboxy-terminal HECT domain, catalyzes polyubiquitylation of PARP1, triggering proteasomal degradation and preventing supra-physiological PARP1 accumulation. Further, in cohorts of breast and ovarian cancer patients, PARP1 abundance is negatively correlated with TRIP12 expression. We thus propose TRIP12 as regulator of PARP1 stability and PARPi-induced PARP trapping, with potential implications for PARPi sensitivity and resistance.


Asunto(s)
Proteínas Portadoras/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Línea Celular Tumoral , Daño del ADN , Regulación hacia Abajo/efectos de los fármacos , Células HEK293 , Humanos , Modelos Biológicos , Mutágenos/toxicidad , Neoplasias/patología , Poli ADP Ribosilación/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/química , Ubiquitinación/efectos de los fármacos
10.
Biochem Pharmacol ; 167: 58-63, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31034795

RESUMEN

Abnormal protein aggregation is a common pathological feature of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Protein posttranslational modifications (PTMs) play a crucial regulatory role in the formation of pathologic aggregation. Among the known PTMs involved in neurodegeneration, poly(ADP-ribosylation) (PARylation) has emerged with promising therapeutic potentials of the use of poly(ADP-ribose) (PAR) polymerase (PARP) inhibitors. In this review, we describe the mounting evidence that abnormal PARP activation is involved in various neurodegenerative diseases, and discuss the underpinning mechanisms with a focus on the recent findings that PARylation affects liquid-liquid phase separation and aggregation of amyloid proteins. We hope this review will stimulate further investigation of the unknown functions of PARylation and promote the development of more effective therapeutic agents in treating neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Poli ADP Ribosilación/fisiología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Agregación Patológica de Proteínas/metabolismo , Animales , Daño del ADN/fisiología , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Poli ADP Ribosilación/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/patología
11.
Mutat Res Rev Mutat Res ; 780: 82-91, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31395352

RESUMEN

Poly(ADP-ribosyl)ation (aka PARylation) is a unique protein post-translational modification (PTM) first described over 50 years ago. PARylation regulates a number of biological processes including chromatin remodeling, the DNA damage response (DDR), transcription, apoptosis, and mitosis. The subsequent discovery of poly(ADP-ribose) polymerase-1 (PARP-1) catalyzing DNA-dependent PARylation spearheaded the field of DDR. The expanding knowledge about the poly ADP-ribose (PAR) recognition domains prompted the discovery of novel DDR factors and revealed crosstalk with other protein PTMs including phosphorylation, ubiquitination, methylation and acetylation. In this review, we highlight the current knowledge on PAR-regulated DDR, PAR recognition domain, and PARP inhibition in cancer therapy.


Asunto(s)
Daño del ADN/genética , Neoplasias/genética , Poli ADP Ribosilación/genética , Poli Adenosina Difosfato Ribosa/genética , Animales , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Humanos , Neoplasias/tratamiento farmacológico , Poli ADP Ribosilación/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética
12.
Nat Commun ; 10(1): 5654, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827085

RESUMEN

Poly(ADP-ribose)ylation (PARylation) by PAR polymerase 1 (PARP1) and PARylation removal by poly(ADP-ribose) glycohydrolase (PARG) critically regulate DNA damage responses; yet, conflicting reports obscure PARG biology and its impact on cancer cell resistance to PARP1 inhibitors. Here, we found that PARG expression is upregulated in many cancers. We employed chemical library screening to identify and optimize methylxanthine derivatives as selective bioavailable PARG inhibitors. Multiple crystal structures reveal how substituent positions on the methylxanthine core dictate binding modes and inducible-complementarity with a PARG-specific tyrosine clasp and arginine switch, supporting inhibitor specificity and a competitive inhibition mechanism. Cell-based assays show selective PARG inhibition and PARP1 hyperPARylation. Moreover, our PARG inhibitor sensitizes cells to radiation-induced DNA damage, suppresses replication fork progression and impedes cancer cell survival. In PARP inhibitor-resistant A172 glioblastoma cells, our PARG inhibitor shows comparable killing to Nedaplatin, providing further proof-of-concept that selectively inhibiting PARG can impair cancer cell survival.


Asunto(s)
Replicación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Neoplasias/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Humanos , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/fisiopatología , Poli ADP Ribosilación/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Bibliotecas de Moléculas Pequeñas/química
13.
Nat Commun ; 10(1): 4898, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653858

RESUMEN

Osteoarthritis (OA) is a prevalent degenerative disease, which involves progressive and irreversible destruction of cartilage matrix. Despite efforts to reconstruct cartilage matrix in osteoarthritic joints, it has been a difficult task as adult cartilage exhibits marginal repair capacity. Here we report the identification of tankyrase as a regulator of the cartilage anabolism axis based on systems-level factor analysis of mouse reference populations. Tankyrase inhibition drives the expression of a cartilage-signature matrisome and elicits a transcriptomic pattern that is inversely correlated with OA progression. Furthermore, tankyrase inhibitors ameliorate surgically induced OA in mice, and stem cell transplantation coupled with tankyrase knockdown results in superior regeneration of cartilage lesions. Mechanistically, the pro-regenerative features of tankyrase inhibition are mainly triggered by uncoupling SOX9 from a poly(ADP-ribosyl)ation (PARylation)-dependent protein degradation pathway. Our findings provide insights into the development of future OA therapies aimed at reconstruction of articular cartilage.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Condrocitos/metabolismo , Matriz Extracelular/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas , Osteoartritis de la Rodilla/metabolismo , Poli ADP Ribosilación/efectos de los fármacos , Factor de Transcripción SOX9/efectos de los fármacos , Tanquirasas/antagonistas & inhibidores , Animales , Cartílago Articular/metabolismo , Cartílago Articular/fisiología , Simulación por Computador , Inhibidores Enzimáticos , Matriz Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis de la Rodilla/genética , Poli ADP Ribosilación/fisiología , Ratas , Regeneración/genética , Factor de Transcripción SOX9/metabolismo , Tanquirasas/genética , Tanquirasas/metabolismo
14.
Nat Commun ; 10(1): 693, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741937

RESUMEN

ADP-ribosylation is a unique posttranslational modification catalyzed by poly(ADP-ribose) polymerases (PARPs) using NAD+ as ADP-ribose donor. PARPs play an indispensable role in DNA damage repair and small molecule PARP inhibitors have emerged as potent anticancer drugs. However, to date, PARP inhibitor treatment has been restricted to patients with BRCA1/2 mutation-associated breast and ovarian cancer. One of the major challenges to extend the therapeutic potential of PARP inhibitors to other cancer types is the absence of predictive biomarkers. Here, we show that ovarian cancer cells with higher level of NADP+, an NAD+ derivative, are more sensitive to PARP inhibitors. We demonstrate that NADP+ acts as a negative regulator and suppresses ADP-ribosylation both in vitro and in vivo. NADP+ impairs ADP-ribosylation-dependent DNA damage repair and sensitizes tumor cell to chemically synthesized PARP inhibitors. Taken together, our study identifies NADP+ as an endogenous PARP inhibitor that may have implications in cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN/efectos de los fármacos , NADP/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/efectos de los fármacos , ADP-Ribosilación , Animales , Biomarcadores , Línea Celular Tumoral/efectos de los fármacos , Reparación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Femenino , Humanos , Ratones , NAD/farmacología , Neoplasias Ováricas , Fosfotransferasas (Aceptor de Grupo Alcohol)/efectos de los fármacos , Poli ADP Ribosilación/efectos de los fármacos , ARN Helicasas/genética
15.
Cancer Cell ; 33(6): 1078-1093.e12, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29894693

RESUMEN

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have recently entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, drug resistance is a clinical hurdle, and we poorly understand how cancer cells escape the deadly effects of PARPi without restoring the HR pathway. By combining genetic screens with multi-omics analysis of matched PARPi-sensitive and -resistant Brca2-mutated mouse mammary tumors, we identified loss of PAR glycohydrolase (PARG) as a major resistance mechanism. We also found the presence of PARG-negative clones in a subset of human serous ovarian and triple-negative breast cancers. PARG depletion restores PAR formation and partially rescues PARP1 signaling. Importantly, PARG inactivation exposes vulnerabilities that can be exploited therapeutically.


Asunto(s)
Glicósido Hidrolasas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Mutaciones Letales Sintéticas , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/genética , Humanos , Ratones de la Cepa 129 , Ratones Noqueados , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación/efectos de los fármacos
16.
Br J Pharmacol ; 174(24): 4611-4636, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28910490

RESUMEN

The Wnt/ß-catenin signalling pathway is pivotal for stem cell function and the control of cellular differentiation, both during embryonic development and tissue homeostasis in adults. Its activity is carefully controlled through the concerted interactions of concentration-limited pathway components and a wide range of post-translational modifications, including phosphorylation, ubiquitylation, sumoylation, poly(ADP-ribosyl)ation (PARylation) and acetylation. Regulation of Wnt/ß-catenin signalling by PARylation was discovered relatively recently. The PARP tankyrase PARylates AXIN1/2, an essential central scaffolding protein in the ß-catenin destruction complex, and targets it for degradation, thereby fine-tuning the responsiveness of cells to the Wnt signal. The past few years have not only seen much progress in our understanding of the molecular mechanisms by which PARylation controls the pathway but also witnessed the successful development of tankyrase inhibitors as tool compounds and promising agents for the therapy of Wnt-dependent dysfunctions, including colorectal cancer. Recent work has hinted at more complex roles of tankyrase in Wnt/ß-catenin signalling as well as challenges and opportunities in the development of tankyrase inhibitors. Here we review some of the latest advances in our understanding of tankyrase function in the pathway and efforts to modulate tankyrase activity to re-tune Wnt/ß-catenin signalling in colorectal cancer cells. LINKED ARTICLES: This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Poli ADP Ribosilación , Tanquirasas/metabolismo , Vía de Señalización Wnt , Animales , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Inhibidores Enzimáticos/farmacología , Humanos , Poli ADP Ribosilación/efectos de los fármacos , Tanquirasas/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos
17.
Cell Death Differ ; 23(12): 2007-2018, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27689873

RESUMEN

AMPK is a central energy sensor linking extracellular milieu fluctuations with the autophagic machinery. In the current study we uncover that Poly(ADP-ribosyl)ation (PARylation), a post-translational modification (PTM) of proteins, accounts for the spatial and temporal regulation of autophagy by modulating AMPK subcellular localisation and activation. More particularly, we show that the minority AMPK pool needs to be exported to the cytosol in a PARylation-dependent manner for optimal induction of autophagy, including ULK1 phosphorylation and mTORC1 inactivation. PARP-1 forms a molecular complex with AMPK in the nucleus in non-starved cells. In response to nutrient deprivation, PARP-1 catalysed PARylation, induced the dissociation of the PARP-1/AMPK complex and the export of free PARylated nuclear AMPK to the cytoplasm to activate autophagy. PARP inhibition, its silencing or the expression of PARylation-deficient AMPK mutants prevented not only the AMPK nuclear-cytosolic export but also affected the activation of the cytosolic AMPK pool and autophagosome formation. These results demonstrate that PARylation of AMPK is a key early signal to efficiently convey extracellular nutrient perturbations with downstream events needed for the cell to optimize autophagic commitment before autophagosome formation.


Asunto(s)
Adenilato Quinasa/metabolismo , Autofagia , Núcleo Celular/metabolismo , Poli ADP Ribosilación , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adenilato Quinasa/química , Secuencia de Aminoácidos , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Núcleo Celular/efectos de los fármacos , Citosol/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Biológicos , Poli ADP Ribosilación/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Redox Biol ; 2: 978-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25460733

RESUMEN

Oxidative stress can cause DNA breaks which induce activation of the DNA nick sensor enzyme poly(ADP-ribose) polymerase-1 (PARP-1), part of the 17 member PARP enzyme family. PARP-1 modifies target proteins by attaching to them several NAD-derived ADP-ribose units forming poly(ADP-ribose) (PAR) polymers. PARylation controls many cellular processes while intense PARylation may also lead to cell death by various mechanisms. Here we summarize the modes of activation, inhibitors and modulators of PARP-1 and review the cellular functions regulated by the enzyme.


Asunto(s)
Estrés Oxidativo/fisiología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación/fisiología , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Humanos , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli ADP Ribosilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA