RESUMEN
Autonomic nerve fibres in the tumour microenvironment regulate cancer initiation and dissemination, but how nerves emerge in tumours is currently unknown. Here we show that neural progenitors from the central nervous system that express doublecortin (DCX+) infiltrate prostate tumours and metastases, in which they initiate neurogenesis. In mouse models of prostate cancer, oscillations of DCX+ neural progenitors in the subventricular zone-a neurogenic area of the central nervous system-are associated with disruption of the blood-brain barrier, and with the egress of DCX+ cells into the circulation. These cells then infiltrate and reside in the tumour, and can generate new adrenergic neurons. Selective genetic depletion of DCX+ cells inhibits the early phases of tumour development in our mouse models of prostate cancer, whereas transplantation of DCX+ neural progenitors promotes tumour growth and metastasis. In humans, the density of DCX+ neural progenitors is strongly associated with the aggressiveness and recurrence of prostate adenocarcinoma. These results reveal a unique crosstalk between the central nervous system and prostate tumours, and indicate neural targets for the treatment of cancer.
Asunto(s)
Sistema Nervioso Central/patología , Células-Madre Neurales/patología , Neurogénesis , Neoplasias de la Próstata/patología , Adenocarcinoma/patología , Neuronas Adrenérgicas/patología , Animales , Carcinogénesis , Diferenciación Celular , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Genes myc , Humanos , Ventrículos Laterales/patología , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/metabolismo , Neuropéptidos/metabolismo , Bulbo Olfatorio/patología , PronósticoRESUMEN
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor and non-motor symptoms. Motor symptoms include bradykinesia, resting tremors, muscular rigidity, and postural instability, while non-motor symptoms include cognitive impairments, mood disturbances, sleep disturbances, autonomic dysfunction, and sensory abnormalities. Some of these symptoms may be influenced by the proper hippocampus functioning, including adult neurogenesis. Doublecortin (DCX) is a microtubule-associated protein that plays a pivotal role in the development and differentiation of migrating neurons. This study utilized postmortem human brain tissue of PD and age-matched control individuals to investigate DCX expression in the context of adult hippocampal neurogenesis. Our findings demonstrate a significant reduction in the number of DCX-expressing cells within the subgranular zone (SGZ), as well as a decrease in the nuclear area of these DCX-positive cells in postmortem brain tissue obtained from PD cases, suggesting an impairment in the adult hippocampal neurogenesis. Additionally, we found that the nuclear area of DCX-positive cells correlates with pH levels. In summary, we provide evidence supporting that the process of hippocampal adult neurogenesis is likely to be compromised in PD patients before cognitive dysfunction, shedding light on potential mechanisms contributing to the neuropsychiatric symptoms observed in affected individuals. Understanding these mechanisms may offer novel insights into the pathophysiology of PD and possible therapeutic avenues.
Asunto(s)
Proteínas de Dominio Doblecortina , Proteína Doblecortina , Hipocampo , Proteínas Asociadas a Microtúbulos , Neurogénesis , Neuropéptidos , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Hipocampo/metabolismo , Masculino , Neuropéptidos/metabolismo , Neuropéptidos/biosíntesis , Anciano , Proteínas Asociadas a Microtúbulos/metabolismo , Femenino , Neurogénesis/fisiología , Anciano de 80 o más Años , Persona de Mediana EdadRESUMEN
Estrone and estradiol differentially modulate neuroplasticity and cognition. How they influence the maturation of new neurons in the adult hippocampus, however, is not known. The present study assessed the effects of estrone and estradiol on the maturation timeline of neurogenesis in the dentate gyrus (DG) of ovariectomized (a model of surgical menopause) young adult Sprague-Dawley rats using daily subcutaneous injections of 17ß-estradiol, estrone or vehicle. Rats were injected with a DNA synthesis marker, 5-bromo-2-deoxyuridine (BrdU), and were perfused 1, 2, or 3 weeks after BrdU injection and daily hormone treatment. Brains were sectioned and processed for various markers including: sex-determining region Y-box 2 (Sox2), glial fibrillary acidic protein (GFAP), antigen kiel 67 (Ki67), doublecortin (DCX), and neuronal nuclei (NeuN). Immunofluorescent labeling or co-labelling of BrdU with Sox2 (progenitor cells), Sox2/GFAP (neural progenitor cells), Ki67 (cell proliferation), DCX (immature neurons), NeuN (mature neurons) was used to examine the trajectory and maturation of adult-born neurons over time. Estrogens had early (1 week of exposure) effects on different stages of neurogenesis (neural progenitor cells, cell proliferation and early maturation of new cells into neurons) but these effects were less pronounced after prolonged treatment. Estradiol enhanced, whereas estrone reduced cell proliferation after 1 week but not after longer exposure to either estrogen. Both estrogens increased the density of immature neurons (BrdU/DCX-ir) after 1 week of exposure compared to vehicle treatment but this increased density was not sustained over longer durations of treatments to estrogens, suggesting that the enhancing effects of estrogens on neurogenesis were short-lived. Longer duration post-ovariectomy, without treatments with either of the estrogens, was associated with reduced neural progenitor cells in the DG. These results demonstrate that estrogens modulate several aspects of adult hippocampal neurogenesis differently in the short term, but may lose their ability to influence neurogenesis after long-term exposure. These findings have potential implications for treatments involving estrogens after surgical menopause.
Asunto(s)
Giro Dentado , Proteína Doblecortina , Estradiol , Estrógenos , Neurogénesis , Ovariectomía , Ratas Sprague-Dawley , Factores de Transcripción SOXB1 , Animales , Femenino , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Estradiol/farmacología , Estrógenos/farmacología , Factores de Transcripción SOXB1/metabolismo , Ratas , Estrona/farmacología , Neuropéptidos/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Bromodesoxiuridina/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Antígeno Ki-67/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Dominio Doblecortina , Antígenos NuclearesRESUMEN
INTRODUCTION: Neurogenesis in the adult brain may play an important role in memory and cognition; however, knowledge of neurogenic markers in the human brain remains limited. We compared the single-nucleus transcriptome of the hippocampus with that of other cortical regions to identify hippocampus-specific neurogenic markers. METHODS: We analyzed 26,189 nuclei from four human brains collected within 16 h of death. Clustering and annotation were performed to examine differential expression, gene ontology, and intercellular communication. DCX expression was validated by ddPCR. RESULTS: Immature markers such as DCX, CALB2, NES, SOX2, PAX6, DPYSL3, and TUBB3 were expressed in both hippocampus and prefrontal cortex, with higher levels in the prefrontal cortex. ddPCR confirmed higher expression of DCX in the prefrontal cortex. DCX was involved in both neurogenesis and neuroprotection pathways. CONCLUSION: Neurogenic markers are not definitive indicators of adult neurogenesis as their roles are more complex than previously understood.
Asunto(s)
Proteína Doblecortina , Hipocampo , Neurogénesis , Adulto , Femenino , Humanos , Masculino , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Proteínas de Dominio Doblecortina , Proteína Doblecortina/metabolismo , Hipocampo/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/metabolismo , Neuropéptidos/genética , TranscriptomaRESUMEN
BACKGROUND: Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. To investigate the neurogenic response to hypoxia-ischemia (HI) followed by normothermia (38.5 °C) or three different hypothermic temperatures (35, 33.5, or 30 °C) in the subventricular zone (SVZ) of the neonatal piglet. METHODS: Following transient cerebral HI and resuscitation, 28 newborn piglets were randomized to: normothermia or whole-body cooling to 35 °C, 33.5 °C, or 30 °C during 2-26 h (all n = 7). At 48 h, piglets were euthanized and SVZ obtained to evaluate its cellularity, pattern of cell death, radial glia length, doublecortin (DCX, neuroblasts) expression, and Ki67 (cell proliferation) and Ki67/Sox2 (neural stem/progenitor dividing) cell counts. RESULTS: Normothermic piglets showed lower total (Ki67+) and neural stem/progenitor dividing (Ki67+Sox2+) cell counts when compared to hypothermic groups. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and DCX immunohistochemistry. Cooling to 30 °C, however, revealed decreased cellularity in the lateral SVZ and shorter radial glia processes when compared with 33.5 °C. CONCLUSIONS: In a neonatal piglet model, hypothermia to 33.5 °C modulates the neurogenic response of the SVZ after HI, highlighting the potential beneficial effect of hypothermia to 33.5 °C on endogenous neurogenesis and the detrimental effect of overcooling beyond this threshold. IMPACT: Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. Hypothermia may modulate neurogenesis in the subventricular zone (SVZ) of the neonatal hypoxic-ischemic piglet. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and doublecortin immunohistochemistry; cooling to 30 °C, however, revealed decreased cellularity and shorter radial glia processes. In a neonatal piglet model, therapeutic hypothermia (33.5 °C) modulates the neurogenic response of the SVZ after hypoxia-ischemia, highlighting also the detrimental effect of overcooling beyond this threshold.
Asunto(s)
Hipotermia Inducida , Hipotermia , Hipoxia-Isquemia Encefálica , Animales , Porcinos , Ventrículos Laterales , Animales Recién Nacidos , Hipotermia/terapia , Antígeno Ki-67 , Neurogénesis , Hipoxia-Isquemia Encefálica/terapia , Isquemia , Proteínas de Dominio DoblecortinaRESUMEN
Genetically modified mice are commonly generated by the microinjection of pluripotent embryonic stem (ES) cells into wild-type host blastocysts1, producing chimeric progeny that require breeding for germline transmission and homozygosity of modified alleles. As an alternative approach and to facilitate studies of the immune system, we previously developed RAG2-deficient blastocyst complementation2. Because RAG2-deficient mice cannot undergo V(D)J recombination, they do not develop B or T lineage cells beyond the progenitor stage2: injecting RAG2-sufficient donor ES cells into RAG2-deficient blastocysts generates somatic chimaeras in which all mature lymphocytes derive from donor ES cells. This enables analysis, in mature lymphocytes, of the functions of genes that are required more generally for mouse development3. Blastocyst complementation has been extended to pancreas organogenesis4, and used to generate several other tissues or organs5-10, but an equivalent approach for brain organogenesis has not yet been achieved. Here we describe neural blastocyst complementation (NBC), which can be used to study the development and function of specific forebrain regions. NBC involves targeted ablation, mediated by diphtheria toxin subunit A, of host-derived dorsal telencephalic progenitors during development. This ablation creates a vacant forebrain niche in host embryos that results in agenesis of the cerebral cortex and hippocampus. Injection of donor ES cells into blastocysts with forebrain-specific targeting of diphtheria toxin subunit A enables donor-derived dorsal telencephalic progenitors to populate the vacant niche in the host embryos, giving rise to neocortices and hippocampi that are morphologically and neurologically normal with respect to learning and memory formation. Moreover, doublecortin-deficient ES cells-generated via a CRISPR-Cas9 approach-produced NBC chimaeras that faithfully recapitulated the phenotype of conventional, germline doublecortin-deficient mice. We conclude that NBC is a rapid and efficient approach to generate complex mouse models for studying forebrain functions; this approach could more broadly facilitate organogenesis based on blastocyst complementation.
Asunto(s)
Blastocisto/citología , Blastocisto/metabolismo , Organogénesis , Prosencéfalo/citología , Prosencéfalo/embriología , Animales , Quimera/embriología , Quimera/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Dominio Doblecortina , Femenino , Prueba de Complementación Genética , Células Germinativas/metabolismo , Hipocampo/anatomía & histología , Hipocampo/citología , Hipocampo/embriología , Hipocampo/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/deficiencia , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Neocórtex/anatomía & histología , Neocórtex/citología , Neocórtex/embriología , Neocórtex/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/deficiencia , Fenotipo , Prosencéfalo/anatomía & histología , Prosencéfalo/fisiologíaRESUMEN
Cuprizone causes consistent demyelination and oligodendrocyte damage in the mouse brain. Cu,Zn-superoxide dismutase 1 (SOD1) has neuroprotective potential against various neurological disorders, such as transient cerebral ischemia and traumatic brain injury. In this study, we investigated whether SOD1 has neuroprotective effects against cuprizone-induced demyelination and adult hippocampal neurogenesis in C57BL/6 mice, using the PEP-1-SOD1 fusion protein to facilitate the delivery of SOD1 protein into hippocampal neurons. Eight weeks feeding of cuprizone-supplemented (0.2%) diets caused a significant decrease in myelin basic protein (MBP) expression in the stratum lacunosum-moleculare of the CA1 region, the polymorphic layer of the dentate gyrus, and the corpus callosum, while ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia showed activated and phagocytic phenotypes. In addition, cuprizone treatment reduced proliferating cells and neuroblasts as shown using Ki67 and doublecortin immunostaining. Treatment with PEP-1-SOD1 to normal mice did not show any significant changes in MBP expression and Iba-1-immunoreactive microglia. However, Ki67-positive proliferating cells and doublecortin-immunoreactive neuroblasts were significantly decreased. Simultaneous treatment with PEP-1-SOD1 and cuprizone-supplemented diets did not ameliorate the MBP reduction in these regions, but mitigated the increase of Iba-1 immunoreactivity in the corpus callosum and alleviated the reduction of MBP in corpus callosum and proliferating cells, not neuroblasts, in the dentate gyrus. In conclusion, PEP-1-SOD1 treatment only has partial effects to reduce cuprizone-induced demyelination and microglial activation in the hippocampus and corpus callosum and has minimal effects on proliferating cells in the dentate gyrus.
Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Animales , Ratones , Cuprizona/toxicidad , Superóxido Dismutasa-1/metabolismo , Microglía/metabolismo , Antígeno Ki-67/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/genética , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Neurogénesis , Cuerpo Calloso , Proteínas de Dominio Doblecortina , Zinc/metabolismo , Modelos Animales de EnfermedadRESUMEN
Newborn neurons from the subventricular zone (SVZ) are essential to functional recovery following ischemic stroke. However, the number of newly generated neurons after stroke is far from enough to support a potent recovery. Adiponectin could increase neurogenesis in the dentate gyrus of hippocampus in neurodegenerative diseases. However, the effect of adiponectin on the neurogenesis from SVZ and the functional recovery after ischemic stroke was unknown, and the underlying mechanism was not specified either. The middle cerebral artery occlusion model of mice was adopted and adiponectin was administrated once a day from day 3 to 7 of reperfusion. The levels of BDNF and p-STAT3 were detected by western blotting on day 7 of reperfusion. The virus-encoded BDNF shRNA with GFAP promoter and a STAT3 inhibitor Stattic were used, respectively. Neurogenesis was evidenced by the expression of doublecortin and 5-bromo-2'-deoxyuridine (BrdU) labelling and brain atrophy was revealed by Nissl staining on day 28 of reperfusion. Neurological functional recovery was assessed by the adhesive removal test and the forepaw grip strength. We found that adiponectin increased both the doublecortin-positive cells and NeuN/BrdU double-positive cells around the injured area on day 28 of reperfusion, along with the improved long-term neurological recovery. Mechanistically, adiponectin increased the protein levels of p-STAT3 and BDNF in astrocytes on day 7 of reperfusion, while silencing BDNF diminished the adiponectin-induced neurogenesis and functional recovery. Moreover, inhibition of STAT3 not only prevented the increase of BDNF but also the improved neurogenesis and functional recovery after stroke. In conclusion, adiponectin enhances neurogenesis and functional recovery after ischemic stroke via STAT3/BDNF pathway in astrocytes.
Asunto(s)
Isquemia Encefálica , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Ataque Isquémico Transitorio/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Adiponectina/farmacología , Regulación hacia Arriba , Astrocitos/metabolismo , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacología , Accidente Cerebrovascular/metabolismo , Neurogénesis/fisiología , Infarto de la Arteria Cerebral Media/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Proteínas de Dominio Doblecortina , Isquemia Encefálica/metabolismoRESUMEN
Clinical studies have suggested that repeated exposure to anesthesia and surgery at a young age may increase the risk of cognitive impairment. Our previous research has shown that sevoflurane can affect neurogenesis and cognitive function in young animals by altering cyclophilin D (CypD) levels and mitochondrial function. Neural progenitor cells (NPCs) migration is associated with cognitive function in developing brains. However, it is unclear whether sevoflurane can regulate NPCs migration via changes in CypD. To address this question, we treated NPCs harvested from wild-type (WT) and CypD knockout (KO) mice and young WT and CypD KO mice with sevoflurane. We used immunofluorescence staining, wound healing assay, transwell assay, mass spectrometry, and Western blot to assess the effects of sevoflurane on CypD, reactive oxygen species (ROS), doublecortin levels, and NPCs migration. We showed that sevoflurane increased levels of CypD and ROS, decreased levels of doublecortin, and reduced migration of NPCs harvested from WT mice in vitro and in WT young mice. KO of CypD attenuated these effects, suggesting that a sevoflurane-induced decrease in NPCs migration is dependent on CypD. Our findings have established a system for future studies aimed at exploring the impacts of sevoflurane anesthesia on the impairment of NPCs migration.
Asunto(s)
Ciclofilinas , Células Madre , Ratones , Animales , Peptidil-Prolil Isomerasa F , Sevoflurano/farmacología , Especies Reactivas de Oxígeno , Ratones Noqueados , Proteínas de Dominio DoblecortinaRESUMEN
Recently, a population of "immature" neurons generated prenatally, retaining immaturity for long periods and finally integrating in adult circuits has been described in the cerebral cortex. Moreover, comparative studies revealed differences in occurrence/rate of different forms of neurogenic plasticity across mammals, the "immature" neurons prevailing in gyrencephalic species. To extend experimentation from laboratory mice to large-brained mammals, including humans, it is important to detect cell markers of neurogenic plasticity in brain tissues obtained from different procedures (e.g., post-mortem/intraoperative specimens vs. intracardiac perfusion). This variability overlaps with species-specific differences in antigen distribution or antibody species specificity, making it difficult for proper comparison. In this work, we detect the presence of doublecortin and Ki67 antigen, markers for neuronal immaturity and cell division, in six mammals characterized by widely different brain size. We tested seven commercial antibodies in four selected brain regions known to host immature neurons (paleocortex, neocortex) and newly born neurons (hippocampus, subventricular zone). In selected human brains, we confirmed the specificity of DCX antibody by performing co-staining with fluorescent probe for DCX mRNA. Our results indicate that, in spite of various types of fixations, most differences were due to the use of different antibodies and the existence of real interspecies variation.
Asunto(s)
Proteínas Asociadas a Microtúbulos , Neuropéptidos , Ratones , Adulto , Animales , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Dominio Doblecortina , Antígeno Ki-67/metabolismo , Neuropéptidos/metabolismo , Encéfalo/metabolismo , Neurogénesis/fisiología , Mamíferos/metabolismoRESUMEN
Melatonin is a hormone synthesized by the pineal gland with neuroprotective and neurodevelopmental effects. Also, melatonin acts as an antidepressant by modulating the generation of new neurons in the dentate gyrus of the hippocampus. The positive effects of melatonin on behavior and neural development may suggest it is used for reverting stress but also for the alterations produced by chemotherapeutic drugs influencing behavior and brain plasticity. In this sense, temozolomide, an alkylating/anti-proliferating agent used in treating brain cancer, is associated with decreased cognitive functions and depression. We hypothesized that melatonin might prevent the effects of temozolomide on depression- and anxiety-like behavior by modulating some aspects of the neurogenic process in adult Balb/C mice. Mice were treated with temozolomide (25 mg/kg) for three days of two weeks, followed by melatonin (8 mg/kg) for fourteen days. Temozolomide produced short- and long-term decrements in cell proliferation (Ki67-positive cells: 54.89% and 53.38%, respectively) and intermediate stages of the neurogenic process (doublecortin-positive cells: 68.23% and 50.08%, respectively). However, melatonin prevented the long-term effects of temozolomide with the increased number of doublecortin-positive cells (47.21%) and the immunoreactivity of 2' 3'-Cyclic-nucleotide-3 phosphodiesterase (CNPase: 82.66%), an enzyme expressed by mature oligodendrocytes, in the hilar portion of the dentate gyrus. The effects of melatonin in the temozolomide group occurred with decreased immobility in the forced swim test (45.55%) but not anxiety-like behavior. Thus, our results suggest that melatonin prevents the harmful effects of temozolomide by modulating doublecortin cells, hilar oligodendrocytes, and depression-like behavior tested in the forced swim test. Our study could point out melatonin's beneficial effects for counteracting temozolomide's side effects.
Asunto(s)
Depresión , Melatonina , Animales , Ratones , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Proteínas de Dominio Doblecortina , Melatonina/farmacología , Ratones Endogámicos BALB C , Neuronas , Temozolomida/efectos adversos , Temozolomida/farmacologíaRESUMEN
Proper brain development and function requires finely controlled mechanisms for protein turnover, and disruption of genes involved in proteostasis is a common cause of neurodevelopmental disorders. Kelch-like 15 (KLHL15) is a substrate adaptor for cullin3-containing E3 ubiquitin ligases, and KLHL15 gene mutations were recently described as a cause of severe X-linked intellectual disability. Here, we used a bioinformatics approach to identify a family of neuronal microtubule-associated proteins as KLHL15 substrates, which are themselves critical for early brain development. We biochemically validated doublecortin (DCX), also an X-linked disease protein, and doublecortin-like kinase 1 and 2 as bona fide KLHL15 interactors and mapped KLHL15 interaction regions to their tandem DCX domains. Shared with two previously identified KLHL15 substrates, a FRY tripeptide at the C-terminal edge of the second DCX domain is necessary for KLHL15-mediated ubiquitination of DCX and doublecortin-like kinase 1 and 2 and subsequent proteasomal degradation. Conversely, silencing endogenous KLHL15 markedly stabilizes these DCX domain-containing proteins and prolongs their half-life. Functionally, overexpression of KLHL15 in the presence of WT DCX reduces dendritic complexity of cultured hippocampal neurons, whereas neurons expressing FRY-mutant DCX are resistant to KLHL15. Collectively, our findings highlight the critical importance of the E3 ubiquitin ligase adaptor KLHL15 in proteostasis of neuronal microtubule-associated proteins and identify a regulatory network important for development of the mammalian nervous system.
Asunto(s)
Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Western Blotting , Células COS , Chlorocebus aethiops , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Células HEK293 , Humanos , Inmunoprecipitación , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , Neuronas/metabolismo , Neuropéptidos/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Ubiquitinación/fisiologíaRESUMEN
Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. DCX is a microtubule-associated protein which plays a key role during neurodevelopment in neuronal migration and differentiation. Dcx knockout (KO) mice show disorganized hippocampal pyramidal neurons. The CA2/CA3 pyramidal cell layer is present as two abnormal layers and disorganized CA3 KO pyramidal neurons are also more excitable than wild-type (WT) cells. To further identify abnormalities, we characterized Dcx KO hippocampal neurons at subcellular, molecular and ultrastructural levels. Severe defects were observed in mitochondria, affecting number and distribution. Also, the Golgi apparatus was visibly abnormal, increased in volume and abnormally organized. Transcriptome analyses from laser microdissected hippocampal tissue at postnatal day 60 (P60) highlighted organelle abnormalities. Ultrastructural studies of CA3 cells performed in P60 (young adult) and > 9 months (mature) tissue showed that organelle defects are persistent throughout life. Locomotor activity and fear memory of young and mature adults were also abnormal: Dcx KO mice consistently performed less well than WT littermates, with defects becoming more severe with age. Thus, we show that disruption of a neurodevelopmentally-regulated gene can lead to permanent organelle anomalies contributing to abnormal adult behavior.
Asunto(s)
Proteína Doblecortina/genética , Neuropéptidos , Animales , Proteínas de Dominio Doblecortina , Aparato de Golgi , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mutación , Neuropéptidos/genética , Neuropéptidos/metabolismo , Células Piramidales/metabolismoRESUMEN
OBJECTIVE: Pathogenic variants in DCX on the X chromosome lead to lissencephaly and subcortical band heterotopia (SBH), brain malformations caused by neuronal migration defects. Its product doublecortin (DCX) binds to microtubules to modulate microtubule polymerization. How pathogenic DCX variants affect these activities remains not fully investigated. METHODS: DCX variants were identified using whole exome and Sanger sequencing from six families with lissencephaly/SBH. We examined how these variants affect DCX functions using microtubule binding, regrowth, and colocalization assays. RESULTS: We found novel DCX variants p.Val177AlafsTer31 and p.Gly188Trp, as well as reported variants p.Arg196His, p.Lys202Met, and p.Thr203Ala. Incidentally, all of the missense variants were clustered on the C-terminal DCX domain. The microtubule binding ability was significantly decreased in p.Val177AlafsTer31, p.Gly188Trp, p.Lys202Met, and previously reported p.Asp262Gly variants. Furthermore, expression of p.Val177AlafsTer31, p.Gly188Trp, p.Arg196His, p.Lys202Met, and p.Asp262Gly variants hindered microtubule growth in cells. There were also decreases in the colocalization of p.Val177AlafsTer31, p.Thr203Ala, and p.Asp262Gly variants to microtubules. SIGNIFICANCE: Our results indicate that these variants in the C-terminal DCX domain altered microtubule binding and dynamics, which may underlie neuronal migration defects during brain development.
Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Lisencefalia , Neuropéptidos , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Lisencefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Neuropéptidos/genéticaRESUMEN
BKM120 is an inhibitor of class I phosphoinositide 3-kinases and its anti-cancer effects have been demonstrated in various solid cancer models. BKM120 is highly brain permeable and has been reported to induce mood disturbances in clinical trials. Therefore, we examined whether BKM120 produces anxiety- and depression-like behaviors in mice, as with patients receiving BKM120 in clinical trials. In this study, repeated BKM120 treatment (2.0 or 5.0 mg/kg, i.p., five times at 12-h interval) significantly induced anxiety- and depression-like behaviors in mice. Although abnormal changes in hippocampal neurogenesis have been suggested to, at least in part, associated with the pathogenesis of depression and anxiety, BKM120 did not affect the incorporation of 5-bromo-2'-deoxyuridine or the expression of doublecortin (DCX); however, it significantly enhanced the radial migration of DCX-positive cells in the dentate gyrus. BKM120-induced changes in migration were not accompanied by obvious neuronal damage in the hippocampus. Importantly, BKM120-induced anxiety- and depression-like behaviors were positively correlated with the extent of DCX-positive cell migration. Concomitantly, p-Akt expression was significantly decreased in the dentate gyrus. Moreover, the expression of p-c-Jun N-terminal kinase (JNK), p-DCX, and Ras homolog family member A (RhoA)-GTP decreased significantly, particularly in aberrantly migrated DCX-positive cells. Together, the results suggest that repeated BKM120 treatment enhances the radial migration of DCX-positive cells and induces anxiety- and depression-like behaviors by regulating the activity of Akt, JNK, DCX, and RhoA in the dentate gyrus. It also suggests that the altered migration of adult-born neurons in the dentate gyrus plays a role in mood disturbances.
Asunto(s)
Giro Dentado , Neuropéptidos , Aminopiridinas , Animales , Giro Dentado/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Hipocampo/metabolismo , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Morfolinas , Neuropéptidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Doublecortin (DCX) is a neuronal microtubule-associated protein (MAP) indispensable for brain development. Its flexibly linked doublecortin (DC) domains-NDC and CDC-mediate microtubule (MT) nucleation and stabilization, but it is unclear how. Using high-resolution time-resolved cryo-EM, we mapped NDC and CDC interactions with tubulin at different MT polymerization stages and studied their functional effects on MT dynamics using TIRF microscopy. Although coupled, each DC repeat within DCX appears to have a distinct role in MT nucleation and stabilization: CDC is a conformationally plastic module that appears to facilitate MT nucleation and stabilize tubulin-tubulin contacts in the nascent MT lattice, while NDC appears to be favored along the mature lattice, providing MT stabilization. Our structures of MT-bound DC domains also explain in unprecedented detail the DCX mutation-related brain defects observed in the clinic. This modular composition of DCX reflects a common design principle among MAPs where pseudo-repeats of tubulin/MT binding elements chaperone or stabilize distinct conformational transitions to regulate distinct stages of MT dynamic instability.
Asunto(s)
Proteínas Asociadas a Microtúbulos , Neuropéptidos , Proteínas de Dominio Doblecortina , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos , Neuropéptidos/genética , Tubulina (Proteína)/genéticaRESUMEN
BACKGROUND: Cerebral ischemic stroke can induce the proliferation of subventricular zone (SVZ) neural stem cells (NSCs) in the adult brain. However, this reparative process is restricted because of NSCs' death shortly after injury or disability of them to reach the infarct boundary. In the present study, we investigated the ability of cerebral dopamine neurotrophic factor (CDNF) on the attraction of SVZ-resident NSCs toward the lesioned area and neurological recovery in a photothrombotic (PT) stroke model of mice METHODS: The mice were assigned to three groups stroke, stroke+phosphate buffered saline (PBS), and stroke+CDNF. Migration of SVZ NSCs were evaluated by BrdU/doublecortin (DCX) double immunofluorescence method on days 7 and 14 and their differentiation were evaluated by BrdU/ Neuronal Nuclei (NeuN) double immunofluorescence method 28 days after intra-SVZ CDNF injection. Serial coronal sections were stained with cresyl violet to detect the infarct volume and a modified neurological severity score (mNSS) was performed to assess the neurological performance RESULTS: Injection of CDNF increased the proliferation of SVZ NSCs and the number of DCX-expressing neuroblasts migrated from the SVZ toward the ischemic site. It also enhanced the differentiation of migrated neuroblasts into the mature neurons in the lesioned site. Along with this, the infarct volume was significantly decreased and the neurological performance was improved as compared to other groups CONCLUSION: These results demonstrate that CDNF is capable of enhancing the proliferation of NSCs residing in the SVZ and their migration toward the ischemia region and finally, differentiation of them in stroke mice, concomitantly decreased infarct volume and improved neurological abilities were revealed.
Asunto(s)
Células-Madre Neurales , Accidente Cerebrovascular , Animales , Ratones , Ventrículos Laterales , Dopamina , Bromodesoxiuridina , Proliferación Celular , Factores de Crecimiento Nervioso , Proteínas de Dominio Doblecortina , Infarto , Fosfatos , Neurogénesis/fisiologíaRESUMEN
Fetalization associated with a delay in development and the preservation of the features of the embryonic structure of the brain dominates the ontogeny of salmonids. The aim of the present study was to comparatively analyze the distribution of the glial-type aNSC markers such as vimentin and glial fibrillar acidic protein (GFAP) and the migratory neuronal precursors such as doublecortin in the telencephalon subpallium of juvenile masu salmon, Oncorhynchus masou, in normal conditions and at 1 week after an injury to the dorsal pallium. Immunohistochemical labeling of vimentin, GFAP, and doublecortin in the pallium of intact juvenile masu salmon revealed single cells with similar morphologies corresponding to a persistent pool of neuronal and/or glial progenitors. The study of the posttraumatic process showed the presence of intensely GFAP-labeled cells of the neuroepithelial type that form reactive neurogenic zones in all areas of the subpallial zone of juvenile masu salmon. A comparative analysis of the distribution of radial glia in the dorsal, ventral, and lateral zones of the subpallium showed a maximum concentration of cells in the dorsal part of subpallium (VD) and a minimum concentration in the lateral part of subpallium VL. An essential feature of posttraumatic immunolabeling in the masu salmon subpallium is the GFAP distribution patterns that are granular intracellular in the apical periventricular zone (PVZ) and fibrillar extracellular in the subventricular (SVZ) and parenchymal zones (PZ). In contrast to those in intact animals, most of the GFAP+ granules and constitutive neurogenic niches in injured fish were localized in the basal part of the PVZ. With the traumatic injury to the subpallium, the number of Vim+ cells in the lateral and ventral regions significantly increased. At 1 week post-injury, the total immunolabeling of vimentin cells in the PVZ was replaced by the granular pattern of Vim immunodistribution spreading from the PVZ to the SVZ and deeper parenchymal layers of the brain in all areas of the subpallium. A significant increase in the number of DC+ cells was observed also in all areas of the subpallium. The number of cells increased both in the PVZ and in the SVZ, as well as in the deeper PZ. Thus, at 1 week after the injury to the dorsal pallium, the number of DC, Vim, and GFAP expressing cells of the neuroepithelial type in the subpallium of juvenile masu salmon increased, and additionally GFAP+ radial glia appeared in VD, which was absent from intact animals.
Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Proteínas de Dominio Doblecortina/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Oncorhynchus/metabolismo , Salmón/metabolismo , Vimentina/metabolismo , Animales , Células Ependimogliales/metabolismo , Filamentos Intermedios , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuronas/metabolismo , Telencéfalo/metabolismoRESUMEN
Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown.SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons.
Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Nestina/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Conos de Crecimiento/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Semaforina-3A/metabolismoRESUMEN
A need for new antidepressants is necessary since traditional antidepressants have several flaws. Neuropeptide Y(NPY) Y1 receptor (NPYY1R) and galanin (GAL) receptor 2 (GALR2) interact in several regions of the limbic system, including the hippocampus. The current study assesses the antidepressant effects induced by GALR2 and NPYY1R coactivation, together with the evaluation of cell proliferation through 5-Bromo-2'-deoxyuridine expression within the dentate gyrus of the ventral hippocampus (vDG). We employed in situ proximity ligation assay to manifest GALR2/NPYY1R heteroreceptor complexes. Additionally, the expression pattern of GALR2 and the activation of the extracellular-regulated kinases (ERK) pathway after GALR2 and NPYY1R costimulation in cell cultures were examined. GALR2 and NPYY1R coactivation resulted in sustained antidepressant behaviors in the FST after 24 h, linked to increased cell proliferation in the vDG. Moreover, an increased density of GALR2/NPYY1R heteroreceptor complexes was observed in vDG, on doublecortin-expressing neuroblasts. Recruitment of the GALR2 expression to the plasma membrane was observed upon the coactivation of GALR2 and NPYY1R in cell cultures, presumably associated to the enhanced effects on the activation of ERK pathway. GALR2 may promote the GALR2/NPYY1R heteroreceptor complexes formation in the ventral hippocampus. It may induce a transformation of cell proliferation toward a neuronal lineage by enhancement of ERK pathway. Thus, it may give the mechanism for the antidepressant behavior observed. These results may provide the basis for the development of heterobivalent agonist pharmacophores, targeting GALR2/NPYY1R heteromers, especially in the neuronal precursor cells of the dentate gyrus in the ventral hippocampus for the novel treatment of depression.