RESUMEN
The Uba6 (E1)-Use1 (E2) ubiquitin transfer cascade is a poorly understood alternative arm of the ubiquitin proteasome system (UPS) and is required for mouse embryonic development, independent of the canonical Uba1-E2-E3 pathway. Loss of neuronal Uba6 during embryonic development results in altered patterning of neurons in the hippocampus and the amygdala, decreased dendritic spine density, and numerous behavioral disorders. The levels of the E3 ubiquitin ligase Ube3a (E6-AP) and Shank3, both linked with dendritic spine function, are elevated in the amygdala of Uba6-deficient mice, while levels of the Ube3a substrate Arc are reduced. Uba6 and Use1 promote proteasomal turnover of Ube3a in mouse embryo fibroblasts (MEFs) and catalyze Ube3a ubiquitylation in vitro. These activities occur in parallel with an independent pathway involving Uba1-UbcH7, but in a spatially distinct manner in MEFs. These data reveal an unanticipated role for Uba6 in neuronal development, spine architecture, mouse behavior, and turnover of Ube3a.
Asunto(s)
Amígdala del Cerebelo/anomalías , Región CA3 Hipocampal/anomalías , Proteínas Qc-SNARE/deficiencia , Enzimas Activadoras de Ubiquitina/deficiencia , Ubiquitinación , Amígdala del Cerebelo/enzimología , Amígdala del Cerebelo/patología , Animales , Peso Corporal , Región CA3 Hipocampal/enzimología , Región CA3 Hipocampal/patología , Células Cultivadas , Espinas Dendríticas/patología , Desarrollo Embrionario , Metabolismo Energético , Femenino , Genes Letales , Discapacidades para el Aprendizaje/metabolismo , Locomoción , Masculino , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/metabolismo , Consumo de Oxígeno , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/fisiología , Proteínas SNARE , Conducta Social , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Transporte VesicularRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease in which patients gradually become paralyzed due to loss of motor function. Many genetically inheritable mutations have been linked to ALS; however, the majority of ALS patients are considered sporadic. Therefore, there is a need for a common therapy that is effective for all ALS patients. Although there is evidence of the disease beginning in the periphery at the neuromuscular junction (NMJ), the specific processes involved in skeletal muscle and at the NMJ are still largely unknown. To study common disease mechanisms in ALS skeletal muscle, we performed RNA sequencing of skeletal myocytes differentiated from induced pluripotent stem cells (iPSCs) derived from familial ALS (with C9ORF72, SOD1, or TARDBP mutations) and sporadic ALS patients. Compared to healthy control lines, the myocytes from all ALS lines showed downregulation of four genes: BET1L, DCX, GPC3, and HNRNPK. We next measured the expression levels of these four genes in hind limb muscle samples from a rat model of familial ALS (SOD1G93A transgenic) and found that only the Bet1L gene, which encodes Bet1 Golgi Vesicular Membrane Trafficking Protein Like, was commonly downregulated. Bet1L protein appeared to be localized to the basal lamina of the NMJ, with decreased expression over time in SOD1G93A transgenic rats. Importantly, the expression levels began to decrease early in the disease process. Our results indicate that loss of Bet1L at the NMJ could be of interest for better understanding ALS disease progression.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Perfilación de la Expresión Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Unión Neuromuscular/metabolismo , Proteínas Qc-SNARE/deficiencia , Adulto , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Diferenciación Celular/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Unión Neuromuscular/patología , Proteínas Qc-SNARE/genética , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Análisis de Secuencia de ARN/métodosRESUMEN
In the developing brain, the polarity of neural progenitor cells, termed radial glial cells (RGCs), is important for neurogenesis. Intercellular adhesions, termed apical junctional complexes (AJCs), at the apical surface between RGCs are necessary for cell polarization. However, the mechanism by which AJCs are established remains unclear. Here, we show that a SNARE complex composed of SNAP23, VAMP8, and Syntaxin1B has crucial roles in AJC formation and RGC polarization. Central nervous system (CNS)-specific ablation of SNAP23 (NcKO) results in mice with severe hypoplasia of the neocortex and no hippocampus or cerebellum. In the developing NcKO brain, RGCs lose their polarity following the disruption of AJCs and exhibit reduced proliferation, increased differentiation, and increased apoptosis. SNAP23 and its partner SNAREs, VAMP8 and Syntaxin1B, are important for the localization of an AJC protein, N-cadherin, to the apical plasma membrane of RGCs. Altogether, SNARE-mediated localization of N-cadherin is essential for AJC formation and RGC polarization during brain development.
Asunto(s)
Encéfalo/patología , Polaridad Celular , Neuroglía/metabolismo , Neuroglía/patología , Proteínas Qb-SNARE/deficiencia , Proteínas Qc-SNARE/deficiencia , Animales , Apoptosis , Encéfalo/fisiopatología , Células COS , Cadherinas/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Movimiento Celular , Núcleo Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Regulación hacia Abajo , Marcha , Ratones Noqueados , Neurogénesis , Neuronas/patología , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE , Receptores Notch/metabolismo , Transducción de Señal , Sintaxina 1/metabolismo , Vesículas Transportadoras/metabolismo , beta Catenina/metabolismoRESUMEN
Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble NSF attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed the HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction in polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction in SNAP-23 in mice by monogenic deletion delayed but did not prevent progression of liver fibrosis to cirrhosis. Taken together, these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.
Asunto(s)
Citoesqueleto de Actina/ultraestructura , Células Estrelladas Hepáticas/ultraestructura , Miofibroblastos/ultraestructura , Proteínas Qb-SNARE/deficiencia , Proteínas Qc-SNARE/deficiencia , Citoesqueleto de Actina/química , Factores Despolimerizantes de la Actina/biosíntesis , Actinas/análisis , Animales , Tetracloruro de Carbono/toxicidad , Línea Celular , Movimiento Celular , Separación Celular , Técnicas de Silenciamiento del Gen , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/citología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Ratones , Proteínas Qb-SNARE/antagonistas & inhibidores , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/fisiología , Proteínas Qc-SNARE/antagonistas & inhibidores , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Transducción de Señal , Fibras de Estrés/química , Fibras de Estrés/ultraestructura , Cicatrización de Heridas , Quinasas Asociadas a rho/fisiologíaRESUMEN
Synaptosomal-associated protein 29 (SNAP29) encodes a member of the SNARE family of proteins implicated in numerous intracellular protein trafficking pathways. SNAP29 maps to the 22q11.2 region and is deleted in 90% of patients with 22q11.2 deletion syndrome (22q11.2DS). Moreover, bi-allelic SNAP29 mutations in patients are responsible for CEDNIK (cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma) syndrome. A mouse model that recapitulates abnormalities found in these syndromes is essential for uncovering the cellular basis of these disorders. In this study, we report that mice with a loss of function mutation of Snap29 on a mixed CD1;FvB genetic background recapitulate skin abnormalities associated with CEDNIK, and also phenocopy neurological and ophthalmological abnormalities found in CEDNIK and a subset of 22q11.2DS patients. Our work also reveals an unanticipated requirement for Snap29 in male fertility and supports contribution of hemizygosity for SNAP29 to the phenotypic spectrum of abnormalities found in 22q11.2DS patients.
Asunto(s)
Síndrome de DiGeorge/genética , Queratodermia Palmoplantar/genética , Síndromes Neurocutáneos/genética , Proteínas Qb-SNARE/deficiencia , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/deficiencia , Proteínas Qc-SNARE/genética , Animales , Síndrome de DiGeorge/patología , Síndrome de DiGeorge/fisiopatología , Modelos Animales de Enfermedad , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Hemicigoto , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Queratodermia Palmoplantar/patología , Queratodermia Palmoplantar/fisiopatología , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Síndromes Neurocutáneos/patología , Síndromes Neurocutáneos/fisiopatología , Fenotipo , EmbarazoRESUMEN
Platelet secretion is central to physiological and pathophysiological platelet function. SNAP23 has long been implicated as being a principal SNARE protein regulating platelet granule secretion, although this has not been definitively demonstrated in genetic models. Here, using a platelet-specific conditional SNAP23 knockout mouse, we show that absence of SNAP23 results in complete ablation of dense granule, α granule, and lysosomal secretion. Measured granule cargo content and granule numbers were normal, suggesting SNAP23 regulates fusion of granules with the extracellular membrane, rather than granule loading or formation. A macrothrombocytopenia was also observed, which, combined with ablation of secretion, resulted in a pronounced bleeding defect in a tail bleed assay and almost complete ablation of arterial and venous thrombosis. The macrothrombocytopenia was not due to reduced megakaryopoiesis but instead likely was due to the increased loss of platelets through bleeding, consistent with an increase in platelet total RNA content indicating a greater number of reticulated platelets. The data definitively show SNAP23 to be critical for granule release of any kind from platelets, irrespective of stimulus, and this is the first single gene to be shown to be universally essential for exocytosis in platelets.
Asunto(s)
Plaquetas/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Trombosis/patología , Animales , Plaquetas/patología , Señalización del Calcio/efectos de los fármacos , Proteínas Portadoras/farmacología , Gránulos Citoplasmáticos/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados , Péptidos/farmacología , Activación Plaquetaria/efectos de los fármacos , Proteínas Qb-SNARE/deficiencia , Proteínas Qc-SNARE/deficiencia , Trombopoyetina/farmacología , Trombosis/prevención & control , Trombosis de la Vena/patología , Trombosis de la Vena/prevención & controlRESUMEN
The t-SNARE protein SNAP23 conventionally functions as a component of the cellular machinery required for intracellular transport vesicle fusion with target membranes and has been implicated in the regulation of fasting glucose levels, BMI, and type 2 diabetes. Surprisingly, we observed that adipocyte-specific KO of SNAP23 in mice resulted in a temporal development of severe generalized lipodystrophy associated with adipose tissue inflammation, insulin resistance, hyperglycemia, liver steatosis, and early death. This resulted from adipocyte cell death associated with an inhibition of macroautophagy and lysosomal degradation of the proapoptotic regulator BAX, with increased BAX activation. BAX colocalized with LC3-positive autophagic vacuoles and was increased upon treatment with lysosome inhibitors. Moreover, BAX deficiency suppressed the lipodystrophic phenotype in the adipocyte-specific SNAP23-KO mice and prevented cell death. In addition, ATG9 deficiency phenocopied SNAP23 deficiency, whereas ATG7 deficiency had no effect on BAX protein levels, BAX activation, or apoptotic cell death. These data demonstrate a role for SNAP23 in the control of macroautophagy and programmed cell death through an ATG9-dependent, but ATG7-independent, pathway regulating BAX protein levels and BAX activation.
Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Células 3T3-L1 , Animales , Apoptosis/fisiología , Autofagia/fisiología , Proteína 7 Relacionada con la Autofagia/deficiencia , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Lipodistrofia/metabolismo , Lipodistrofia/patología , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteolisis , Proteínas Qb-SNARE/deficiencia , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/deficiencia , Proteínas Qc-SNARE/genética , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genéticaRESUMEN
The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment.
Asunto(s)
Islotes Pancreáticos/citología , Páncreas Exocrino/citología , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Células Acinares/metabolismo , Células Acinares/ultraestructura , Amilasas/metabolismo , Animales , Fusión Celular , Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Secreción de Insulina , Ratones Noqueados , Microscopía de Fluorescencia por Excitación Multifotónica , Modelos Biológicos , Glándula Parótida/citología , Transporte de Proteínas , Proteínas Qb-SNARE/deficiencia , Proteínas Qc-SNARE/deficiencia , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismoRESUMEN
SNARE-mediated membrane fusion is a pivotal event for a wide-variety of biological processes. SNAP-25, a neuron-specific SNARE protein, has been well-characterized and mouse embryos lacking Snap25 are viable. However, the phenotype of mice lacking SNAP-23, the ubiquitously expressed SNAP-25 homolog, remains unknown. To reveal the importance of SNAP-23 function in mouse development, we generated Snap23-null mice by homologous recombination. We were unable to obtain newborn SNAP-23-deficient mice, and analysis of pre-implantation embryos from Snap23(Δ/wt) matings revealed that Snap23-null blastocysts were dying prior to implantation at embryonic day E3.5. Thus these data reveal a critical role for SNAP-23 during embryogenesis.
Asunto(s)
Implantación del Embrión , Pérdida del Embrión/metabolismo , Pérdida del Embrión/patología , Eliminación de Gen , Proteínas Qb-SNARE/deficiencia , Proteínas Qc-SNARE/deficiencia , Alelos , Animales , Blastocisto/citología , Blastocisto/metabolismo , Cruzamiento , Muerte Celular , Femenino , Marcación de Gen , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Embarazo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismoRESUMEN
p31, the mammalian orthologue of yeast Use1p, is an endoplasmic reticulum (ER)-localized soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) that forms a complex with other SNAREs, particularly syntaxin 18. However, the role of p31 in ER function remains unknown. To determine the role of p31 in vivo, we generated p31 conditional knockout mice. We found that homozygous deletion of the p31 gene led to early embryonic lethality before embryonic day 8.5. Conditional knockout of p31 in brains and mouse embryonic fibroblasts (MEFs) caused massive apoptosis accompanied by upregulation of ER stress-associated genes. Microscopic analysis showed vesiculation and subsequent enlargement of the ER membrane in p31-deficient cells. This type of drastic disorganization in the ER tubules has not been demonstrated to date. This marked change in ER structure preceded nuclear translocation of the ER stress-related transcription factor C/EBP homologous protein (CHOP), suggesting that ER stress-induced apoptosis resulted from disruption of the ER membrane structure. Taken together, these results suggest that p31 is an essential molecule involved in the maintenance of ER morphology and that its deficiency leads to ER stress-induced apoptosis.