Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 711
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 164(4): 735-46, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26871633

RESUMEN

Telomeres, repetitive DNA sequences at chromosome ends, are shielded against the DNA damage response (DDR) by the shelterin complex. To understand how shelterin protects telomere ends, we investigated the structural organization of telomeric chromatin in human cells using super-resolution microscopy. We found that telomeres form compact globular structures through a complex network of interactions between shelterin subunits and telomeric DNA, but not by DNA methylation, histone deacetylation, or histone trimethylation at telomeres and subtelomeric regions. Mutations that abrogate shelterin assembly or removal of individual subunits from telomeres cause up to a 10-fold increase in telomere volume. Decompacted telomeres accumulate DDR signals and become more accessible to telomere-associated proteins. Recompaction of telomeric chromatin using an orthogonal method displaces DDR signals from telomeres. These results reveal the chromatin remodeling activity of shelterin and demonstrate that shelterin-mediated compaction of telomeric chromatin provides robust protection of chromosome ends against the DDR machinery.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión a Telómeros/metabolismo , Daño del ADN , Reparación del ADN , Células HeLa , Humanos , Multimerización de Proteína , Complejo Shelterina , Proteínas Similares a la Proteína de Unión a TATA-Box/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
2.
Cell ; 160(5): 913-927, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723166

RESUMEN

The breakage-fusion-bridge cycle is a classical mechanism of telomere-driven genome instability in which dysfunctional telomeres are fused to other chromosomal extremities, creating dicentric chromosomes that eventually break at mitosis. Here, we uncover a distinct pathway of telomere-driven genome instability, specifically occurring in cells that maintain telomeres with the alternative lengthening of telomeres mechanism. We show that, in these cells, telomeric DNA is added to multiple discrete sites throughout the genome, corresponding to regions regulated by NR2C/F transcription factors. These proteins drive local telomere DNA addition by recruiting telomeric chromatin. This mechanism, which we name targeted telomere insertion (TTI), generates potential common fragile sites that destabilize the genome. We propose that TTI driven by NR2C/F proteins contributes to the formation of complex karyotypes in ALT tumors.


Asunto(s)
Inestabilidad Genómica , Neoplasias/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Telómero/metabolismo , Cromosomas Humanos/metabolismo , Roturas del ADN de Doble Cadena , Humanos , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Translocación Genética
3.
Cell ; 163(4): 880-93, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544937

RESUMEN

Increased mobility of chromatin surrounding double-strand breaks (DSBs) has been noted in yeast and mammalian cells but the underlying mechanism and its contribution to DSB repair remain unclear. Here, we use a telomere-based system to track DNA damage foci with high resolution in living cells. We find that the greater mobility of damaged chromatin requires 53BP1, SUN1/2 in the linker of the nucleoskeleton, and cytoskeleton (LINC) complex and dynamic microtubules. The data further demonstrate that the excursions promote non-homologous end joining of dysfunctional telomeres and implicated Nesprin-4 and kinesins in telomere fusion. 53BP1/LINC/microtubule-dependent mobility is also evident at irradiation-induced DSBs and contributes to the mis-rejoining of drug-induced DSBs in BRCA1-deficient cells showing that DSB mobility can be detrimental in cells with numerous DSBs. In contrast, under physiological conditions where cells have only one or a few lesions, DSB mobility is proposed to prevent errors in DNA repair.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Microtúbulos/metabolismo , Animales , Proteínas Portadoras/metabolismo , Reparación del ADN por Unión de Extremidades , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Telómero , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
4.
Mol Cell ; 81(5): 1027-1042.e4, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33453166

RESUMEN

Alternative lengthening of telomeres (ALT) is mediated by break-induced replication (BIR), but how BIR is regulated at telomeres is poorly understood. Here, we show that telomeric BIR is a self-perpetuating process. By tethering PML-IV to telomeres, we induced telomere clustering in ALT-associated PML bodies (APBs) and a POLD3-dependent ATR response at telomeres, showing that BIR generates replication stress. Ablation of BLM helicase activity in APBs abolishes telomere synthesis but causes multiple chromosome bridges between telomeres, revealing a function of BLM in processing inter-telomere BIR intermediates. Interestingly, the accumulation of BLM in APBs requires its own helicase activity and POLD3, suggesting that BIR triggers a feedforward loop to further recruit BLM. Enhancing BIR induces PIAS4-mediated TRF2 SUMOylation, and PIAS4 loss deprives APBs of repair proteins and compromises ALT telomere synthesis. Thus, a BLM-driven and PIAS4-mediated feedforward loop operates in APBs to perpetuate BIR, providing a critical mechanism to extend ALT telomeres.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Retroalimentación Fisiológica , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Inhibidoras de STAT Activados/genética , ARN Helicasas/genética , Homeostasis del Telómero , Telómero/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Línea Celular , Línea Celular Tumoral , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/antagonistas & inhibidores , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas Inhibidoras de STAT Activados/antagonistas & inhibidores , Proteínas Inhibidoras de STAT Activados/metabolismo , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Transducción de Señal , Sumoilación , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética
5.
Genes Dev ; 35(1-2): 1-21, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33361389

RESUMEN

In this perspective, we introduce shelterin and the mechanisms of ATM activation and NHEJ at telomeres, before discussing the following questions: How are t-loops proposed to protect chromosome ends and what is the evidence for this model? Can other models explain how TRF2 mediates end protection? Could t-loops be pathological structures? How is end protection achieved in pluripotent cells? What do the insights into telomere end protection in pluripotent cells mean for the t-loop model of end protection? Why might different cell states have evolved different mechanisms of end protection? Finally, we offer support for an updated t-loop model of end protection, suggesting that the data is supportive of a critical role for t-loops in protecting chromosome ends from NHEJ and ATM activation, but that other mechanisms are involved. Finally, we propose that t-loops are likely dynamic, rather than static, structures.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/fisiología , Telómero/metabolismo , Telómero/patología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inestabilidad Cromosómica , Reparación del ADN , Células Madre Embrionarias , Humanos , Modelos Biológicos , Células Madre Pluripotentes , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
6.
Genes Dev ; 35(23-24): 1625-1641, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34764137

RESUMEN

The mammalian telomeric shelterin complex-comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.


Asunto(s)
Proteína 2 de Unión a Repeticiones Teloméricas , Tripeptidil Peptidasa 1 , Animales , Mamíferos/genética , Complejo Shelterina , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
7.
Genes Dev ; 35(5-6): 379-391, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33602872

RESUMEN

Senescence is a key barrier to neoplastic transformation. To identify senescence regulators relevant to cancer, we screened a genome-wide shRNA library. Here, we describe exportin 7 (XPO7) as a novel regulator of senescence and validate its function in telomere-induced, replicative, and oncogene-induced senescence (OIS). XPO7 is a bidirectional transporter that regulates the nuclear-cytoplasmic shuttling of a broad range of substrates. Depletion of XPO7 results in reduced levels of TCF3 and an impaired induction of the cyclin-dependent kinase inhibitor p21CIP1 during OIS. Deletion of XPO7 correlates with poorer overall survival in several cancer types. Moreover, depletion of XPO7 alleviated OIS and increased tumor formation in a mouse model of liver cancer. Our results suggest that XPO7 is a novel tumor suppressor that regulates p21CIP1 expression to control senescence and tumorigenesis.


Asunto(s)
Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Neoplasias/fisiopatología , Proteína 2 de Unión a Repeticiones Teloméricas/genética
8.
EMBO J ; 43(1): 87-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177309

RESUMEN

Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.


Asunto(s)
Cromatina , Complejo Shelterina , Proteína 2 de Unión a Repeticiones Teloméricas , Humanos , Nucleosomas , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética
9.
Cell ; 155(2): 345-356, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120135

RESUMEN

We have applied a super-resolution fluorescence imaging method, stochastic optical reconstruction microscopy (STORM), to visualize the structure of functional telomeres and telomeres rendered dysfunctional through removal of shelterin proteins. The STORM images showed that functional telomeres frequently exhibit a t-loop configuration. Conditional deletion of individual components of shelterin showed that TRF2 was required for the formation and/or maintenance of t-loops, whereas deletion of TRF1, Rap1, or the POT1 proteins (POT1a and POT1b) had no effect on the frequency of t-loop occurrence. Within the shelterin complex, TRF2 uniquely serves to protect telomeres from two pathways that are initiated on free DNA ends: classical nonhomologous end-joining (NHEJ) and ATM-dependent DNA damage signaling. The TRF2-dependent remodeling of telomeres into t-loop structures, which sequester the ends of chromosomes, can explain why NHEJ and the ATM signaling pathway are repressed when TRF2 is present.


Asunto(s)
Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Ratones , Microscopía Fluorescente , Complejo Shelterina , Proteínas de Unión a Telómeros
10.
Nature ; 589(7840): 103-109, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239783

RESUMEN

Mammalian telomeres protect chromosome ends from aberrant DNA repair1. TRF2, a component of the telomere-specific shelterin protein complex, facilitates end protection through sequestration of the terminal telomere repeat sequence within a lariat T-loop structure2,3. Deleting TRF2 (also known as TERF2) in somatic cells abolishes T-loop formation, which coincides with telomere deprotection, chromosome end-to-end fusions and inviability3-9. Here we establish that, by contrast, TRF2 is largely dispensable for telomere protection in mouse pluripotent embryonic stem (ES) and epiblast stem cells. ES cell telomeres devoid of TRF2 instead activate an attenuated telomeric DNA damage response that lacks accompanying telomere fusions, and propagate for multiple generations. The induction of telomere dysfunction in ES cells, consistent with somatic deletion of Trf2 (also known as Terf2), occurs only following the removal of the entire shelterin complex. Consistent with TRF2 being largely dispensable for telomere protection specifically during early embryonic development, cells exiting pluripotency rapidly switch to TRF2-dependent end protection. In addition, Trf2-null embryos arrest before implantation, with evidence of strong DNA damage response signalling and apoptosis specifically in the non-pluripotent compartment. Finally, we show that ES cells form T-loops independently of TRF2, which reveals why TRF2 is dispensable for end protection during pluripotency. Collectively, these data establish that telomere protection is solved by distinct mechanisms in pluripotent and somatic tissues.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/deficiencia , Animales , Blastocisto/citología , Blastocisto/metabolismo , Supervivencia Celular , Cromosomas de los Mamíferos/genética , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
11.
Nature ; 589(7840): 110-115, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239785

RESUMEN

In mammals, telomere protection is mediated by the essential protein TRF2, which binds chromosome ends and ensures genome integrity1,2. TRF2 depletion results in end-to-end chromosome fusions in all cell types that have been tested so far. Here we find that TRF2 is dispensable for the proliferation and survival of mouse embryonic stem (ES) cells. Trf2-/- (also known as Terf2) ES cells do not exhibit telomere fusions and can be expanded indefinitely. In response to the deletion of TRF2, ES cells exhibit a muted DNA damage response that is characterized by the recruitment of γH2AX-but not 53BP1-to telomeres. To define the mechanisms that control this unique DNA damage response in ES cells, we performed a CRISPR-Cas9-knockout screen. We found a strong dependency of TRF2-null ES cells on the telomere-associated protein POT1B and on the chromatin remodelling factor BRD2. Co-depletion of POT1B or BRD2 with TRF2 restores a canonical DNA damage response at telomeres, resulting in frequent telomere fusions. We found that TRF2 depletion in ES cells activates a totipotent-like two-cell-stage transcriptional program that includes high levels of ZSCAN4. We show that the upregulation of ZSCAN4 contributes to telomere protection in the absence of TRF2. Together, our results uncover a unique response to telomere deprotection during early development.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/deficiencia , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/citología , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Células Madre Totipotentes/citología , Células Madre Totipotentes/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588418

RESUMEN

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Unión a Telómeros , Animales , Proteínas de Unión a Telómeros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dimerización , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Unión Proteica , Telómero/genética , Telómero/metabolismo , Complejo Shelterina , ADN/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas , Mamíferos/genética
13.
Annu Rev Genet ; 52: 223-247, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30208292

RESUMEN

For more than a decade, it has been known that mammalian cells use shelterin to protect chromosome ends. Much progress has been made on the mechanism by which shelterin prevents telomeres from inadvertently activating DNA damage signaling and double-strand break (DSB) repair pathways. Shelterin averts activation of three DNA damage response enzymes [the ataxia-telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases and poly(ADP-ribose) polymerase 1 (PARP1)], blocks three DSB repair pathways [classical nonhomologous end joining (c-NHEJ), alternative (alt)-NHEJ, and homology-directed repair (HDR)], and prevents hyper-resection at telomeres. For several of these functions, mechanistic insights have emerged. In addition, much has been learned about how shelterin maintains the telomeric 3' overhang, forms and protects the t-loop structure, and promotes replication through telomeres. These studies revealed that shelterin is compartmentalized, with individual subunits dedicated to distinct aspects of the end-protection problem. This review focuses on the current knowledge of shelterin-mediated telomere protection, highlights differences between human and mouse shelterin, and discusses some of the questions that remain.


Asunto(s)
Reparación del ADN/genética , Reparación del ADN por Recombinación/genética , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Cromosomas , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasa-1/genética
14.
Mol Cell ; 71(4): 510-525.e6, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30033372

RESUMEN

Telomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN por Unión de Extremidades , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Línea Celular Tumoral , Daño del ADN , Fibroblastos/citología , Fibroblastos/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Mitosis , Dominios Proteicos , Telómero/ultraestructura , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
15.
Mol Cell ; 70(3): 449-461.e5, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727617

RESUMEN

Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.


Asunto(s)
Replicación del ADN/genética , Genoma/genética , Heterocromatina/genética , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Línea Celular Tumoral , Centrómero/genética , Cromatina/genética , ADN Helicasas/genética , G-Cuádruplex , Células HeLa , Humanos , Fase S/genética
16.
Nucleic Acids Res ; 52(17): 10490-10503, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39189448

RESUMEN

Telomeric repeat containing RNA (TERRA) is a noncoding RNA that is transcribed from telomeres. Previous study showed that TERRA trans anneals by invading into the telomeric duplex to form an R-loop in mammalian cells. Here, we elucidate the molecular mechanism underlying TERRA recruitment and invasion into telomeres in the context of shelterin proteins, RAD51 and RNase H using single molecule (sm) assays. We demonstrate that TERRA trans annealing into telomeric DNA exhibits dynamic movement that is stabilized by TRF2. TERRA annealing to the telomeric duplex results in the formation of a stable triplex structure which differs from a conventional R-loop. We identified that the presence of a sub-telomeric DNA and a telomeric overhang in the form of a G-quadruplex significantly enhances TERRA annealing to telomeric duplex. We also demonstrate that RAD51-TERRA complex invades telomere duplex more efficiently than TERRA alone. Additionally, TRF2 increases TERRA affinity to telomeric duplex and protects it from RNase H digestion. In contrast, TRF1 represses TERRA annealing to telomeric duplex and fails to provide protection against RNase H digestion. Our findings provide an in-depth molecular mechanism underpinning TERRA recruitment and annealing to the telomere.


Asunto(s)
Recombinasa Rad51 , Ribonucleasa H , Telómero , Proteína 1 de Unión a Repeticiones Teloméricas , Proteína 2 de Unión a Repeticiones Teloméricas , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Ribonucleasa H/metabolismo , Recombinasa Rad51/metabolismo , Humanos , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/genética , G-Cuádruplex , ADN/metabolismo , ADN/química , ADN/genética , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Estructuras R-Loop , ARN no Traducido/metabolismo , ARN no Traducido/genética , ARN no Traducido/química , Complejo Shelterina/metabolismo , Imagen Individual de Molécula
17.
Nucleic Acids Res ; 52(16): 9695-9709, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39082275

RESUMEN

Inappropriate homology-directed repair (HDR) of telomeres results in catastrophic telomere loss and aberrant chromosome fusions, leading to genome instability. We have previously shown that the TRF2-RAP1 heterodimer protects telomeres from engaging in aberrant telomere HDR. Cells lacking the basic domain of TRF2 and functional RAP1 display HDR-mediated telomere clustering, resulting in the formation of ultrabright telomeres (UTs) and massive chromosome fusions. Using purified proteins, we uncover three distinct molecular pathways that the TRF2-RAP1 heterodimer utilizes to protect telomeres from engaging in aberrant HDR. We show mechanistically that TRF2-RAP1 inhibits RAD51-initiated telomeric D-loop formation. Both the TRF2 basic domain and RAP1-binding to TRF2 are required to block RAD51-mediated homology search. TRF2 recruits the BLM helicase to telomeres through its TRFH domain to promote BLM-mediated unwinding of telomere D-loops. In addition, TRF2-RAP1 inhibits BLM-DNA2-mediated 5' telomere end resection, preventing the generation of 3' single-stranded telomere overhangs necessary for RAD51-dependent HDR. Importantly, cells expressing BLM mutants unable to interact with TRF2 accumulate telomere D-loops and UTs. Our findings uncover distinct molecular mechanisms coordinated by TRF2-RAP1 to protect telomeres from engaging in aberrant HDR.


Asunto(s)
Recombinasa Rad51 , RecQ Helicasas , Reparación del ADN por Recombinación , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Proteína 2 de Unión a Repeticiones Teloméricas , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Telómero/metabolismo , Complejo Shelterina/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Humanos , Unión Proteica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
18.
Nucleic Acids Res ; 52(13): 7704-7719, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38884214

RESUMEN

Telomeres protect chromosome ends from unscheduled DNA repair, including from the MRN (MRE11, RAD50, NBS1) complex, which processes double-stranded DNA breaks (DSBs) via activation of the ATM kinase, promotes DNA end-tethering aiding the non-homologous end-joining (NHEJ) pathway, and initiates DSB resection through the MRE11 nuclease. A protein motif (MIN, for MRN inhibitor) inhibits MRN at budding yeast telomeres by binding to RAD50 and evolved at least twice, in unrelated telomeric proteins Rif2 and Taz1. We identify the iDDR motif of human shelterin protein TRF2 as a third example of convergent evolution for this telomeric mechanism for binding MRN, despite the iDDR lacking sequence homology to the MIN motif. CtIP is required for activation of MRE11 nuclease action, and we provide evidence for binding of a short C-terminal region of CtIP to a RAD50 interface that partly overlaps with the iDDR binding site, indicating that the interaction is mutually exclusive. In addition, we show that the iDDR impairs the DNA binding activity of RAD50. These results highlight direct inhibition of MRN action as a crucial role of telomeric proteins across organisms and point to multiple mechanisms enforced by the iDDR to disable the many activities of the MRN complex.


Asunto(s)
Ácido Anhídrido Hidrolasas , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN , Unión Proteica , Proteínas de Unión a Telómeros , Telómero , Proteína 2 de Unión a Repeticiones Teloméricas , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Telómero/metabolismo , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ácido Anhídrido Hidrolasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Evolución Molecular , Roturas del ADN de Doble Cadena , Secuencias de Aminoácidos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Sitios de Unión , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
19.
Cell ; 142(2): 230-42, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655466

RESUMEN

Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Senescencia Celular , Daño del ADN , Exodesoxirribonucleasas , Humanos , Estructura Terciaria de Proteína
20.
Nature ; 575(7783): 523-527, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723267

RESUMEN

The protection of telomere ends by the shelterin complex prevents DNA damage signalling and promiscuous repair at chromosome ends. Evidence suggests that the 3' single-stranded telomere end can assemble into a lasso-like t-loop configuration1,2, which has been proposed to safeguard chromosome ends from being recognized as DNA double-strand breaks2. Mechanisms must also exist to transiently disassemble t-loops to allow accurate telomere replication and to permit telomerase access to the 3' end to solve the end-replication problem. However, the regulation and physiological importance of t-loops in the protection of telomere ends remains unknown. Here we identify a CDK phosphorylation site in the shelterin subunit at Ser365 of TRF2, whose dephosphorylation in S phase by the PP6R3 phosphatase provides a narrow window during which the RTEL1 helicase can transiently access and unwind t-loops to facilitate telomere replication. Re-phosphorylation of TRF2 at Ser365 outside of S phase is required to release RTEL1 from telomeres, which not only protects t-loops from promiscuous unwinding and inappropriate activation of ATM, but also counteracts replication conflicts at DNA secondary structures that arise within telomeres and across the genome. Hence, a phospho-switch in TRF2 coordinates the assembly and disassembly of t-loops during the cell cycle, which protects telomeres from replication stress and an unscheduled DNA damage response.


Asunto(s)
Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Fosfoserina/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/biosíntesis , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Fibroblastos , Genoma/genética , Células HEK293 , Humanos , Ratones , Mutación , Fenotipo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fase S , Complejo Shelterina , Telomerasa/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA