Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 63(10): 1246-1256, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38662574

RESUMEN

Guanylate cyclase activating protein-5 (GCAP5) in zebrafish photoreceptors promotes the activation of membrane receptor retinal guanylate cyclase (GC-E). Previously, we showed the R22A mutation in GCAP5 (GCAP5R22A) abolishes dimerization of GCAP5 and activates GC-E by more than 3-fold compared to that of wild-type GCAP5 (GCAP5WT). Here, we present ITC, NMR, and functional analysis of GCAP5R22A to understand how R22A causes a decreased dimerization affinity and increased cyclase activation. ITC experiments reveal GCAP5R22A binds a total of 3 Ca2+, including two sites in the nanomolar range followed by a single micromolar site. The two nanomolar sites in GCAP5WT were not detected by ITC, suggesting that R22A may affect the binding of Ca2+ to these sites. The NMR-derived structure of GCAP5R22A is overall similar to that of GCAP5WT (RMSD = 2.3 Å), except for local differences near R22A (Q19, W20, Y21, and K23) and an altered orientation of the C-terminal helix near the N-terminal myristate. GCAP5R22A lacks an intermolecular salt bridge between R22 and D71 that may explain the weakened dimerization. We present a structural model of GCAP5 bound to GC-E in which the R22 side-chain contacts exposed hydrophobic residues in GC-E. Cyclase assays suggest that GC-E binds to GCAP5R22A with ∼25% higher affinity compared to GCAP5WT, consistent with more favorable hydrophobic contact by R22A that may help explain the increased cyclase activation.


Asunto(s)
Proteínas Activadoras de la Guanilato-Ciclasa , Guanilato Ciclasa , Modelos Moleculares , Animales , Calcio/metabolismo , Activación Enzimática/genética , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/química , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/química , Mutación , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína , Retina/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
2.
Biochemistry ; 63(17): 2131-2140, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39175413

RESUMEN

Phototransduction in vertebrate photoreceptor cells is controlled by Ca2+-dependent feedback loops involving the membrane-bound guanylate cyclase GC-E that synthesizes the second messenger guanosine-3',5'-cyclic monophosphate. Intracellular Ca2+-sensor proteins named guanylate cyclase-activating proteins (GCAPs) regulate the activity of GC-E by switching from a Ca2+-bound inhibiting state to a Ca2+-free/Mg2+-bound activating state. The gene GUCY2D encodes for human GC-E, and mutations in GUCY2D are often associated with an imbalance of Ca2+ and cGMP homeostasis causing retinal disorders. Here, we investigate the Ca2+-dependent inhibition of the constitutively active GC-E mutant V902L. The inhibition is not mediated by GCAP variants but by Ca2+ replacing Mg2+ in the catalytic center. Distant from the cyclase catalytic domain is an α-helical domain containing a highly conserved helix-turn-helix motif. Mutating the critical amino acid position 804 from leucine to proline left the principal activation mechanism intact but resulted in a lower level of catalytic efficiency. Our experimental analysis of amino acid positions in two distant GC-E domains implied an allosteric communication pathway connecting the α-helical and the cyclase catalytic domains. A computational connectivity analysis unveiled critical differences between wildtype GC-E and the mutant V902L in the allosteric network of critical amino acid positions.


Asunto(s)
Dominio Catalítico , Guanilato Ciclasa , Regulación Alostérica , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/química , Guanilato Ciclasa/genética , Animales , Calcio/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/química , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Humanos , Multimerización de Proteína , Magnesio/metabolismo , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética
3.
Cell Mol Life Sci ; 80(12): 371, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001384

RESUMEN

Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.


Asunto(s)
Liposomas , Retina , Ratones , Humanos , Animales , Distribución Tisular , Retina/metabolismo , Fototransducción , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Calcio/metabolismo
4.
J Biol Chem ; 296: 100619, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33812995

RESUMEN

In murine and bovine photoreceptors, guanylate cyclase-activating protein 2 (GCAP2) activates retinal guanylate cyclases (GCs) at low Ca2+ levels, thus contributing to the Ca2+/cGMP negative feedback on the cyclase together with its paralog guanylate cyclase-activating protein 1, which has the same function but different Ca2+ sensitivity. In humans, a GCAP2 missense mutation (G157R) has been associated with inherited retinal degeneration (IRD) via an unknown molecular mechanism. Here, we characterized the biochemical properties of human GCAP2 and the G157R variant, focusing on its dimerization and the Ca2+/Mg2+-binding processes in the presence or absence of N-terminal myristoylation. We found that human GCAP2 and its bovine/murine orthologs significantly differ in terms of oligomeric properties, cation binding, and GC regulation. Myristoylated GCAP2 endothermically binds up to 3 Mg2+ with high affinity and forms a compact dimer that may reversibly dissociate in the presence of Ca2+. Conversely, nonmyristoylated GCAP2 does not bind Mg2+ over the physiological range and remains as a monomer in the absence of Ca2+. Both myristoylated and nonmyristoylated GCAP2 bind Ca2+ with high affinity. At odds with guanylate cyclase-activating protein 1 and independently of myristoylation, human GCAP2 does not significantly activate retinal GC1 in a Ca2+-dependent fashion. The IRD-associated G157R variant is characterized by a partly misfolded, molten globule-like conformation with reduced affinity for cations and prone to form aggregates, likely mediated by hydrophobic interactions. Our findings suggest that GCAP2 might be mostly implicated in processes other than phototransduction in human photoreceptors and suggest a possible molecular mechanism for G157R-associated IRD.


Asunto(s)
Calcio/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Magnesio/metabolismo , Mutación , Distrofias Retinianas/genética , Proteínas Activadoras de la Guanilato-Ciclasa/química , Humanos , Conformación Proteica , Multimerización de Proteína
5.
J Biol Chem ; 297(4): 101201, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34537244

RESUMEN

Different forms of photoreceptor degeneration cause blindness. Retinal degeneration-3 protein (RD3) deficiency in photoreceptors leads to recessive congenital blindness. We proposed that aberrant activation of the retinal membrane guanylyl cyclase (RetGC) by its calcium-sensor proteins (guanylyl cyclase-activating protein [GCAP]) causes this retinal degeneration and that RD3 protects photoreceptors by preventing such activation. We here present in vivo evidence that RD3 protects photoreceptors by suppressing activation of both RetGC1 and RetGC2 isozymes. We further suggested that insufficient inhibition of RetGC by RD3 could contribute to some dominant forms of retinal degeneration. The R838S substitution in RetGC1 that causes autosomal-dominant cone-rod dystrophy 6, not only impedes deceleration of RetGC1 activity by Ca2+GCAPs but also elevates this isozyme's resistance to inhibition by RD3. We found that RD3 prolongs the survival of photoreceptors in transgenic mice harboring human R838S RetGC1 (R838S+). Overexpression of GFP-tagged human RD3 did not improve the calcium sensitivity of cGMP production in R838S+ retinas but slowed the progression of retinal blindness and photoreceptor degeneration. Fluorescence of the GFP-tagged RD3 in the retina only partially overlapped with immunofluorescence of RetGC1 or GCAP1, indicating that RD3 separates from the enzyme before the RetGC1:GCAP1 complex is formed in the photoreceptor outer segment. Most importantly, our in vivo results indicate that, in addition to the abnormal Ca2+ sensitivity of R838S RetGC1 in the outer segment, the mutated RetGC1 becomes resistant to inhibition by RD3 in a different cellular compartment(s) and suggest that RD3 overexpression could be utilized to reduce the severity of cone-rod dystrophy 6 pathology.


Asunto(s)
Guanilato Ciclasa/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Guanilato Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Células HEK293 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Mutación , Proteínas Nucleares/genética , Receptores de Superficie Celular/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo
6.
J Biol Chem ; 296: 100362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539922

RESUMEN

Retinal degeneration-3 protein (RD3) deficiency causes photoreceptor dysfunction and rapid degeneration in the rd3 mouse strain and in human Leber's congenital amaurosis, a congenital retinal dystrophy that results in early vision loss. However, the mechanisms responsible for photoreceptor death remain unclear. Here, we tested two hypothesized biochemical events that may underlie photoreceptor death: (i) the failure to prevent aberrant activation of retinal guanylyl cyclase (RetGC) by calcium-sensor proteins (GCAPs) versus (ii) the reduction of GMP phosphorylation rate, preventing its recycling to GDP/GTP. We found that GMP converts to GDP/GTP in the photoreceptor fraction of the retina ∼24-fold faster in WT mice and ∼400-fold faster in rd3 mice than GTP conversion to cGMP by RetGC. Adding purified RD3 to the retinal extracts inhibited RetGC 4-fold but did not affect GMP phosphorylation in wildtype or rd3 retinas. RD3-deficient photoreceptors rapidly degenerated in rd3 mice that were reared in constant darkness to prevent light-activated GTP consumption via RetGC and phosphodiesterase 6. In contrast, rd3 degeneration was alleviated by deletion of GCAPs. After 2.5 months, only ∼40% of photoreceptors remained in rd3/rd3 retinas. Deletion of GCAP1 or GCAP2 alone preserved 68% and 57% of photoreceptors, respectively, whereas deletion of GCAP1 and GCAP2 together preserved 86%. Taken together, our in vitro and in vivo results support the hypothesis that RD3 prevents photoreceptor death primarily by suppressing activation of RetGC by both GCAP1 and GCAP2 but do not support the hypothesis that RD3 plays a significant role in GMP recycling.


Asunto(s)
Guanilato Ciclasa/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Sustitución de Aminoácidos , Animales , Calcio/metabolismo , GMP Cíclico/metabolismo , Femenino , Guanosina Monofosfato/metabolismo , Guanilato Ciclasa/fisiología , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación Missense , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Células Fotorreceptoras de Vertebrados/fisiología , Unión Proteica , Retina/metabolismo , Degeneración Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35409388

RESUMEN

Membrane-bound guanylate cyclases (GCs), which synthesize the second messenger guanosine-3', 5'-cyclic monophosphate, differ in their activation modes to reach the active state. Hormone peptides bind to the extracellular domain in hormone-receptor-type GCs and trigger a conformational change in the intracellular, cytoplasmic part of the enzyme. Sensory GCs that are present in rod and cone photoreceptor cells have intracellular binding sites for regulatory Ca2+-sensor proteins, named guanylate-cyclase-activating proteins. A rotation model of activation involving an α-helix rotation was described as a common activation motif among hormone-receptor GCs. We tested whether the photoreceptor GC-E underwent an α-helix rotation when reaching the active state. We experimentally simulated such a transitory switch by integrating alanine residues close to the transmembrane region, and compared the effects of alanine integration with the point mutation V902L in GC-E. The V902L mutation is found in patients suffering from retinal cone-rod dystrophies, and leads to a constitutively active state of GC-E. We analyzed the enzymatic catalytic parameters of wild-type and mutant GC-E. Our data showed no involvement of an α-helix rotation when reaching the active state, indicating a difference in hormone receptor GCs. To characterize the protein conformations that represent the transition to the active state, we investigated the protein dynamics by using a computational approach based on all-atom molecular dynamics simulations. We detected a swinging movement of the dimerization domain in the V902L mutant as the critical conformational switch in the cyclase going from the low to high activity state.


Asunto(s)
Proteínas Activadoras de la Guanilato-Ciclasa , Guanilato Ciclasa , Alanina/metabolismo , Guanilato Ciclasa/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/química , Hormonas/metabolismo , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo
8.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35328663

RESUMEN

The cone-specific guanylate cyclase-activating protein 3 (GCAP3), encoded by the GUCA1C gene, has been shown to regulate the enzymatic activity of membrane-bound guanylate cyclases (GCs) in bovine and teleost fish photoreceptors, to an extent comparable to that of the paralog protein GCAP1. To date, the molecular mechanisms underlying GCAP3 function remain largely unexplored. In this work, we report a thorough characterization of the biochemical and biophysical properties of human GCAP3, moreover, we identified an isolated case of retinitis pigmentosa, in which a patient carried the c.301G>C mutation in GUCA1C, resulting in the substitution of a highly conserved aspartate residue by a histidine (p.(D101H)). We found that myristoylated GCAP3 can activate GC1 with a similar Ca2+-dependent profile, but significantly less efficiently than GCAP1. The non-myristoylated form did not induce appreciable regulation of GC1, nor did the p.D101H variant. GCAP3 forms dimers under physiological conditions, but at odds with its paralogs, it tends to form temperature-dependent aggregates driven by hydrophobic interactions. The peculiar properties of GCAP3 were confirmed by 2 ms molecular dynamics simulations, which for the p.D101H variant highlighted a very high structural flexibility and a clear tendency to lose the binding of a Ca2+ ion to EF3. Overall, our data show that GCAP3 has unusual biochemical properties, which make the protein significantly different from GCAP1 and GCAP2. Moreover, the newly identified point mutation resulting in a substantially unfunctional protein could trigger retinitis pigmentosa through a currently unknown mechanism.


Asunto(s)
Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Retinitis Pigmentosa , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Bovinos , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/química , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo , Retinitis Pigmentosa/genética
9.
Biochemistry ; 60(41): 3058-3070, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609135

RESUMEN

Retinal guanylate cyclases (RetGCs) are regulated by a family of guanylate cyclase-activating proteins (called GCAP1-7). GCAPs form dimers that bind to Ca2+ and confer Ca2+ sensitive activation of RetGC during visual phototransduction. The GCAP5 homologue from zebrafish contains two nonconserved cysteine residues (Cys15 and Cys17) that bind to ferrous ion, which stabilizes GCAP5 dimerization and diminishes its ability to activate RetGC. Here, we present NMR and EPR-DEER structural analysis of a GCAP5 dimer in the Mg2+-bound, Ca2+-free, Fe2+-free activator state. The NMR-derived structure of GCAP5 is similar to the crystal structure of Ca2+-bound GCAP1 (root-mean-square deviation of 2.4 Å), except that the N-terminal helix of GCAP5 is extended by two residues, which allows the sulfhydryl groups of Cys15 and Cys17 to become more solvent exposed in GCAP5 to facilitate Fe2+ binding. Nitroxide spin-label probes were covalently attached to particular cysteine residues engineered in GCAP5: C15, C17, T26C, C28, N56C, C69, C105, N139C, E152C, and S159C. The intermolecular distance of each spin-label probe in dimeric GCAP5 (measured by EPR-DEER) defined restraints for calculating the dimer structure by molecular docking. The GCAP5 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H18, Y21, M25, F72, V76, and W93, as well as an intermolecular salt bridge between R22 and D71. The structural model of the GCAP5 dimer was validated by mutations (H18E/Y21E, H18A/Y21A, R22D, R22A, M25E, D71R, F72E, and V76E) at the dimer interface that disrupt dimerization of GCAP5 and affect the activation of RetGC. We propose that GCAP5 dimerization may play a role in the Fe2+-dependent regulation of cyclase activity in zebrafish photoreceptors.


Asunto(s)
Proteínas Activadoras de la Guanilato-Ciclasa/química , Proteínas de Pez Cebra/química , Secuencia de Aminoácidos , Animales , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Magnesio/química , Magnesio/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
J Biol Chem ; 295(31): 10781-10793, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32493772

RESUMEN

Retinal degeneration-3 (RD3) protein protects photoreceptors from degeneration by preventing retinal guanylyl cyclase (RetGC) activation via calcium-sensing guanylyl cyclase-activating proteins (GCAP), and RD3 truncation causes severe congenital blindness in humans and other animals. The three-dimensional structure of RD3 has recently been established, but the molecular mechanisms of its inhibitory binding to RetGC remain unclear. Here, we report the results of probing 133 surface-exposed residues in RD3 by single substitutions and deletions to identify side chains that are critical for the inhibitory binding of RD3 to RetGC. We tested the effects of these substitutions and deletions in vitro by reconstituting purified RD3 variants with GCAP1-activated human RetGC1. Although the vast majority of the surface-exposed residues tolerated substitutions without loss of RD3's inhibitory activity, substitutions in two distinct narrow clusters located on the opposite sides of the molecule effectively suppressed RD3 binding to the cyclase. The first surface-exposed cluster included residues adjacent to Leu63 in the loop connecting helices 1 and 2. The second cluster surrounded Arg101 on a surface of helix 3. Single substitutions in those two clusters drastically, i.e. up to 245-fold, reduced the IC50 for the cyclase inhibition. Inactivation of the two binding sites completely disabled binding of RD3 to RetGC1 in living HEK293 cells. In contrast, deletion of 49 C-terminal residues did not affect the apparent affinity of RD3 for RetGC. Our findings identify the functional interface on RD3 required for its inhibitory binding to RetGC, a process essential for protecting photoreceptors from degeneration.


Asunto(s)
Proteínas del Ojo/metabolismo , Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo , Sustitución de Aminoácidos , Animales , Bovinos , Proteínas del Ojo/genética , Guanilato Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Células HEK293 , Humanos , Mutación Missense , Unión Proteica , Receptores de Superficie Celular/genética
11.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445435

RESUMEN

Retinal guanylate cyclases (RetGCs) promote the Ca2+-dependent synthesis of cGMP that coordinates the recovery phase of visual phototransduction in retinal rods and cones. The Ca2+-sensitive activation of RetGCs is controlled by a family of photoreceptor Ca2+ binding proteins known as guanylate cyclase activator proteins (GCAPs). The Mg2+-bound/Ca2+-free GCAPs bind to RetGCs and activate cGMP synthesis (cyclase activity) at low cytosolic Ca2+ levels in light-activated photoreceptors. By contrast, Ca2+-bound GCAPs bind to RetGCs and inactivate cyclase activity at high cytosolic Ca2+ levels found in dark-adapted photoreceptors. Mutations in both RetGCs and GCAPs that disrupt the Ca2+-dependent cyclase activity are genetically linked to various retinal diseases known as cone-rod dystrophies. In this review, I will provide an overview of the known atomic-level structures of various GCAP proteins to understand how protein dimerization and Ca2+-dependent conformational changes in GCAPs control the cyclase activity of RetGCs. This review will also summarize recent structural studies on a GCAP homolog from zebrafish (GCAP5) that binds to Fe2+ and may serve as a Fe2+ sensor in photoreceptors. The GCAP structures reveal an exposed hydrophobic surface that controls both GCAP1 dimerization and RetGC binding. This exposed site could be targeted by therapeutics designed to inhibit the GCAP1 disease mutants, which may serve to mitigate the onset of retinal cone-rod dystrophies.


Asunto(s)
Calcio/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/química , Hierro/metabolismo , Proteínas de Pez Cebra/química , Pez Cebra/metabolismo , Animales , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Fototransducción , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Proteínas de Pez Cebra/metabolismo
12.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919796

RESUMEN

Guanylate cyclase-activating protein 1 (GCAP1) is involved in the shutdown of the phototransduction cascade by regulating the enzymatic activity of retinal guanylate cyclase via a Ca2+/cGMP negative feedback. While the phototransduction-associated role of GCAP1 in the photoreceptor outer segment is widely established, its implication in synaptic transmission to downstream neurons remains to be clarified. Here, we present clinical and biochemical data on a novel isolate GCAP1 variant leading to a double amino acid substitution (p.N104K and p.G105R) and associated with cone dystrophy (COD) with an unusual phenotype. Severe alterations of the electroretinogram were observed under both scotopic and photopic conditions, with a negative pattern and abnormally attenuated b-wave component. The biochemical and biophysical analysis of the heterologously expressed N104K-G105R variant corroborated by molecular dynamics simulations highlighted a severely compromised Ca2+-sensitivity, accompanied by minor structural and stability alterations. Such differences reflected on the dysregulation of both guanylate cyclase isoforms (RetGC1 and RetGC2), resulting in the constitutive activation of both enzymes at physiological levels of Ca2+. As observed with other GCAP1-associated COD, perturbation of the homeostasis of Ca2+ and cGMP may lead to the toxic accumulation of second messengers, ultimately triggering cell death. However, the abnormal electroretinogram recorded in this patient also suggested that the dysregulation of the GCAP1-cyclase complex further propagates to the synaptic terminal, thereby altering the ON-pathway related to the b-wave generation. In conclusion, the pathological phenotype may rise from a combination of second messengers' accumulation and dysfunctional synaptic communication with bipolar cells, whose molecular mechanisms remain to be clarified.


Asunto(s)
Calcio/metabolismo , Distrofia del Cono/genética , Distrofia del Cono/fisiopatología , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Mutación/genética , Células Bipolares de la Retina/patología , Células Fotorreceptoras Retinianas Bastones/patología , Transmisión Sináptica , Atrofia , Cationes , Distrofia del Cono/diagnóstico por imagen , Progresión de la Enfermedad , Electrorretinografía , Femenino , Fondo de Ojo , Guanilato Ciclasa/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/química , Heterocigoto , Humanos , Hidrodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Persona de Mediana Edad , Simulación de Dinámica Molecular , Fenotipo , Agregado de Proteínas , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Células Bipolares de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Tomografía de Coherencia Óptica
13.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639157

RESUMEN

Guanylate cyclase-activating protein 1 (GCAP1), encoded by the GUCA1A gene, is a neuronal calcium sensor protein involved in shaping the photoresponse kinetics in cones and rods. GCAP1 accelerates or slows the cGMP synthesis operated by retinal guanylate cyclase (GC) based on the light-dependent levels of intracellular Ca2+, thereby ensuring a timely regulation of the phototransduction cascade. We found a novel variant of GUCA1A in a patient affected by autosomal dominant cone dystrophy (adCOD), leading to the Asn104His (N104H) amino acid substitution at the protein level. While biochemical analysis of the recombinant protein showed impaired Ca2+ sensitivity of the variant, structural properties investigated by circular dichroism and limited proteolysis excluded major structural rearrangements induced by the mutation. Analytical gel filtration profiles and dynamic light scattering were compatible with a dimeric protein both in the presence of Mg2+ alone and Mg2+ and Ca2+. Enzymatic assays showed that N104H-GCAP1 strongly interacts with the GC, with an affinity that doubles that of the WT. The doubled IC50 value of the novel variant (520 nM for N104H vs. 260 nM for the WT) is compatible with a constitutive activity of GC at physiological levels of Ca2+. The structural region at the interface with the GC may acquire enhanced flexibility under high Ca2+ conditions, as suggested by 2 µs molecular dynamics simulations. The altered interaction with GC would cause hyper-activity of the enzyme at both low and high Ca2+ levels, which would ultimately lead to toxic accumulation of cGMP and Ca2+ in the photoreceptor outer segment, thus triggering cell death.


Asunto(s)
Distrofia del Cono/patología , GMP Cíclico/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Guanilato Ciclasa/metabolismo , Mutación , Retina/enzimología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Adolescente , Calcio/metabolismo , Niño , Distrofia del Cono/genética , Distrofia del Cono/metabolismo , Femenino , Humanos , Fototransducción , Masculino , Persona de Mediana Edad , Linaje , Transducción de Señal
14.
J Biol Chem ; 294(10): 3476-3488, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622141

RESUMEN

The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.


Asunto(s)
Calcio/metabolismo , Distrofias de Conos y Bastones/genética , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Guanilato Ciclasa/metabolismo , Mutación , Retina/enzimología , Muerte Celular/genética , Distrofias de Conos y Bastones/enzimología , Distrofias de Conos y Bastones/metabolismo , Distrofias de Conos y Bastones/patología , Proteínas Activadoras de la Guanilato-Ciclasa/química , Humanos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Retina/patología , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/patología
15.
J Biol Chem ; 294(37): 13729-13739, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31346032

RESUMEN

Deficiency of RD3 (retinal degeneration 3) protein causes recessive blindness and photoreceptor degeneration in humans and in the rd3 mouse strain, but the disease mechanism is unclear. Here, we present evidence that RD3 protects photoreceptors from degeneration by competing with guanylyl cyclase-activating proteins (GCAPs), which are calcium sensor proteins for retinal membrane guanylyl cyclase (RetGC). RetGC activity in rd3/rd3 retinas was drastically reduced but stimulated by the endogenous GCAPs at low Ca2+ concentrations. RetGC activity completely failed to accelerate in rd3/rd3GCAPs-/- hybrid photoreceptors, whose photoresponses remained drastically suppressed compared with the WT. However, ∼70% of the hybrid rd3/rd3GCAPs-/- photoreceptors survived past 6 months, in stark contrast to <5% in the nonhybrid rd3/rd3 retinas. GFP-tagged human RD3 inhibited GCAP-dependent activation of RetGC in vitro similarly to the untagged RD3. When transgenically expressed in rd3/rd3 mouse retinas under control of the rhodopsin promoter, the RD3GFP construct increased RetGC levels to near normal levels, restored dark-adapted photoresponses, and rescued rods from degeneration. The fluorescence of RD3GFP in rd3/rd3RD3GFP+ retinas was mostly restricted to the rod photoreceptor inner segments, whereas GCAP1 immunofluorescence was concentrated predominantly in the outer segment. However, RD3GFP became distributed to the outer segments when bred into a GCAPs-/- genetic background. These results support the hypothesis that an essential biological function of RD3 is competition with GCAPs that inhibits premature cyclase activation in the inner segment. Our findings also indicate that the fast rate of degeneration in RD3-deficient photoreceptors results from the lack of this inhibition.


Asunto(s)
Guanilato Ciclasa/metabolismo , Proteínas Nucleares/metabolismo , Receptores Sensibles al Calcio/metabolismo , Sustitución de Aminoácidos , Animales , Ceguera/genética , Calcio/metabolismo , Modelos Animales de Enfermedad , Anomalías del Ojo/genética , Femenino , Guanilato Ciclasa/fisiología , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense , Proteínas Nucleares/fisiología , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiología , Unión Proteica/genética , Receptores de Superficie Celular/metabolismo , Retina/metabolismo , Degeneración Retiniana/genética , Células Fotorreceptoras Retinianas Bastones/metabolismo
16.
Hum Mol Genet ; 27(24): 4204-4217, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30184081

RESUMEN

Guanylate Cyclase-Activating Protein 1 (GCAP1) regulates the enzymatic activity of the photoreceptor guanylate cyclases (GC), leading to inhibition or activation of the cyclic guanosine monophosphate (cGMP) synthesis depending on its Ca2+- or Mg2+-loaded state. By genetically screening a family of patients diagnosed with cone-rod dystrophy, we identified a novel missense mutation with autosomal dominant inheritance pattern (c.332A>T; p.(Glu111Val); E111V from now on) in the GUCA1A gene coding for GCAP1. We performed a thorough biochemical and biophysical investigation of wild type (WT) and E111V human GCAP1 by heterologous expression and purification of the recombinant proteins. The E111V substitution disrupts the coordination of the Ca2+ ion in the high-affinity site (EF-hand 3, EF3), thus significantly decreasing the ability of GCAP1 to sense Ca2+ (∼80-fold higher Kdapp compared to WT). Both WT and E111V GCAP1 form dimers independently on the presence of cations, but the E111V Mg2+-bound form is prone to severe aggregation over time. Molecular dynamics simulations suggest a significantly increased flexibility of both the EF3 and EF4 cation binding loops for the Ca2+-bound form of E111V GCAP1, in line with the decreased affinity for Ca2+. In contrast, a more rigid backbone conformation is observed in the Mg2+-bound state compared to the WT, which results in higher thermal stability. Functional assays confirm that E111V GCAP1 interacts with the target GC with a similar apparent affinity (EC50); however, the mutant shifts the GC inhibition out of the physiological [Ca2+] (IC50E111V ∼10 µM), thereby leading to the aberrant constitutive synthesis of cGMP under conditions of dark-adapted photoreceptors.


Asunto(s)
Distrofias de Conos y Bastones/genética , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Células Fotorreceptoras Retinianas Conos/química , Degeneración Retiniana/genética , Fenómenos Biofísicos , Calcio/metabolismo , Distrofias de Conos y Bastones/patología , GMP Cíclico/biosíntesis , GMP Cíclico/química , Regulación de la Expresión Génica/genética , Proteínas Activadoras de la Guanilato-Ciclasa/química , Humanos , Magnesio/metabolismo , Simulación de Dinámica Molecular , Mutación Missense/genética , Linaje , Agregación Patológica de Proteínas/genética , Unión Proteica , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología
17.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979372

RESUMEN

Guanylate Cyclase activating protein 1 (GCAP1) mediates the Ca2+-dependent regulation of the retinal Guanylate Cyclase (GC) in photoreceptors, acting as a target inhibitor at high [Ca2+] and as an activator at low [Ca2+]. Recently, a novel missense mutation (G86R) was found in GUCA1A, the gene encoding for GCAP1, in patients diagnosed with cone-rod dystrophy. The G86R substitution was found to affect the flexibility of the hinge region connecting the N- and C-domains of GCAP1, resulting in decreased Ca2+-sensitivity and abnormally enhanced affinity for GC. Based on a structural model of GCAP1, here, we tested the hypothesis of a cation-π interaction between the positively charged R86 and the aromatic W94 as the main mechanism underlying the impaired activator-to-inhibitor conformational change. W94 was mutated to F or L, thus, resulting in the double mutants G86R+W94L/F. The double mutants showed minor structural and stability changes with respect to the single G86R mutant, as well as lower affinity for both Mg2+ and Ca2+, moreover, substitutions of W94 abolished "phase II" in Ca2+-titrations followed by intrinsic fluorescence. Interestingly, the presence of an aromatic residue in position 94 significantly increased the aggregation propensity of Ca2+-loaded GCAP1 variants. Finally, atomistic simulations of all GCAP1 variants in the presence of Ca2+ supported the presence of two cation-π interactions involving R86, which was found to act as a bridge between W94 and W21, thus, locking the hinge region in an activator-like conformation and resulting in the constitutive activation of the target under physiological conditions.


Asunto(s)
Distrofia del Cono/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/química , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Guanilato Ciclasa/metabolismo , Aminoácidos Aromáticos/química , Calcio/metabolismo , Cationes/química , Dicroismo Circular , Distrofia del Cono/genética , Dispersión Dinámica de Luz , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Mutación Missense , Unión Proteica , Conformación Proteica , Proteínas Recombinantes , Termodinámica
18.
J Neurosci ; 38(12): 2990-3000, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29440533

RESUMEN

The Arg838Ser mutation in retinal membrane guanylyl cyclase 1 (RetGC1) has been linked to autosomal dominant cone-rod dystrophy type 6 (CORD6). It is believed that photoreceptor degeneration is caused by the altered sensitivity of RetGC1 to calcium regulation via guanylyl cyclase activating proteins (GCAPs). To determine the mechanism by which this mutation leads to degeneration, we investigated the structure and function of rod photoreceptors in two transgenic mouse lines, 362 and 379, expressing R838S RetGC1. In both lines, rod outer segments became shorter than in their nontransgenic siblings by 3-4 weeks of age, before the eventual photoreceptor degeneration. Despite the shortening of their outer segments, the dark current of transgenic rods was 1.5-2.2-fold higher than in nontransgenic controls. Similarly, the dim flash response amplitude in R838S+ rods was larger, time to peak was delayed, and flash sensitivity was increased, all suggesting elevated dark-adapted free cGMP in transgenic rods. In rods expressing R838S RetGC1, dark-current noise increased and the exchange current, detected after a saturating flash, became more pronounced. These results suggest disrupted Ca2+ phototransduction feedback and abnormally high free-Ca2+ concentration in the outer segments. Notably, photoreceptor degeneration, which typically occurred after 3 months of age in R838S RetGC1 transgenic mice in GCAP1,2+/+ or GCAP1,2+/- backgrounds, was prevented in GCAP1,2-/- mice lacking Ca2+ feedback to guanylyl cyclase. In summary, the dysregulation of guanylyl cyclase in RetGC1-linked CORD6 is a "phototransduction disease," which means it is associated with increased free-cGMP and Ca2+ levels in photoreceptors.SIGNIFICANCE STATEMENT In a mouse model expressing human membrane guanylyl cyclase 1 (RetGC1, GUCY2D), a mutation associated with early progressing congenital blindness, cone-rod dystrophy type 6 (CORD6), deregulates calcium-sensitive feedback of phototransduction to the cyclase mediated by guanylyl cyclase activating proteins (GCAPs), which are calcium-sensor proteins. The abnormal calcium sensitivity of the cyclase increases cGMP-gated dark current in the rod outer segments, reshapes rod photoresponses, and triggers photoreceptor death. This work is the first to demonstrate a direct physiological effect of GUCY2D CORD6-linked mutation on photoreceptor physiology in vivo It also identifies the abnormal regulation of the cyclase by calcium-sensor proteins as the main trigger for the photoreceptor death.


Asunto(s)
Calcio/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/metabolismo , Animales , Guanilato Ciclasa/genética , Humanos , Ratones , Ratones Transgénicos , Receptores de Superficie Celular/genética , Retina/metabolismo , Retina/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Visión Ocular
19.
J Biol Chem ; 293(19): 7457-7465, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29549122

RESUMEN

Light adaptation of photoreceptor cells is mediated by Ca2+-dependent mechanisms. In darkness, Ca2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca2+ extrusion via Na+/Ca2+, K+ exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca2+ levels in photoreceptor outer segment because of continuing Ca2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca2+-feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones.


Asunto(s)
Adaptación Ocular , Proteínas Activadoras de la Guanilato-Ciclasa/fisiología , Fototransducción/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Animales , Calcio/metabolismo , GMP Cíclico/biosíntesis , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Intercambiador de Sodio-Calcio/metabolismo
20.
Hum Mol Genet ; 26(1): 133-144, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28025326

RESUMEN

Macular dystrophy leads to progressive loss of central vision and shows symptoms similar to age-related macular degeneration. Genetic screening of patients diagnosed with macular dystrophy disclosed a novel mutation in the GUCA1A gene, namely a c.526C > T substitution leading to the amino acid substitution p.L176F in the guanylate cyclase-activating protein 1 (GCAP1). The same variant was found in three families showing an autosomal dominant mode of inheritance. For a full functional characterization of the L176F mutant we expressed and purified the mutant protein and measured key parameters of its activating properties, its Ca2+/Mg2+-binding, and its Ca2+-induced conformational changes in comparison to the wildtype protein. The mutant was less sensitive to changes in free Ca2+, resulting in a constitutively active form under physiological Ca2+-concentration, showed significantly higher activation rates than the wildtype (90-fold versus 20-fold) and interacted with an higher apparent affinity with its target guanylate cyclase. However, direct Ca2+-binding of the mutant was nearly similar to the wildtype; binding of Mg2+ occurred with higher affinity. We performed molecular dynamics simulations for comparing the Ca2+-saturated inhibiting state of GCAP1 with the Mg2+-bound activating states. The L176F mutant exhibited significantly lower flexibility, when three Ca2+ or two Mg2+ were bound forming probably the structural basis for the modified GCAP1 function.


Asunto(s)
Calcio/metabolismo , GMP Cíclico/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Degeneración Macular/genética , Mutación/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Adolescente , Adulto , Femenino , Proteínas Activadoras de la Guanilato-Ciclasa/química , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Masculino , Persona de Mediana Edad , Simulación de Dinámica Molecular , Linaje , Conformación Proteica , Células Fotorreceptoras Retinianas Conos/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA