Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunol Rev ; 313(1): 46-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36097870

RESUMEN

Structures of alternative pathway proteins have offered a comprehensive structural basis for understanding the molecular mechanisms governing activation and regulation of the amplification pathway of the complement cascade. Although properdin (FP) is required in vivo to sustain a functional alternative pathway, structural studies have been lagging behind due to the extended structure and polydisperse nature of FP. We review recent progress with respect to structure determination of FP and its proconvertase/convertase complexes. These structures identify in detail regions in C3b, factor B and FP involved in their mutual interactions. Structures of FP oligomers obtained by integrative studies have shed light on how FP activity depends on its oligomerization state. The accumulated structural knowledge allows us to rationalize the effect of point mutations causing FP deficiency. The structural basis for FP inhibition by the tick CirpA proteins is reviewed and the potential of alphafold2 predictions for understanding the interaction of FP with other tick proteins and the NKp46 receptor on host immune cells is discussed. The accumulated structural knowledge forms a comprehensive basis for understanding molecular interactions involving FP, pathological conditions arising from low levels of FP, and the molecular strategies used by ticks to suppress the alternative pathway.


Asunto(s)
Activación de Complemento , Properdina , Humanos , Properdina/genética , Properdina/metabolismo , Vía Alternativa del Complemento
2.
Kidney Int ; 105(1): 177-188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923132

RESUMEN

Activation of the alternative pathway (AP) of complement is involved in the pathogenesis of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), although the underlying molecular mechanisms are unclear. To gain insight into the role of the AP, common gene variants in CFH/CFHR1-5, CFB, C3 and MCP, and longitudinal determinations of plasma C3, C4, FH, FHR-1, FHR-2, FHR-5, FB, properdin and sC5b-9 levels were analyzed in a Spanish AAV cohort consisting of 102 patients; 54 with active AAV (active cohort) and 48 in remission not receiving immunosuppressants or dialysis therapy (remission cohort). The validation cohort consisted of 100 patients with ANCA-associated glomerulonephritis. Here, we demonstrated that common genetic variants in complement components of the AP are associated with disease susceptibility (CFB32Q/W) or severity of kidney damage in AAV (CFH-H1, CFH1H2 and ΔCFHR3/1). Plasma levels of complement components were significantly different between active and remission cohorts. In longitudinal observations, a high degree of AP activation at diagnosis was associated with worse disease outcome, while high basal FHR-1 levels and lower FH/FHR-1 ratios determined severe forms of kidney associated AAV. These genetic and plasmatic findings were confirmed in the validation cohort. Additionally, autoantibodies against FH and C3 convertase were identified in one and five active patients, respectively. Thus, our study identified key genetic and plasma components of the AP that determine disease susceptibility, prognosis, and severity in AAV. Our data also suggests that balance between FH and FHR-1 is critical and supports FHR-1 as a novel AP-specific therapeutic target in AAV.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Anticuerpos Anticitoplasma de Neutrófilos , Humanos , Susceptibilidad a Enfermedades , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/diagnóstico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/genética , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/complicaciones , Factores Inmunológicos , Properdina/genética
3.
J Allergy Clin Immunol ; 149(2): 550-556.e2, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34800432

RESUMEN

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is characterized by impaired type I interferon activity and a state of hyperinflammation leading to acute respiratory distress syndrome. The complement system has recently emerged as a key player in triggering and maintaining the inflammatory state, but the role of this molecular cascade in severe COVID-19 is still poorly characterized. OBJECTIVE: We aimed at assessing the contribution of complement pathways at both the protein and transcriptomic levels. METHODS: To this end, we systematically assessed the RNA levels of 28 complement genes in the circulating whole blood of patients with COVID-19 and healthy controls, including genes of the alternative pathway, for which data remain scarce. RESULTS: We found differential expression of genes involved in the complement system, yet with various expression patterns: whereas patients displaying moderate disease had elevated expression of classical pathway genes, severe disease was associated with increased lectin and alternative pathway activation, which correlated with inflammation and coagulopathy markers. Additionally, properdin, a pivotal positive regulator of the alternative pathway, showed high RNA expression but was found at low protein concentrations in patients with a severe and critical disease, suggesting its deposition at the sites of complement activation. Notably, low properdin levels were significantly associated with the use of mechanical ventilation (area under the curve = 0.82; P = .002). CONCLUSION: This study sheds light on the role of the alternative pathway in severe COVID-19 and provides additional rationale for the testing of drugs inhibiting the alternative pathway of the complement system.


Asunto(s)
COVID-19/inmunología , Activación de Complemento/genética , Vía Alternativa del Complemento/genética , Proteínas del Sistema Complemento/genética , Coagulación Intravascular Diseminada/inmunología , SARS-CoV-2/patogenicidad , COVID-19/genética , COVID-19/terapia , COVID-19/virología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/virología , Estudios de Casos y Controles , Comorbilidad , Proteínas del Sistema Complemento/inmunología , Diabetes Mellitus/genética , Diabetes Mellitus/inmunología , Diabetes Mellitus/terapia , Diabetes Mellitus/virología , Coagulación Intravascular Diseminada/genética , Coagulación Intravascular Diseminada/terapia , Coagulación Intravascular Diseminada/virología , Femenino , Regulación de la Expresión Génica , Humanos , Hipertensión/genética , Hipertensión/inmunología , Hipertensión/terapia , Hipertensión/virología , Lectinas/genética , Lectinas/inmunología , Masculino , Persona de Mediana Edad , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/virología , Properdina/genética , Properdina/inmunología , Respiración Artificial , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad
4.
J Biol Chem ; 296: 100083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33199367

RESUMEN

Inhibition of the alternative pathway (AP) of complement by saliva from Anopheles mosquitoes facilitates feeding by blocking production of the anaphylatoxins C3a and C5a, which activate mast cells leading to plasma extravasation, pain, and itching. We have previously shown that albicin, a member of the SG7 protein family from An. Albimanus, blocks the AP by binding to and inhibiting the function of the C3 convertase, C3bBb. Here we show that SG7.AF, the albicin homolog from An. freeborni, has a similar potency to albicin but is more active in the presence of properdin, a plasma protein that acts to stabilize C3bBb. Conversely, albicin is highly active in the absence or presence of properdin. Albicin and SG7.AF stabilize the C3bBb complex in a form that accumulates on surface plasmon resonance (SPR) surfaces coated with properdin, but SG7.AF binds with lower affinity than albicin. Albicin induces oligomerization of the complex in solution, suggesting that it is oligomerization that leads to stabilization on SPR surfaces. Anophensin, the albicin ortholog from An. stephensi, is only weakly active as an inhibitor of the AP, suggesting that the SG7 family may play a different functional role in this species and other species of the subgenus Cellia, containing the major malaria vectors in Africa and Asia. Crystal structures of albicin and SG7.AF reveal a novel four-helix bundle arrangement that is stabilized by an N-terminal hydrogen bonding network. These structures provide insight into the SG7 family and related mosquito salivary proteins including the platelet-inhibitory 30 kDa family.


Asunto(s)
Inactivadores del Complemento/química , Inactivadores del Complemento/metabolismo , Properdina/metabolismo , Saliva/química , Animales , Anopheles , Convertasas de Complemento C3-C5/genética , Convertasas de Complemento C3-C5/metabolismo , Vía Alternativa del Complemento/genética , Vía Alternativa del Complemento/fisiología , Cristalografía por Rayos X , Culicidae , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Properdina/genética , Resonancia por Plasmón de Superficie
5.
Kidney Int ; 99(2): 396-404, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33129896

RESUMEN

C3 glomerulopathy is characterized by accumulation of complement C3 within glomeruli. Causes include, but are not limited to, abnormalities in factor H, the major negative regulator of the complement alternative pathway. Factor H-deficient (Cfh-/-) mice develop C3 glomerulopathy together with a reduction in plasma C3 levels. Using this model, we assessed the efficacy of two fusion proteins containing the factor H alternative pathway regulatory domains (FH1-5) linked to either a non-targeting mouse immunoglobulin (IgG-FH1-5) or to an anti-mouse properdin antibody (Anti-P-FH1-5). Both proteins increased plasma C3 and reduced glomerular C3 deposition to an equivalent extent, suggesting that properdin-targeting was not required for FH1-5 to alter C3 activation in either plasma or glomeruli. Following IgG-FH1-5 administration, plasma C3 levels temporally correlated with changes in factor B levels whereas plasma C5 levels correlated with changes in plasma properdin levels. Notably, the increases in plasma C5 and properdin levels persisted for longer than the increases in C3 and factor B. In Cfh-/- mice IgG-FH1-5 reduced kidney injury during accelerated serum nephrotoxic nephritis. Thus, our data demonstrate that IgG-FH1-5 restored circulating alternative pathway activity and reduced glomerular C3 deposition in Cfh-/- mice and that plasma properdin levels are a sensitive marker of C5 convertase activity in factor H deficiency. The immunoglobulin conjugated FH1-5 protein, through its comparatively long plasma half-life, may be a potential therapy for C3 glomerulopathy.


Asunto(s)
Complemento C3 , Properdina , Animales , Complemento C3/genética , Convertasas de Complemento C3-C5 , Complemento C5 , Factor H de Complemento/genética , Vía Alternativa del Complemento , Inmunoglobulina G , Ratones , Properdina/genética
6.
EMBO J ; 36(8): 1084-1099, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28264884

RESUMEN

Properdin (FP) is an essential positive regulator of the complement alternative pathway (AP) providing stabilization of the C3 and C5 convertases, but its oligomeric nature challenges structural analysis. We describe here a novel FP deficiency (E244K) caused by a single point mutation which results in a very low level of AP activity. Recombinant FP E244K is monomeric, fails to support bacteriolysis, and binds weakly to C3 products. We compare this to a monomeric unit excised from oligomeric FP, which is also dysfunctional in bacteriolysis but binds the AP proconvertase, C3 convertase, C3 products and partially stabilizes the convertase. The crystal structure of such a FP-convertase complex suggests that the major contact between FP and the AP convertase is mediated by a single FP thrombospondin repeat and a small region in C3b. Small angle X-ray scattering indicates that FP E244K is trapped in a compact conformation preventing its oligomerization. Our studies demonstrate an essential role of FP oligomerization in vivo while our monomers enable detailed structural insight paving the way for novel modulators of complement.


Asunto(s)
Convertasas de Complemento C3-C5/química , Vía Alternativa del Complemento , Properdina/química , Multimerización de Proteína , Sustitución de Aminoácidos , Convertasas de Complemento C3-C5/genética , Convertasas de Complemento C3-C5/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Mutación Missense , Properdina/deficiencia , Properdina/genética , Properdina/metabolismo , Dominios Proteicos
7.
Medicina (Kaunas) ; 57(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494138

RESUMEN

Background and Objectives: Tumours are often low immunogenic. The role of complement, an innate immune defence system, in tumour control has begun to be elucidated, but findings are conflicting. A role for properdin, an amplifier of complement activation, in tumour control has recently been implicated. Materials and Methods: Properdin-deficient and congenic wildtype mice were injected subcutaneously with B16F10 melanoma cells. Tumour mass and chemokine profile were assessed. The frequencies of CD45+CD11b+ Gr-1+ cells were determined from tumours and spleens, and CD206+ F4/80+ cells were evaluated in spleens. Sera were analysed for C5a, sC5b-9, and CCL2. Results: Whilst there was no difference in tumour growth at study endpoint, properdin-deficient mice had significantly fewer myeloid-derived suppressor cells (MDSCs) in their tumours and spleens. Splenic M2 type macrophages and serum levels of C5a, sC5b-9, and CCL2 were decreased in properdin-deficient compared to wildtype mice. Conclusions: The presence of intact complement amplification sustains an environment that lessens potential anti-tumour responses.


Asunto(s)
Modelos Animales de Enfermedad , Melanoma , Properdina , Neoplasias Cutáneas , Animales , Macrófagos , Melanoma/genética , Ratones , Ratones Endogámicos C57BL , Properdina/genética , Neoplasias Cutáneas/genética
8.
Medicina (Kaunas) ; 56(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971872

RESUMEN

Background and objectives: Overnutrition leads to a metabolic and inflammatory response that includes the activation of Complement. Properdin is the only amplifier of complement activation and increases the provision of complement activation products. Its absence has previously been shown to lead to increased obesity in mice on a high fat diet. The aim of this study was to determine ways in which properdin contributes to a less pronounced obese phenotype. Materials and Methods: Wild type (WT) and properdin deficient mice (KO) were fed a high-fat diet (HFD) for up to 12 weeks. Results: There was a significant increase in liver triglyceride content in the KO HFD group compared to WT on HFD. WT developed steatosis. KO had an additional inflammatory component (steatohepatitis). Analysis of AKT signalling by phosphorylation array supported a decrease in insulin sensitivity which was greater for KO than WT in liver and kidney. There was a significant decrease of C5L2 in the fat membranes of the KO HFD group compared to the WT HFD group. Circulating microparticles in KO HFD group showed lower presence of C5L2. Expression of the fatty acid transporter CD36 in adipose tissue was increased in KO on HFD and was also significantly increased in plasma of KO HFD mice compared to WT on HFD. CD36 was elevated on microparticles from KO on HFD. Ultrastructural changes consistent with obesity-associated glomerulopathy were observed for both HFD fed genotypes, but tubular strain was greater in KO. Conclusion: Our work demonstrates that complement properdin is a dominant factor in limiting the severity of obesity-associated conditions that impact on liver and kidney. The two receptors, C5L2 and CD36, are downstream of the activity exerted by properdin.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Ratones Noqueados , Obesidad , Properdina/genética
9.
J Am Soc Nephrol ; 29(7): 1928-1937, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29858280

RESUMEN

Background Properdin (P) is a positive regulator of the alternative pathway of complement activation. Although P inhibition is expected and has been shown to ameliorate the alternative pathway of complement-mediated tissue injury in several disease models, it unexpectedly exacerbated renal injury in a murine model of C3 glomerulopathy. The role of P in atypical hemolytic uremic syndrome (aHUS) is uncertain.Methods We blocked P function by genetic deletion or mAb-mediated inhibition in mice carrying a factor H (FH) point mutation, W1206R (FHR/R), that causes aHUS and systemic thrombophilia with high mortality.Results P deficiency completely rescued FHR/R mice from premature death and prevented thrombocytopenia, hemolytic anemia, and renal disease. It also eliminated macrovessel thrombi that were prevalent in FHR/R mice. All mice that received a function-blocking anti-P mAb for 8 weeks survived the experimental period and appeared grossly healthy. Platelet counts and hemoglobin levels were significantly improved in FHR/R mice after 4 weeks of anti-P mAb treatment. One half of the FHR/R mice treated with an isotype control mAb but none of the anti-P mAb-treated mice developed stroke-related neurologic disease. Anti-P mAb-treated FHR/R mice showed largely normal renal histology, and residual liver thrombi were detected in only three of 15 treated mice.Conclusions These results contrast with the detrimental effect of P inhibition observed in a murine model of C3 glomerulopathy and suggest that P contributes critically to aHUS pathogenesis. Inhibition of P in aHUS may be of therapeutic benefit.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Complemento C3/metabolismo , Complemento C9/metabolismo , Properdina/genética , Trombofilia/genética , Animales , Anticuerpos Monoclonales/uso terapéutico , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Síndrome Hemolítico Urémico Atípico/prevención & control , Factor H de Complemento/genética , Vía Alternativa del Complemento , Femenino , Fibrina/metabolismo , Hemoglobinas/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Noqueados , Recuento de Plaquetas , Properdina/deficiencia , Properdina/inmunología , Trombofilia/prevención & control , Trombosis/prevención & control
10.
Kidney Int ; 94(6): 1141-1150, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30322716

RESUMEN

Properdin is the only known positive regulator of complement activation by stabilizing the alternative pathway convertase through C3 binding, thus prolonging its half-life. Recent in vitro studies suggest that properdin may act as a specific pattern recognition molecule. To better understand the role of properdin in vivo, we used an experimental model of acute anti-glomerular basement membrane disease with wild-type, C3- and properdin knockout mice. The model exhibited severe proteinuria, acute neutrophil infiltration and activation, classical and alternative pathway activation, and progressive glomerular deposition of properdin, C3 and C9. Although the acute renal injury was likely due to acute neutrophil activation, we found properdin deposition in C3-knockout mice that was not associated with IgG. Thus, properdin may deposit in injured tissues in vivo independent of its main ligand C3.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Activación de Complemento/inmunología , Complemento C3/inmunología , Properdina/inmunología , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Complemento C3/genética , Complemento C3/metabolismo , Modelos Animales de Enfermedad , Femenino , Membrana Basal Glomerular/citología , Membrana Basal Glomerular/inmunología , Membrana Basal Glomerular/patología , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Properdina/genética , Properdina/metabolismo , Unión Proteica/inmunología
11.
Eur J Immunol ; 47(3): 470-480, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28105653

RESUMEN

Dendritic cells (DCs) and complement are both key members of the innate and adaptive immune response. Recent experimental mouse models have shown that production of alternative pathway (AP) components by DCs strongly affects their ability to activate and regulate T-cell responses. In this study we investigated the production and regulation of properdin (fP) and factor H (fH) both integral regulators of the AP, by DCs and tolerogenic DCs (tolDCs). Both fP and fH were produced by DCs, with significantly higher levels of both AP components produced by tolDCs. Upon activation with IFN-γ both cells increased fH production, while simultaneously decreasing production of fP. IL-27, a member of the IL-12 family, increased fH, but production of fP remained unaffected. The functional capacity of fP and fH produced by DCs and tolDCs was confirmed by their ability to bind C3b. Inhibition of fH production by DCs resulted in a greater ability to induce allogenic CD4+ T-cell proliferation. In contrast, inhibition of fP production led to a significantly reduced allostimulatory capacity. In summary, this study shows that production of fP and fH by DCs, differentially regulates their immunogenicity, and that the local cytokine environment can profoundly affect the production of fP and fH.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Factor H de Complemento/metabolismo , Vía Alternativa del Complemento , Células Dendríticas/fisiología , Properdina/metabolismo , Proliferación Celular , Células Cultivadas , Complemento C3b/metabolismo , Factor H de Complemento/genética , Humanos , Tolerancia Inmunológica , Interferón gamma/metabolismo , Interleucina-27/metabolismo , Isoantígenos/inmunología , Activación de Linfocitos , Properdina/genética , ARN Interferente Pequeño/genética
12.
Kidney Int ; 91(6): 1386-1397, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28139294

RESUMEN

C3 glomerulopathy is a potentially life-threatening disease of the kidney caused by dysregulated alternative pathway complement activation. The specific complement mediator(s) responsible for kidney injury in C3 glomerulopathy are yet to be defined and no specific therapy is currently available. We previously developed a mouse model of lethal C3 glomerulopathy with factor H and properdin gene double mutations. Therefore, we used this model to examine the role of C5 and C5a receptor (C5aR) in the pathogenesis of the disease. Disease severity in these factor H/properdin double-mutant mice was found to be correlated with plasma C5 levels, and prophylactic anti-C5 mAb therapy was effective in preventing lethal C3 glomerulopathy. When given to these double-mutant mice that had already developed active disease with severe proteinuria, anti-C5 mAb treatment also prevented death in half of the mice. Deficiency of C5aR significantly reduced disease severity, suggesting that C5aR-mediated inflammation contributed to C3 glomerulopathy. Thus, C5 and C5aR have a critical role in C3 glomerulopathy. Hence, early intervention targeting these pathways may be an effective therapeutic strategy for patients with C3 glomerulopathy.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Complemento C3/metabolismo , Complemento C5/antagonistas & inhibidores , Inactivadores del Complemento/farmacología , Vía Alternativa del Complemento/efectos de los fármacos , Glomerulonefritis/prevención & control , Riñón/efectos de los fármacos , Insuficiencia Renal/prevención & control , Animales , Complemento C3/inmunología , Complemento C5/inmunología , Complemento C5/metabolismo , Factor H de Complemento/deficiencia , Factor H de Complemento/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Glomerulonefritis/genética , Glomerulonefritis/inmunología , Glomerulonefritis/metabolismo , Riñón/inmunología , Riñón/metabolismo , Riñón/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Properdina/deficiencia , Properdina/genética , Proteinuria/inmunología , Proteinuria/metabolismo , Proteinuria/prevención & control , Receptor de Anafilatoxina C5a/deficiencia , Receptor de Anafilatoxina C5a/genética , Insuficiencia Renal/genética , Insuficiencia Renal/inmunología , Insuficiencia Renal/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
13.
Fish Shellfish Immunol ; 65: 1-8, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28366782

RESUMEN

A complement system operating via the alternative pathway similar to that of vertebrates has been demonstrated in the primitive chordate amphioxus. However, the factor P (fP), a positive regulator of the alternative pathway, remains elusive in amphioxus to date. In this study, we identified and characterized a properdin gene in the amphioxus B. japonicum, BjfP, which represents an archetype of vertebrate properdins. Real-time PCR analysis showed that the BjfP was ubiquitously expressed and its expression was significantly up-regulated following the challenge with bacteria or lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Recombinant BjfP (rBjfP) and its truncated proteins including rTSR1-3, rTSR4-6 and rTSR7-8, were all capable of interacting with both Gram-negative and positive bacteria as well as LPS and LTA. Moreover, rBjfP, rTSR1-3 and rTSR4-6 could also specifically bind to C3b. Importantly, both rTSR1-3 and rTSR4-6 could inhibit the binding of rBjfP to C3b, and thus suppress the activation of the alternative pathway of complement, suggesting the involvement of BjfP in the alternative pathway. This is the first report showing that a properdin protein in invertebrates plays similar roles to vertebrate properdins. Collectively, these data suggest that BjfP might represent the ancient molecule from which vertebrate properdins evolved.


Asunto(s)
Vía Alternativa del Complemento/inmunología , Anfioxos/genética , Anfioxos/inmunología , Properdina/genética , Secuencia de Aminoácidos , Animales , Vía Alternativa del Complemento/genética , Anfioxos/clasificación , Filogenia , Properdina/química , Properdina/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
14.
J Pathol ; 240(1): 61-71, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27235854

RESUMEN

Anti-neutrophil cytoplasmic antibody vasculitis is a systemic autoimmune disease with glomerulonephritis and pulmonary haemorrhage as major clinical manifestations. The name reflects the presence of autoantibodies to myeloperoxidase and proteinase-3, which bind to both neutrophils and monocytes. Evidence of the pathogenicity of these autoantibodies is provided by the observation that injection of anti-myeloperoxidase antibodies into mice causes a pauci-immune focal segmental necrotizing glomerulonephritis which is histologically similar to the changes seen on renal biopsy in patients. Previous studies in this model have implicated the alternative pathway of complement activation and the anaphylatoxin C5a. Despite this progress, the factors that initiate complement activation have not been defined. In addition, the relative importance of bone marrow-derived and circulating C5 is not known. This is of interest given the recently identified roles for complement within leukocytes. We induced anti-myeloperoxidase vasculitis in mice and confirmed a role for complement activation by demonstrating protection in C3-deficient mice. We showed that neither MASP-2- nor properdin-deficient mice were protected, suggesting that alternative pathway activation does not require properdin or the lectin pathway. We induced disease in bone marrow chimaeric mice and found that circulating and not bone marrow-derived C5 was required for disease. We have therefore excluded properdin and the lectin pathway as initiators of complement activation and this means that future work should be directed at other potential factors within diseased tissue. In addition, in view of our finding that circulating and not bone marrow-derived C5 mediates disease, therapies that decrease hepatic C5 secretion may be considered as an alternative to those that target C5 and C5a. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/metabolismo , Complemento C5/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Properdina/metabolismo , Animales , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/inducido químicamente , Médula Ósea/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Complemento C5/genética , Modelos Animales de Enfermedad , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Ratones , Ratones Noqueados , Peroxidasa/inmunología , Properdina/genética
15.
J Immunol ; 194(7): 3414-21, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25725105

RESUMEN

Citrobacter rodentium is an attaching and effacing mouse pathogen that models enteropathogenic and enterohemorrhagic Escherichia coli in humans. The complement system is an important innate defense mechanism; however, only scant information is available about the role of complement proteins during enteric infections. In this study, we examined the impact of the lack of properdin, a positive regulator of complement, in C. rodentium-induced colitis. Following infection, properdin knockout (P(KO)) mice had increased diarrhea and exacerbated inflammation combined with defective epithelial cell-derived IL-6 and greater numbers of colonizing bacteria. The defect in the mucosal response was reversed by administering exogenous properdin to P(KO) mice. Then, using in vitro and in vivo approaches, we show that the mechanism behind the exacerbated inflammation of P(KO) mice is due to a failure to increase local C5a levels. We show that C5a directly stimulates IL-6 production from colonic epithelial cells and that inhibiting C5a in infected wild-type mice resulted in defective epithelial IL-6 production and exacerbated inflammation. These outcomes position properdin early in the response to an infectious challenge in the colon, leading to complement activation and C5a, which in turn provides protection through IL-6 expression by the epithelium. Our results unveil a previously unappreciated mechanism of intestinal homeostasis involving complement, C5a, and IL-6 during bacteria-triggered epithelial injury.


Asunto(s)
Citrobacter rodentium/inmunología , Complemento C5a/inmunología , Enteritis/etiología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/metabolismo , Interleucina-6/metabolismo , Properdina/inmunología , Animales , Línea Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Properdina/genética
16.
J Immunol ; 195(3): 1171-81, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116506

RESUMEN

Complement is implicated in asthma pathogenesis, but its mechanism of action in this disease remains incompletely understood. In this study, we investigated the role of properdin (P), a positive alternative pathway complement regulator, in allergen-induced airway inflammation. Allergen challenge stimulated P release into the airways of asthmatic patients, and P levels positively correlated with proinflammatory cytokines in human bronchoalveolar lavage (BAL). High levels of P were also detected in the BAL of OVA-sensitized and challenged but not naive mice. Compared with wild-type (WT) mice, P-deficient (P(-/-)) mice had markedly reduced total and eosinophil cell counts in BAL and significantly attenuated airway hyperresponsiveness to methacholine. Ab blocking of P at both sensitization and challenge phases or at challenge phase alone, but not at sensitization phase alone, reduced airway inflammation. Conversely, intranasal reconstitution of P to P(-/-) mice at the challenge phase restored airway inflammation to wild-type levels. Notably, C3a levels in the BAL of OVA-challenged P(-/-) mice were significantly lower than in wild-type mice, and intranasal coadministration of an anti-C3a mAb with P to P(-/-) mice prevented restoration of airway inflammation. These results show that P plays a key role in allergen-induced airway inflammation and represents a potential therapeutic target for human asthma.


Asunto(s)
Asma/inmunología , Complemento C3a/biosíntesis , Properdina/inmunología , Células Th17/inmunología , Células Th2/inmunología , Animales , Asma/inducido químicamente , Asma/patología , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Complemento C3a/inmunología , Eosinófilos/inmunología , Humanos , Inflamación/inmunología , Recuento de Leucocitos , Pulmón/inmunología , Pulmón/patología , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos C57BL , Properdina/genética
17.
Clin Exp Immunol ; 184(1): 118-25, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26660535

RESUMEN

Properdin (P) stabilizes the alternative pathway (AP) convertases, being the only known positive regulator of the complement system. In addition, P is a pattern recognition molecule able to initiate directly the AP on non-self surfaces. Although P deficiencies have long been known to be associated with Neisseria infections and P is often found deposited at sites of AP activation and tissue injury, the potential role of P in the pathogenesis of complement dysregulation-associated disorders has not been studied extensively. Serum P levels were measured in 49 patients with histological and clinical evidence of C3 glomerulopathy (C3G). Patients were divided into two groups according to the presence or absence of C3 nephritic factor (C3NeF), an autoantibody that stabilizes the AP C3 convertase. The presence of this autoantibody results in a significant reduction in circulating C3 (P < 0·001) and C5 levels (P < 0·05), but does not alter factor B, P and sC5b-9 levels. Interestingly, in our cohort, serum P levels were low in 17 of the 32 C3NeF-negative patients. This group exhibited significant reduction of C3 (P < 0·001) and C5 (P < 0·001) and increase of sC5b-9 (P < 0·001) plasma levels compared to the control group. Also, P consumption was correlated significantly with C3 (r = 0·798, P = 0·0001), C5 (r = 0·806, P < 0·0001), sC5b-9 (r = -0·683, P = 0·043) and a higher degree of proteinuria (r = -0·862, P = 0·013). These results illustrate further the heterogeneity among C3G patients and suggest that P serum levels could be a reliable clinical biomarker to identify patients with underlying surface AP C5 convertase dysregulation.


Asunto(s)
Convertasas de Complemento C3-C5/inmunología , Vía Alternativa del Complemento , Glomerulonefritis/inmunología , Properdina/inmunología , Proteinuria/inmunología , Adolescente , Adulto , Biomarcadores/sangre , Niño , Complemento C3/genética , Complemento C3/inmunología , Factor Nefrítico del Complemento 3/genética , Factor Nefrítico del Complemento 3/inmunología , Convertasas de Complemento C3-C5/genética , Complemento C5/genética , Complemento C5/inmunología , Factor B del Complemento/genética , Factor B del Complemento/inmunología , Inactivadores del Complemento/sangre , Complejo de Ataque a Membrana del Sistema Complemento/genética , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Femenino , Regulación de la Expresión Génica , Glomerulonefritis/sangre , Glomerulonefritis/genética , Glomerulonefritis/patología , Humanos , Masculino , Persona de Mediana Edad , Properdina/genética , Proteinuria/sangre , Proteinuria/genética , Proteinuria/patología , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Transducción de Señal
18.
J Immunol ; 190(7): 3552-9, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23427256

RESUMEN

Complement is implicated in the pathogenesis of ischemia-reperfusion injury (IRI). The activation pathway(s) and effector(s) of complement in IRI may be organ specific and remain to be fully characterized. We previously developed a renal IRI model in decay-accelerating factor (DAF) and CD59 double-knockout (DAF(-/-)CD59(-/-)) mice. In this study, we used this model to dissect the pathway(s) by which complement is activated in renal IRI and to evaluate whether C3aR- or C5aR-mediated inflammation or the membrane attack complex was pathogenic. We crossed DAF(-/-)CD59(-/-) mice with mice deficient in various complement components or receptors including C3, C4, factor B (fB), factor properdin (fP), mannose-binding lectin, C3aR, C5aR, or Ig and assessed renal IRI in the resulting mutant strains. We found that deletion of C3, fB, fP, C3aR, or C5aR significantly ameliorated renal IRI in DAF(-/-)CD59(-/-) mice, whereas deficiency of C4, Ig, or mannose-binding lectin had no effect. Treatment of DAF(-/-)CD59(-/-) mice with an anti-C5 mAb reduced renal IRI to a greater degree than did C5aR deficiency. We also generated and tested a function-blocking anti-mouse fP mAb and showed it to ameliorate renal IRI when given to DAF(-/-)CD59(-/-) mice 24 h before, but not 4 or 8 h after, ischemia/reperfusion. These results suggest that complement is activated via the alternative pathway during the early phase of reperfusion, and both anaphylatoxin-mediated inflammation and the membrane attack complex contribute to tissue injury. Further, they demonstrate a critical role for properdin and support its therapeutic targeting in renal IRI.


Asunto(s)
Antígenos CD55/genética , Antígenos CD59/genética , Riñón/irrigación sanguínea , Properdina/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Daño por Reperfusión/genética , Daño por Reperfusión/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Complemento C3/deficiencia , Complemento C3/inmunología , C3 Convertasa de la Vía Alternativa del Complemento , Factor B del Complemento/genética , Factor B del Complemento/inmunología , Modelos Animales de Enfermedad , Riñón/patología , Masculino , Ratones , Ratones Noqueados , Properdina/genética , Properdina/inmunología , Daño por Reperfusión/patología
19.
Scand J Immunol ; 79(4): 276-81, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24460650

RESUMEN

Blood levels of regulators of the complement system in preterm babies were reported in few studies only. The aim of this study was to set up a complement profile in premature and term babies focusing on the development of blood levels of MBL, key regulatory proteins and on classical pathway activity, which may allow an estimation of potential susceptibility to infection. Complement activity (CH50), levels of mannan-binding lectin (MBL), complement regulators (factors H and I, C1 inhibitor, properdin) and C3a as marker of complement activation were assessed in three groups of healthy newborns: (1) prematures (≤34 weeks); (2) late prematures (>34-<37 weeks) and (3) term neonates (≥37 weeks). CH50 increased with gestational age with lower titres in cord blood than in day 5 post-delivery venous blood. MBL concentrations were not significantly different among groups. Quantitative and functional C1 inhibitor were below adult normal range in prematures <34 weeks and lower in cord blood as compared to day 5. Factor I, factor H and properdin remained below adult values in all groups. Low C3a levels excluded that low complement titres were due to activation-induced consumption. These results demonstrate the relative immaturity of the complement system and its regulation, especially in premature infants.


Asunto(s)
Proteína Inhibidora del Complemento C1/metabolismo , Complemento C3a/metabolismo , Nacimiento Prematuro/inmunología , Adulto , Activación de Complemento , Proteína Inhibidora del Complemento C1/genética , Complemento C3a/genética , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Ensayo de Actividad Hemolítica de Complemento , Femenino , Fibrinógeno/genética , Fibrinógeno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Humanos , Recién Nacido , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/metabolismo , Embarazo , Properdina/genética , Properdina/metabolismo
20.
J Immunol ; 188(7): 3416-25, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22368277

RESUMEN

Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, is an important cause of morbidity worldwide. A safe and effective vaccine against gonorrhea is needed because of emerging resistance of gonococci to almost every class of antibiotic. A gonococcal lipooligosaccharide epitope defined by the mAb 2C7 is being evaluated as a candidate for development of an Ab-based vaccine. Immune Abs against N. gonorrhoeae need to overcome several subversive mechanisms whereby gonococcus evades complement, including binding to C4b-binding protein (C4BP; classical pathway inhibitor) and factor H (alternative pathway [AP] inhibitor). The role of AP recruitment and, in particular, properdin in assisting killing of gonococci by specific Abs is the subject of this study. We show that only those gonococcal strains that bind C4BP require properdin for killing by 2C7, whereas strains that do not bind C4BP are efficiently killed by 2C7 even when AP function is blocked. C3 deposition on bacteria mirrored killing. Recruitment of the AP by mAb 2C7, as measured by factor B binding, occurred in a properdin-dependent manner. These findings were confirmed using isogenic mutant strains that differed in their ability to bind to C4BP. Immune human serum that contained bactericidal Abs directed against the 2C7 lipooligosaccharide epitope as well as murine antigonococcal antiserum required functional properdin to kill C4BP-binding strains, but not C4BP-nonbinding strains. Collectively, these data point to an important role for properdin in facilitating immune Ab-mediated complement-dependent killing of gonococcal strains that inhibit the classical pathway by recruiting C4BP.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Vía Alternativa del Complemento , Antígenos de Histocompatibilidad/inmunología , Lipopolisacáridos/inmunología , Neisseria gonorrhoeae/inmunología , Properdina/fisiología , Adulto , Animales , Anticuerpos Antibacterianos/sangre , Especificidad de Anticuerpos , Vacunas Bacterianas/inmunología , Proteína de Unión al Complemento C4b , Vía Clásica del Complemento , Epítopos/genética , Epítopos/inmunología , Humanos , Masculino , Ratones , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidad , Porinas/genética , Porinas/inmunología , Properdina/antagonistas & inhibidores , Properdina/deficiencia , Properdina/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA