Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138580

RESUMEN

Doxorubicin (DOX), an anthracycline-based chemotherapeutic agent, is widely used to treat various types of cancer; however, prolonged treatment induces cardiomyotoxicity. Although studies have been performed to overcome DOX-induced cardiotoxicity (DICT), no effective method is currently available. This study investigated the effects and potential mechanisms of Poncirus trifoliata aqueous extract (PTA) in DICT. Changes in cell survival were assessed in H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells. The C57BL/6 mice were treated with DOX to induce DICT in vivo, and alterations in electrophysiological characteristics, serum biomarkers, and histological features were examined. The PTA treatment inhibited DOX-induced decrease in H9c2 cell viability but did not affect the MDA-MB-231 cell viability. Additionally, the PTA restored the abnormal heart rate, R-R interval, QT interval, and ST segment and inhibited the decrease in serum cardiac and hepatic toxicity indicators in the DICT model. Moreover, the PTA administration protected against myocardial fibrosis and apoptosis in the heart tissue of mice with DICT. PTA treatment restored DOX-induced decrease in the expression of NAD(P)H dehydrogenase quinone acceptor oxidoreductase 1 in a PTA concentration-dependent manner. In conclusion, the PTA inhibitory effect on DICT is attributable to its antioxidant properties, suggesting the potential of PTA as a phytotherapeutic agent for DICT.


Asunto(s)
Miocitos Cardíacos , Poncirus , Ratas , Ratones , Humanos , Animales , NAD/metabolismo , Poncirus/metabolismo , Regulación hacia Arriba , Estrés Oxidativo , Ratones Endogámicos C57BL , Doxorrubicina/toxicidad , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Oxidorreductasas/metabolismo , Quinonas/farmacología
2.
New Phytol ; 235(6): 2331-2349, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35695205

RESUMEN

Invertase (INV)-mediated sucrose (Suc) hydrolysis, leading to the irreversible production of glucose (Glc) and fructose (Frc), plays an essential role in abiotic stress tolerance of plants. However, the regulatory network associated with the Suc catabolism in response to cold environment remains largely elusive. Herein, the cold-induced alkaline/neutral INV gene PtrA/NINV7 of trifoliate orange (Poncirus trifoliata (L.) Raf.) was shown to function in cold tolerance via mediating the Suc hydrolysis. Meanwhile, a nuclear matrix-associated region containing A/T-rich sequences within its promoter was indispensable for the cold induction of PtrA/NINV7. Two AT-Hook Motif Containing Nuclear Localized (AHL) proteins, PtrAHL14 and PtrAHL17, were identified as upstream transcriptional activators of PtrA/NINV7 by interacting with the A/T-rich motifs. PtrAHL14 and PtrAHL17 function positively in the cold tolerance by modulating PtrA/NINV7-mediated Suc catabolism. Furthermore, both PtrAHL14 and PtrAHL17 could form homo- and heterodimers between each other, and interacted with two histone acetyltransferases (HATs), GCN5 and TAF1, leading to elevated histone3 acetylation level under the cold stress. Taken together, our findings unraveled a new cold-responsive signaling module (AHL14/17-HATs-A/NINV7) for orchestration of Suc catabolism and cold tolerance, which shed light on the molecular mechanisms underlying Suc catabolism catalyzed by A/NINVs under cold stress.


Asunto(s)
Citrus , Poncirus , Citrus/genética , Frío , Respuesta al Choque por Frío/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poncirus/genética , Poncirus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sacarosa/metabolismo , beta-Fructofuranosidasa/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499381

RESUMEN

Drought limits citrus yield and fruit quality worldwide. The basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in plant response to drought stress. However, few bHLH TFs related to drought response have been functionally characterized in citrus. In this study, a bHLH family gene, named PtrbHLH66, was cloned from trifoliate orange. PtrbHLH66 contained a highly conserved bHLH domain and was clustered closely with bHLH66 homologs from other plant species. PtrbHLH66 was localized to the nucleus and had transcriptional activation activity. The expression of PtrbHLH66 was significantly induced by polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments. Ectopic expression of PtrbHLH66 promoted the seed germination and root growth, increased the proline and ABA contents and the activities of antioxidant enzymes, but reduced the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) under drought stress, resulting in enhanced drought tolerance of transgenic Arabidopsis. In contrast, silencing the PtrbHLH66 homolog in lemon plants showed the opposite effects. Furthermore, under drought stress, the transcript levels of 15 genes involved in ABA biosynthesis, proline biosynthesis, ROS scavenging and drought response were obviously upregulated in PtrbHLH66 ectopic-expressing Arabidopsis but downregulated in PtrbHLH66 homolog silencing lemon. Thus, our results suggested that PtrbHLH66 acted as a positive regulator of plant drought resistance by regulating root growth and ROS scavenging.


Asunto(s)
Arabidopsis , Poncirus , Arabidopsis/metabolismo , Poncirus/genética , Poncirus/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Resistencia a la Sequía , Estrés Fisiológico/genética , Ácido Abscísico/metabolismo , Sequías , Prolina/metabolismo
4.
J Integr Plant Biol ; 64(12): 2327-2343, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36218272

RESUMEN

Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.


Asunto(s)
Poncirus , Poncirus/genética , Poncirus/metabolismo , Tetraploidía , Metilación , Ácidos Grasos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Frío
5.
BMC Plant Biol ; 21(1): 559, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34823468

RESUMEN

BACKGROUND: Sucrose (Suc) hydrolysis is directly associated with plants tolerance to multiple abiotic stresses. Invertase (INV) enzymes irreversibly catalyze Suc degradation to produce glucose (Glc) and fructose (Frc). However, genome-wide identification and function of individual members of the INV gene family in Poncirus trifoliata or its Citrus relatives in response to abiotic stresses are not fully understood. RESULTS: In this report, fourteen non-redundant PtrINV family members were identified in P. trifoliata including seven alkaline/neutral INV genes (PtrA/NINV1-7), two vacuolar INV genes (PtrVINV1-2), and five cell wall INV isoforms (PtrCWINV1-5). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of PtrINVs. In addition, expression analysis of INV genes during several abiotic stresses in various tissues indicated the central role of A/NINV7 among INV family members in response to abiotic stresses. Furthermore, our data demonstrated that high accumulation of Suc, Glc, Frc and total sugar contents were directly correlated with the elevated activities of soluble INV enzymes in the cold-tolerant P. trifoliata, C. ichangensis and C. sinensis, demonstrating the potential role of soluble INV enzymes for the cold tolerance of Citrus. CONCLUSIONS: This work offered a framework for understanding the physiological role of INV genes and laid a foundation for future functional studies of these genes in response to abiotic stresses.


Asunto(s)
Adaptación Fisiológica/genética , Citrus/genética , Citrus/metabolismo , Frío , Poncirus/genética , Poncirus/metabolismo , Sacarosa/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Familia de Multigenes , Filogenia
6.
New Phytol ; 229(5): 2730-2750, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33131086

RESUMEN

Glycine betaine (GB) is known to accumulate in plants exposed to cold, but the underlying molecular mechanisms and associated regulatory network remain unclear. Here, we demonstrated that PtrMYC2 of Poncirus trifoliata integrates the jasmonic acid (JA) signal to modulate cold-induced GB accumulation by directly regulating PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrBADH-l was identified based on transcriptome and expression analysis in P. trifoliata. Overexpression and VIGS (virus-induced gene silencing)-mediated knockdown showed that PtrBADH-l plays a positive role in cold tolerance and GB synthesis. Yeast one-hybrid library screening using PtrBADH-l promoter as baits unraveled PtrMYC2 as an interacting candidate. PtrMYC2 was confirmed to directly bind to two G-box cis-acting elements within PtrBADH-l promoter and acts as a transcriptional activator. In addition, PtrMYC2 functions positively in cold tolerance through modulation of GB synthesis by regulating PtrBADH-l expression. Interestingly, we found that GB accumulation under cold stress was JA-dependent and that PtrMYC2 orchestrates JA-mediated PtrBADH-l upregulation and GB accumulation. This study sheds new light on the roles of MYC2 homolog in modulating GB synthesis. In particular, we propose a transcriptional regulatory module PtrMYC2-PtrBADH-l to advance the understanding of molecular mechanisms underlying the GB accumulation under cold stress.


Asunto(s)
Betaína Aldehído Deshidrogenasa , Poncirus , Betaína , Betaína Aldehído Deshidrogenasa/genética , Betaína Aldehído Deshidrogenasa/metabolismo , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Poncirus/genética , Poncirus/metabolismo
7.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630273

RESUMEN

Jasmonic acid (JA) plays a crucial role in various biological processes including development, signal transduction and stress response. Allene oxide synthase (AOS) catalyzing (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT) to an unstable allene oxide is involved in the first step of JA biosynthesis. Here, we isolated the PtAOS1 gene and its promoter from trifoliate orange (Poncirus trifoliata). PtAOS1 contains a putative chloroplast targeting sequence in N-terminal and shows relative to pistachio (Pistacia vera) AOS. A number of stress-, light- and hormone-related cis-elements were found in the PtAOS1 promoter which may be responsible for the up-regulation of PtAOS1 under drought and JA treatments. Transient expression in tobacco (Nicotiana benthamiana) demonstrated that the P-532 (-532 to +1) fragment conferring drive activity was a core region in the PtAOS1 promoter. Using yeast one-hybrid, three novel proteins, PtDUF886, PtDUF1685 and PtRAP2.4, binding to P-532 were identified. The dual luciferase assay in tobacco illustrated that all three transcription factors could enhance PtAOS1 promoter activity. Genes PtDUF1685 and PtRAP2.4 shared an expression pattern which was induced significantly by drought stress. These findings should be available evidence for trifoliate orange responding to drought through JA modulation.


Asunto(s)
Oxidorreductasas Intramoleculares/genética , Poncirus/genética , Estrés Fisiológico/genética , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Oxidorreductasas Intramoleculares/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Poncirus/metabolismo , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
8.
Plant Mol Biol ; 101(6): 551-560, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31621003

RESUMEN

KEY MESSAGE: At least eight MGT genes were identified in citrus and PtrMGT5 plays important role in maintaining Mg homeostasis in citrus by getting involved in the Mg absorption and transport. Magnesium (Mg) is an essential macronutrient for plant growth and development, and the magnesium transporter (MGT) genes participate in mediate Mg2+ uptake, translocation and sequestration into cellular storage compartments. Although several MGT genes have been characterized in various plant species, a comprehensive analysis of the MGT gene family in citrus is still uncharacterized. In this study, eight PtrMGT genes were identified through genome-wide analyses. Phylogenetic analyses revealed that PtrMGT genes were classified into five distinct subfamilies. A quantitative RT-PCR analysis showed that eight PtrMGT genes were expressed in all of the detected tissues and they mainly expressed in the vegetative organs. Expression analyses revealed the PtrMGT genes responded to various Mg deficiency stresses, including absolute Mg deficiency and antagonistic Mg deficiency which caused by low pH or Al toxicity. PtrMGT5, which localizes to the plasma membrane and was transcriptionally active, was functionally characterized. PtrMGT5 overexpression considerably enhanced absolute Mg deficiency and antagonistic Mg deficiency tolerance in transgenic Arabidopsis plants, which was accompanied by increased fresh weight and Mg content, whereas opposite changes were observed when PtrMGT5 homolog in Valencia Orange callus was knocked down. Taken together, PtrMGT5 plays important role in maintaining Mg homeostasis in citrus by getting involved in the Mg absorption and transport.


Asunto(s)
Magnesio/metabolismo , Poncirus/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Deficiencia de Magnesio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poncirus/genética
9.
J Exp Bot ; 70(10): 2759-2771, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30840066

RESUMEN

Neohesperidosides are disaccharides that are present in some flavonoids and impart a bitter taste, which can significantly affect the commercial value of citrus fruits. In this study, we identified three flavonoid-7-O-di-glucosyltransferase (dGlcT) genes closely related to 1,2-rhamnosyltransferase (1,2RhaT) in citrus genomes. However, only 1,2RhaT was directly linked to the accumulation of neohesperidoside, as demonstrated by association analysis of 50 accessions and co-segregation analysis of an F1 population derived from Citrus reticulata × Poncirus trifoliata. In transgenic tobacco BY2 cells, over-expression of CitdGlcTs resulted in flavonoid-7-O-glucosides being catalysed into bitterless flavonoid-7-O-di-glucosides, whereas over-expression of Cit1,2RhaT converted the same substrate into bitter-tasting flavonoid-7-O-neohesperidoside. Unlike 1,2RhaT, during citrus fruit development the dGlcTs showed an opposite expression pattern to CHS and CHI, two genes encoding rate-limiting enzymes of flavonoid biosynthesis. An uncoupled availability of dGlcTs and substrates might result in trace accumulation of flavonoid-7-O-di-glucosides in the fruit of C. maxima (pummelo). Past human selection of the deletion and functional mutation of 1,2RhaT has led step-by-step to the evolution of the flavor-related metabolic network in citrus. Our research provides the basis for potentially improving the taste in citrus fruit through manipulation of the network by knocking-out 1,2RhaT or by enhancing the expression of dGlcT using genetic transformation.


Asunto(s)
Citrus/metabolismo , Flavonoides/metabolismo , Frutas/metabolismo , Poncirus/metabolismo , Citrus/enzimología , Citrus/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genes de Plantas , Hibridación Genética , Poncirus/enzimología , Poncirus/crecimiento & desarrollo
10.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683503

RESUMEN

Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. As a dominant abiotic stress factor in soil, boron (B) deficiency stress has impacted the growth and development of citrus in the red soil region of southern China. In the present work, we performed a genome-wide identification and characterization of lncRNAs in response to B deficiency stress in the leaves of trifoliate orange (Poncirus trifoliata), an important rootstock of citrus. A total of 2101 unique lncRNAs and 24,534 mRNAs were predicted. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were performed for a total of 16 random mRNAs and lncRNAs to validate their existence and expression patterns. Expression profiling of the leaves of trifoliate orange under B deficiency stress identified 729 up-regulated and 721 down-regulated lncRNAs, and 8419 up-regulated and 8395 down-regulated mRNAs. Further analysis showed that a total of 84 differentially expressed lncRNAs (DELs) were up-regulated and 31 were down-regulated, where the number of up-regulated DELs was 2.71-fold that of down-regulated. A similar trend was also observed in differentially expressed mRNAs (DEMs, 4.21-fold). Functional annotation of these DEMs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and the results demonstrated an enrichment of the categories of the biosynthesis of secondary metabolites (including phenylpropanoid biosynthesis/lignin biosynthesis), plant hormone signal transduction and the calcium signaling pathway. LncRNA target gene enrichment identified several target genes that were involved in plant hormones, and the expression of lncRNAs and their target genes was significantly influenced. Therefore, our results suggest that lncRNAs can regulate the metabolism and signal transduction of plant hormones, which play an important role in the responses of citrus plants to B deficiency stress. Co-expression network analysis indicated that 468 significantly differentially expressed genes may be potential targets of 90 lncRNAs, and a total of 838 matched lncRNA-mRNA pairs were identified. In summary, our data provides a rich resource of candidate lncRNAs and mRNAs, as well as their related pathways, thereby improving our understanding of the role of lncRNAs in response to B deficiency stress, and in symptom formation caused by B deficiency in the leaves of trifoliate orange.


Asunto(s)
Boro/metabolismo , Genoma de Planta/genética , Hojas de la Planta/genética , Poncirus/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Microscopía Electrónica , Reguladores del Crecimiento de las Plantas/biosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Poncirus/metabolismo , Poncirus/ultraestructura , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
11.
J Integr Plant Biol ; 61(10): 1099-1111, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30450833

RESUMEN

Citrus canker, caused by Xanthomonas axonopodis pv. citri ('Xac'), is an important quarantine disease in citrus crops. Arbuscular mycorrhizal fungi (AMF) form symbiotic interactions with host plants and further affect their disease resistance, possibly by modulating the activity of salicylic acid (SA), a key phytohormone in disease resistance. Common mycorrhizal networks (CMNs) can interconnect plants, but it is not yet clear whether CMNs promote resistance to citrus canker and, if so, whether SA signaling is involved in this process. To test this possibility, we used a two-chambered rootbox to establish CMNs between trifoliate orange (Poncirus trifoliata) seedlings in chambers inoculated (treated) or not (neighboring) with the AMF, Paraglomus occultum. A subset of the AMF-inoculated seedlings were also inoculated with Xac (+AMF+Xac). At 2 d post-inoculation (dpi), compared with the +AMF-Xac treatment, neighboring seedlings in +AMF+Xac treatment had lower expression levels of the SA biosynthetic genes, PtPAL, PtEPS1, and PtPBS3, but higher SA levels, which attributed to the upregulation of PtPAL and PtPBS3 in treated seedlings and the transfer of SA, via CMNs, to the neighboring seedlings. At 4 dpi, the pathogenesis-related (PR) protein genes, PtPR1, PtPR4, and PtPR5, and the transcriptional regulatory factor gene, PtNPR1, were activated in neighboring seedlings of +AMF+Xac treatment. At 9 dpi, root phenylalanine ammonia-lyase activity and total soluble phenol and lignin concentrations increased in neighboring seedlings of +AMF+Xac treatment, likely due to the linkage and signal transfer, via CMNs. These findings support the hypothesis that CMNs transfer the SA signal from infected to neighboring healthy seedlings, to activate defense responses and affording protection to neighboring plants against citrus canker infection.


Asunto(s)
Poncirus/metabolismo , Poncirus/microbiología , Ácido Salicílico/metabolismo , Xanthomonas axonopodis/patogenicidad
12.
Ecotoxicol Environ Saf ; 153: 107-115, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29425841

RESUMEN

Aluminum (Al) toxicity is a major restriction for crops production on acidic soils. The primary symptom of aluminum toxicity is visible in the roots of plants. Recently, several studies reported the alleviation of Al toxicity by the application of Boron (B), however, the information how B alleviates Al toxicity is not well understood. Thus, we investigated the ameliorative response of B on Al-induced growth inhibition, oxidative damages, and variations in the cell wall components in trifoliate orange roots. The results indicated that plants under Al stress experienced a substantial decrement in root length and overall plant growth. The supply of B improved the root elongation by eliminating oxidative stress, membrane peroxidation, membrane leakage, and cell death produced under Al toxicity. Moreover, accumulation of Al on the cell wall and alteration in the cell wall components might be one of the causes resulting in the quick inhibition of root elongation under B-starvation circumstances by providing susceptible negative charges on pectin matrix for binding of Al. The results provide a useful understanding of the insight into mechanisms of B-induced mitigation of Al toxicity especially in the trifoliate orange that might be helpful in the production of crops on acidic soils.


Asunto(s)
Aluminio/toxicidad , Boro/farmacología , Estrés Oxidativo/efectos de los fármacos , Poncirus/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , China , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Poncirus/crecimiento & desarrollo , Poncirus/metabolismo , Suelo/química
13.
Plant Mol Biol ; 93(6): 623-640, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28160166

RESUMEN

Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA ß-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.


Asunto(s)
Ácido Abscísico/metabolismo , Citrus sinensis/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Poncirus/metabolismo , Ácido Abscísico/genética , Citrus sinensis/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Sequías , Inundaciones , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Poncirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico
14.
BMC Plant Biol ; 16: 76, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27025596

RESUMEN

BACKGROUND: Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS: In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS: PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.


Asunto(s)
Fotosíntesis , Poncirus/enzimología , Especies Reactivas de Oxígeno/metabolismo , beta-Fructofuranosidasa/genética , Frío , Poncirus/metabolismo , Estrés Fisiológico
15.
Plant Physiol ; 162(2): 1178-94, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23624854

RESUMEN

The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, plant bHLHs functioning in cold tolerance and the underlying mechanisms remain poorly understood. Here, we report the identification and functional characterization of PtrbHLH isolated from trifoliate orange (Poncirus trifoliata). The transcript levels of PtrbHLH were up-regulated under various abiotic stresses, particularly cold. PtrbHLH was localized in the nucleus with transactivation activity. Overexpression of PtrbHLH in tobacco (Nicotiana tabacum) or lemon (Citrus limon) conferred enhanced tolerance to cold under chilling or freezing temperatures, whereas down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted in elevated cold sensitivity. A range of stress-responsive genes was up-regulated or down-regulated in the transgenic lemon. Of special note, several peroxidase (POD) genes were induced after cold treatment. Compared with the wild type, POD activity was increased in the overexpression plants but decreased in the RNAi plants, which was inversely correlated with the hydrogen peroxide (H2O2) levels in the tested lines. Treatment of the transgenic tobacco plants with POD inhibitors elevated the H2O2 levels and greatly compromised their cold tolerance, while exogenous replenishment of POD enhanced cold tolerance of the RNAi line. In addition, transgenic tobacco and lemon plants were more tolerant to oxidative stresses. Yeast one-hybrid assay and transient expression analysis demonstrated that PtrbHLH could bind to the E-box elements in the promoter region of a POD gene. Taken together, these results demonstrate that PtrbHLH plays an important role in cold tolerance, at least in part, by positively regulating POD-mediated reactive oxygen species removal.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidasa/metabolismo , Proteínas de Plantas/metabolismo , Poncirus/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Núcleo Celular/metabolismo , Citrus/genética , Respuesta al Choque por Frío/fisiología , Elementos E-Box , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Estrés Oxidativo , Paraquat/farmacología , Peroxidasa/genética , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poncirus/metabolismo , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/genética , Transcriptoma
16.
Plant Biol (Stuttg) ; 26(3): 467-475, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38466186

RESUMEN

Ammonium nitrogen (NH4 +-N) is essential for fruit tree growth, but the impact of excess NH4 +-N from fertilizer on evergreen citrus trees is unclear. In a climate chamber, 8-month-old citrus plants were exposed to five different hydroponic NH4 +-N concentrations (0, 5, 10, 15 and 20 mm) for 1 month to study effects of NH4 +-N on growth characteristics, N uptake, metabolism, antioxidant enzymes and osmotic regulatory substances. Application of 10 mm NH4 +-N adversely affected root plasma membrane integrity, root physiological functions, and plant biomass. MDA, CAT, POD, APX and SOD content were significantly correlated with leaf N metabolic enzyme activity (GOGAT, GDH, GS and NR). GDH was the primary enzyme involved in NH4 +-N assimilation in leaves, while the primary pathway involved in roots was GS-GOGAT. Under comparatively high NH4 + addition, roots were the main organs involved in NH4 + utilization in citrus seedlings. Our results demonstrated that variations in NH4 + concentration and enzyme activity in various organs are associated with more effective N metabolism in roots than in leaves to prevent NH4 + toxicity in evergreen woody citrus plants. These results provide insight into the N forms used by citrus plants that are important for N fertilizer management.


Asunto(s)
Compuestos de Amonio , Citrus , Poncirus , Plantones , Poncirus/metabolismo , Fertilizantes , Raíces de Plantas/metabolismo , Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo
17.
J Agric Food Chem ; 72(13): 7203-7218, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38518258

RESUMEN

Diabetes complications are associated with aldose reductase (AR) and advanced glycation end products (AGEs). Using bioassay-guided isolation by column chromatography, 10 flavonoids and one coumarin were isolated from Poncirus trifoliata Rafin and tested in vitro for an inhibitory effect against human recombinant AR (HRAR) and rat lens AR (RLAR). Prunin, narirutin, and naringin inhibited RLAR (IC50 0.48-2.84 µM) and HRAR (IC50 0.68-4.88 µM). Docking simulations predicted negative binding energies and interactions with the RLAR and HRAR binding pocket residues. Prunin (0.1 and 12.5 µM) prevented the formation of fluorescent AGEs and nonfluorescent Nε-(carboxymethyl) lysine (CML), as well as the fructose-glucose-mediated protein glycation and oxidation of human serum albumin (HSA). Prunin suppressed the formation of the ß-cross-amyloid structure of HSA. These results indicate that prunin inhibits oxidation-dependent protein damage, AGE formation, and AR, which may help prevent diabetes complications.


Asunto(s)
Complicaciones de la Diabetes , Cristalino , Florizina/análogos & derivados , Poncirus , Ratas , Humanos , Animales , Glucosa/farmacología , Poncirus/metabolismo , Reacción de Maillard , Productos Finales de Glicación Avanzada/metabolismo , Albúmina Sérica Humana , Aldehído Reductasa/metabolismo , Fructosa
18.
Tree Physiol ; 43(3): 452-466, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36263985

RESUMEN

A cultivable endophytic fungus, Piriformospora indica, improves growth and enhances stress tolerance of host plants, but the underlying mechanisms remain unknown. We hypothesized that P. indica enhanced the drought tolerance of the host by regulating the antioxidant defense system and composition of fatty acids. Trifoliate orange (Poncirus trifoliata) seedlings were inoculated with P. indica under ample water and drought stress to analyze the change in plant growth, reactive oxygen species (ROS) levels, antioxidant enzyme activities, non-enzymatic antioxidant concentrations, fatty acid compositions, and expressions of both antioxidant enzyme genes and fatty acid desaturase (FAD) genes. The 9-week soil water deficit significantly increased the colonization of P. indica to roots, and P. indica promoted the increase of shoot biomass under drought. Soil drought triggered an elevation of hydrogen peroxide in roots, while the inoculated plants had lower levels of ROS (hydrogen peroxide and superoxide anion radicals) and lower degree of membrane lipid peroxidation (based on malondialdehyde levels) under drought. Drought treatment also elevated ascorbic acid and glutathione concentrations, and the elevation was further amplified after P. indica inoculation. Inoculated plants under drought also recorded significantly higher iron-superoxide dismutase (Fe-SOD), manganese-superoxide dismutase (Mn-SOD), peroxidases, catalase, glutathione reductase and ascorbate peroxidase activities, accompanied by up-regulation of PtFe-SOD and PtCu/Zn-SOD expressions. Inoculation with P. indica significantly increased total saturated fatty acids (e.g., C6:0, C15:0, C16:0, C23:0 and C24:0) concentration and reduced total unsaturated fatty acids (e.g., C18:1N9C, C18:2N6, C18:3N3, C18:1N12 and C19:1N9T) concentrations, leading to a decrease in the unsaturation index of fatty acids, which may be associated with the up-regulation of PtFAD2 and PtFAD6 and down-regulation of PtΔ9. It was concluded that the colonization of P. indica can activate enzyme and non-enzyme defense systems and regulate the composition of fatty acids under drought, thus alleviating the oxidative damage to the host caused by drought.


Asunto(s)
Basidiomycota , Poncirus , Antioxidantes/metabolismo , Poncirus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Resistencia a la Sequía , Peróxido de Hidrógeno/metabolismo , Ácidos Grasos/metabolismo , Basidiomycota/fisiología , Superóxido Dismutasa/metabolismo , Sequías , Agua/metabolismo
19.
Tree Physiol ; 42(3): 616-628, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34617114

RESUMEN

The circadian rhythm of plants is associated with stress responses; however, it is not clear whether increased host plant drought tolerance by arbuscular mycorrhizal fungi (AMF) is associated with changes in the circadian clock. The present study aimed to analyze the effect of Funneliformis mosseae (Nicol. & Gerd.) Schüßler & Walker on the circadian clock gene expression patterns in trifoliate orange (Poncirus trifoliata L. Raf.) along with gas exchange, abscisic acid (ABA) levels and antioxidant enzyme gene expression under well-watered (WW) and drought stress (DS) conditions. Plant growth, net photosynthetic rate, stomatal conductance and ABA levels were significantly higher in AMF- than in non-AMF-inoculated plants regardless of soil water regimes. Six circadian clock genes, including PtPRR7, PtLHY, PtCCA1, PtGI, PtPIF3 and PtSRR1, were identified and showed rhythmic expression patterns over the course of the day. The AMF inoculation reduced the expression of most circadian clock genes in different time periods. However, AMF treatment significantly increased PtPRR7 and PtGI expression at 5:00 p.m. under WW and DS conditions, PtLHY expression at 1:00 a.m. and PtSRR1 expression at 9:00 p.m. At 1:00 a.m., AMF inoculation up-regulated the expression of the circadian clock genes PtPRR7, PtCCA1, PtLHY and PtPIF3 and the antioxidant enzyme genes PtFe-SOD, PtMn-SOD, PtCu/Zn-SOD, PtPOD and PtCAT1. Correlation analysis revealed that these changes in circadian clock gene expression were associated with antioxidant enzyme gene expression, root ABA and gas exchange. We concluded that mycorrhizal fungi have the ability to regulate the daily rhythm of the circadian clock in trifoliate orange plants in response to drought.


Asunto(s)
Relojes Circadianos , Citrus , Micorrizas , Poncirus , Sequías , Micorrizas/fisiología , Poncirus/genética , Poncirus/metabolismo
20.
Eur Rev Med Pharmacol Sci ; 26(15): 5380-5392, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35993632

RESUMEN

OBJECTIVE: Poncirus trifoliata (P. trifoliata) fruits exert phytotherapeutic effects, depending on their maturity level. However, the mechanism by which these phytotherapeutic effects are exerted remains undefined - especially in cancers. Therefore, in this study, we investigated the effects of the immature fruit extract of P. trifoliata on a B16 melanoma cell line. MATERIALS AND METHODS: The effect of immature P. trifoliata extract on B16 cells was evaluated by MTT assay, cell proliferation, FACScan analysis of cell cycles, confocal imaging analysis, nuclear (Hoechst) staining, apoptosis assay (Annexin V-fluorescein isothiocyanate/propidium iodide staining), and Western blot assay. The capacity of immature P. trifoliata extract to inhibit the invasion and migration of B16 cells was assessed using the scratch-wound assay and Matrigel migration assay. The effect of immature P. trifoliata extract on mitochondrial function was determined via the mitochondrial membrane potential assay, activity, and fraction and cytosol proteins. RESULTS: Treating B16 cells with a methanol extract of immature P. trifoliata (MEPT) significantly inhibited cell viability, migration, and invasiveness in a dose- (p<0.01) and time (p<0.01)- dependent manner. MEPT arrested the cells in the G1 phase of the cell cycle and led to the activation of the PI3K/AKT/p21 pathway. Furthermore, MEPT dose-dependently induced apoptosis in B16 cells by increasing the expression of the pro-apoptotic proteins Bax and Apaf-1, while decreasing the expression of the anti-apoptotic protein, Bcl-2. MEPT treatment also decreased mitochondrial membrane potential. CONCLUSIONS: Immature P. trifoliata extract inhibited the growth of melanoma cells by inducing cell apoptosis through mitochondrial pathways. Therefore, further research into immature P. trifoliata extract as a potential therapeutic compound for melanoma treatment is warranted.


Asunto(s)
Melanoma , Poncirus , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Frutas , Humanos , Melanoma/metabolismo , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Poncirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA