Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(16): 3275-3293.e12, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34245671

RESUMEN

Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.


Asunto(s)
Proteínas de la Matriz de Golgi/genética , Proteoma/genética , Proteómica , Estrés Fisiológico/genética , Matriz Extracelular/genética , Aparato de Golgi/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , Transducción de Señal/genética
2.
Mol Microbiol ; 121(5): 1063-1078, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38558112

RESUMEN

Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.


Asunto(s)
Leishmania , Metaloendopeptidasas , Proteínas Protozoarias , Factores de Virulencia , Animales , Sistemas CRISPR-Cas , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Proteínas de la Matriz de Golgi/genética , Leishmania/metabolismo , Leishmania/genética , Macrófagos/parasitología , Macrófagos/metabolismo , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/genética , Transporte de Proteínas , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Factores de Virulencia/metabolismo , Factores de Virulencia/genética
3.
EMBO J ; 40(20): e107766, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34516001

RESUMEN

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI-based retrograde transport vesicles, thus concentrating them in the trans-Golgi. In genome-edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis-Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.


Asunto(s)
Glicoesfingolípidos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Brefeldino A/farmacología , Ceramidas/metabolismo , Toxina del Cólera/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Expresión Génica , Glicosilación/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Toxina Shiga/farmacología
4.
Development ; 148(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128978

RESUMEN

Intramembranous ossification, which consists of direct conversion of mesenchymal cells to osteoblasts, is a characteristic process in skull development. One crucial role of these osteoblasts is to secrete collagen-containing bone matrix. However, it remains unclear how the dynamics of collagen trafficking is regulated during skull development. Here, we reveal the regulatory mechanisms of ciliary and golgin proteins required for intramembranous ossification. During normal skull formation, osteoblasts residing on the osteogenic front actively secreted collagen. Mass spectrometry and proteomic analysis determined endogenous binding between ciliary protein IFT20 and golgin protein GMAP210 in these osteoblasts. As seen in Ift20 mutant mice, disruption of neural crest-specific GMAP210 in mice caused osteopenia-like phenotypes due to dysfunctional collagen trafficking. Mice lacking both IFT20 and GMAP210 displayed more severe skull defects compared with either IFT20 or GMAP210 mutants. These results demonstrate that the molecular complex of IFT20 and GMAP210 is essential for the intramembranous ossification during skull development.


Asunto(s)
Proteínas de la Matriz de Golgi/metabolismo , Cráneo/crecimiento & desarrollo , Cráneo/metabolismo , Animales , Calcificación Fisiológica , Proteínas Portadoras/metabolismo , Diferenciación Celular , Proliferación Celular , Colágeno/metabolismo , Proteínas del Citoesqueleto/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/genética , Ratones , Ratones Noqueados , Cresta Neural/metabolismo , Osteoblastos , Osteogénesis , Proteómica
5.
Cell Mol Life Sci ; 79(4): 199, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35312866

RESUMEN

Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we disrupted the Golgi structure by knocking out GRASP55 and GRASP65 and determined its effect on the synthesis, sulfation, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout cells; while GalNAcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.


Asunto(s)
Glicosaminoglicanos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/fisiología , Metabolismo de los Hidratos de Carbono/genética , Secuencia de Carbohidratos/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Aparato de Golgi/patología , Proteínas de la Matriz de Golgi/genética , Células HeLa , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Vías Secretoras/genética , Sulfatos/metabolismo
6.
Nucleic Acids Res ; 49(14): 8277-8293, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34244781

RESUMEN

Phosphorothioate (PS) modified antisense oligonucleotide (ASO) drugs can trigger RNase H1 cleavage of cellular target RNAs to modulate gene expression. Internalized PS-ASOs must be released from membraned endosomal organelles, a rate limiting step that is not well understood. Recently we found that M6PR transport between Golgi and late endosomes facilitates productive release of PS-ASOs, raising the possibility that Golgi-mediated transport may play important roles in PS-ASO activity. Here we further evaluated the involvement of Golgi in PS-ASO activity by examining additional Golgi proteins. Reduction of certain Golgi proteins, including Golgi-58K, GCC1 and TGN46, decreased PS-ASO activity, without substantial effects on Golgi integrity. Upon PS-ASO cellular uptake, Golgi-58K was recruited to late endosomes where it colocalized with PS-ASOs. Reduction of Golgi-58K caused slower PS-ASO release from late endosomes, decreased GCC2 late endosome relocalization, and led to slower retrograde transport of M6PR from late endosomes to trans-Golgi. Late endosome relocalization of Golgi-58K requires Hsc70, and is most likely mediated by PS-ASO-protein interactions. Together, these results suggest a novel function of Golgi-58K in mediating Golgi-endosome transport and indicate that the Golgi apparatus plays an important role in endosomal release of PS-ASO, ensuring antisense activity.


Asunto(s)
Aparato de Golgi/genética , Proteínas de la Matriz de Golgi/genética , Glicoproteínas de Membrana/genética , Receptor IGF Tipo 2/genética , Transporte Biológico/genética , Endocitosis/genética , Endosomas/genética , Aparato de Golgi/efectos de los fármacos , Células HeLa , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Fosforotioatos/genética , Ribonucleasa H/genética
7.
FASEB J ; 35(8): e21763, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34245609

RESUMEN

The synaptic expression of glutamate receptors of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) type is dynamically controlled by interaction with binding partners and auxiliary proteins. These proteins can be regulated by posttranslational modifications, including ubiquitination. In this work, we investigated the regulation of glutamate receptor interacting protein-associated protein 1 (GRASP1) by ubiquitin-dependent mechanisms and its impact on surface expression and activity of synaptic AMPA receptors. Cotransfection of GFP-ubiquitin decreased myc-GRASP1 protein levels in HEK293T cells, and this effect was inhibited upon transfection of an ubiquitin mutant that cannot be ubiquitinated on Lys48. In addition, transfection of cultured hippocampal neurons with GFP-ubiquitin reduced the dendritic levels of endogenous GRASP1 and decreased the surface expression of GluA1 AMPA receptor subunits, an effect that was partly reversed by cotransfection with GRASP1. Similarly, transfection of hippocampal neurons with GFP-ubiquitin decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs) mediated by Ca2+ -impermeable AMPA receptors, and this effect was abrogated by cotransfection of GRASP1. Together, the results show a role for ubiquitination in the regulation of the postsynaptic protein GRASP1, which has an impact on the surface distribution of AMPA receptors and on their activity at the synapse.


Asunto(s)
Señalización del Calcio , Regulación de la Expresión Génica , Proteínas de la Matriz de Golgi/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores AMPA/biosíntesis , Ubiquitinación , Animales , Proteínas de la Matriz de Golgi/genética , Células HEK293 , Humanos , Ratas , Receptores AMPA/genética
8.
J Immunol ; 204(10): 2685-2696, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32229537

RESUMEN

Grasp55 is a ubiquitous Golgi stacking protein involved in autophagy, protein trafficking, and glucose deprivation sensing. The function of Grasp55 in protein trafficking has been attributed to its PDZ-mediated interaction with the C-terminal PDZ-binding motifs of protein cargos. We have recently shown that such an interaction occurs between Grasp55 and the adhesion molecule Jam-C, which plays a central role in stemness maintenance of hematopoietic and spermatogenic cells. Accordingly, we have found that Grasp55-deficient mice suffer from spermatogenesis defects similar to Jam-C knockout mice. However, whether Grasp55 is involved in the maintenance of immunohematopoietic homeostasis through regulation of protein transport and Jam-C expression remains unknown. In this study, we show that Grasp55 deficiency does not affect hematopoietic stem cell differentiation, engraftment, or mobilization, which are known to depend on expression of Grasp55-dependent protein cargos. In contrast, using an Myc-dependent leukemic model addicted to autophagy, we show that knockdown of Grasp55 in leukemic cells reduces spleen and bone marrow tumor burden upon i.v. leukemic engraftment. This is not due to reduced homing of Grasp55-deficient cells to these organs but to increased spontaneous apoptosis of Grasp55-deficient leukemic cells correlated with increased sensitivity of the cells to glucose deprivation. These results show that Grasp55 plays a role in Myc-transformed hematopoietic cells but not in normal hematopoietic cells in vivo.


Asunto(s)
Aparato de Golgi/patología , Proteínas de la Matriz de Golgi/metabolismo , Leucemia/metabolismo , Animales , Apoptosis/genética , Autofagia , Carcinogénesis , Supervivencia Celular , Proteínas de la Matriz de Golgi/genética , Hematopoyesis/genética , Leucemia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carga Tumoral
9.
Nucleic Acids Res ; 48(3): 1372-1391, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31840180

RESUMEN

Release of phosphorothioate antisense oligonucleotides (PS-ASOs) from late endosomes (LEs) is a rate-limiting step and a poorly defined process for productive intracellular ASO drug delivery. Here, we examined the role of Golgi-endosome transport, specifically M6PR shuttling mediated by GCC2, in PS-ASO trafficking and activity. We found that reduction in cellular levels of GCC2 or M6PR impaired PS-ASO release from endosomes and decreased PS-ASO activity in human cells. GCC2 relocated to LEs upon PS-ASO treatment, and M6PR also co-localized with PS-ASOs in LEs or on LE membranes. These proteins act through the same pathway to influence PS-ASO activity, with GCC2 action preceding that of M6PR. Our data indicate that M6PR binds PS-ASOs and facilitates their vesicular escape. The co-localization of M6PR and of GCC2 with ASOs is influenced by the PS modifications, which have been shown to enhance the affinity of ASOs for proteins, suggesting that localization of these proteins to LEs is mediated by ASO-protein interactions. Reduction of M6PR levels also decreased PS-ASO activity in mouse cells and in livers of mice treated subcutaneously with PS-ASO, indicating a conserved mechanism. Together, these results demonstrate that the transport machinery between LE and Golgi facilitates PS-ASO release.


Asunto(s)
Endosomas/genética , Proteínas de la Matriz de Golgi/genética , Oligonucleótidos Antisentido/genética , Receptor IGF Tipo 2/genética , Animales , Endocitosis/genética , Endosomas/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Células HeLa , Humanos , Ratones , Oligonucleótidos Fosforotioatos/genética , Transporte de Proteínas/genética , Receptor IGF Tipo 2/metabolismo
10.
PLoS Genet ; 15(3): e1008075, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30917130

RESUMEN

Human chromosome 15q25 is involved in several disease-associated structural rearrangements, including microdeletions and chromosomal markers with inverted duplications. Using comparative fluorescence in situ hybridization, strand-sequencing, single-molecule, real-time sequencing and Bionano optical mapping analyses, we investigated the organization of the 15q25 region in human and nonhuman primates. We found that two independent inversions occurred in this region after the fission event that gave rise to phylogenetic chromosomes XIV and XV in humans and great apes. One of these inversions is still polymorphic in the human population today and may confer differential susceptibility to 15q25 microdeletions and inverted duplications. The inversion breakpoints map within segmental duplications containing core duplicons of the GOLGA gene family and correspond to the site of an ancestral centromere, which became inactivated about 25 million years ago. The inactivation of this centromere likely released segmental duplications from recombination repression typical of centromeric regions. We hypothesize that this increased the frequency of ectopic recombination creating a hotspot of hominid inversions where dispersed GOLGA core elements now predispose this region to recurrent genomic rearrangements associated with disease.


Asunto(s)
Inversión Cromosómica , Cromosomas Humanos Par 15/genética , Duplicaciones Segmentarias en el Genoma , Animales , Autoantígenos/genética , Inestabilidad Cromosómica , Evolución Molecular , Dosificación de Gen , Reordenamiento Génico , Variación Genética , Proteínas de la Matriz de Golgi/genética , Hominidae/genética , Humanos , Familia de Multigenes , Filogenia , Primates/genética , Recombinación Genética , Especificidad de la Especie
11.
Genes Chromosomes Cancer ; 60(1): 49-53, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32951290

RESUMEN

Nasopharyngeal adenocarcinoma is a rare malignancy that is classified into conventional/surface- and salivary-types. Herein we report the case of a 52-year-old male who presented with a right nasopharyngeal mass and right-sided hearing loss. Diagnostic imaging revealed a circumscribed 1.7 cm mass centred in the right antero-lateral aspect of the nasopharynx. A biopsy showed a gland-forming neoplasm that was in continuity with the surface epithelium. The tumor exhibited a nested to micro-papillary architecture, with mild cytologic atypia. Immunohistochemistry demonstrated diffuse staining for CK7, SOX10, and p16; the abluminal layer was highlighted by CK5 and p63, while the luminal cells expressed CD117. The tumor was not amenable to subclassification and was diagnosed as a low-grade nasopharyngeal adenocarcinoma, not otherwise specified (NOS). Subsequent RNA sequencing was performed which identified a novel GOLGB1-BRAF fusion product. Based on its unique morphology and molecular findings, this is presumed to represent a novel subtype of nasopharyngeal adenocarcinoma. In addition to being of diagnostic relevance, this fusion may ultimately represent a potential therapeutic target.


Asunto(s)
Adenocarcinoma/genética , Proteínas de la Matriz de Golgi/genética , Neoplasias Nasofaríngeas/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas B-raf/genética , Adenocarcinoma/patología , Proteínas de la Matriz de Golgi/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Nasofaríngeas/patología , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo
12.
Carcinogenesis ; 42(9): 1208-1220, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34293111

RESUMEN

Alternative splicing of RNA transcripts plays an important role in cancer development and progression. Recent advances in RNA-seq technology have made it possible to identify alternately spliced events in various types of cancer; however, research on hepatocellular carcinoma (HCC) is still limited. Here, by performing RNA-seq profiling of HCC transcripts at isoform level, we identified tumor-specific and molecular subtype-dependent expression of the USO1 isoforms, which we designated as a normal form USO1-N (XM_001290049) and a tumor form USO1-T (NM_003715). The expression of USO1-T, but not USO1-N, was associated with worse prognostic outcomes of HCC patients. We confirmed that the expression of USO1-T promoted an aggressive phenotype of HCC, both in vitro and in vivo. In addition, structural modeling analyses revealed that USO1-T lacks an ARM10 loop encoded by exon 15, which may weaken the dimerization of USO1 and its tethering to GM130. We demonstrated that USO1-T ensured unstacking of the Golgi and accelerated the vesicles trafficking from endoplasmic reticulum (ER) to Golgi and plasma membrane in multiple liver cancer cells. ERK and GRASP65 were found to be involved in the USO1-T-mediated Golgi dysfunction. Conclusively, we provide new mechanophysical insights into the USO1 isoforms that differentially regulate the ER-Golgi network, promoting the heterogeneous HCC progression.


Asunto(s)
Carcinoma Hepatocelular/patología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Neoplasias Hepáticas/patología , Proteínas de Transporte Vesicular/metabolismo , Carcinoma Hepatocelular/metabolismo , Progresión de la Enfermedad , Exones , Proteínas de la Matriz de Golgi/genética , Humanos , Neoplasias Hepáticas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Empalme del ARN , Proteínas de Transporte Vesicular/genética
13.
J Cell Sci ; 132(2)2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30630895

RESUMEN

Skeletal muscle (SKM) differentiation is a highly regulated process leading to the formation of specialised cells with reorganised compartments and organelles, such as those of the early secretory pathway. During SKM differentiation the Golgi complex (GC) redistributes close to the nuclear envelope and in small distinct peripheral structures distributed throughout the myotube. Concurrently, GC elements closely associate with endoplasmic reticulum-exit sites (ERES). The mechanisms underlying this reorganisation and its relevance for SKM differentiation are poorly understood. Here, we show, by time-lapse imaging studies, that the changes in GC organisation involve GC fragmentation and redistribution of ERES with the formation of tightly associated GC-ERES units. We show that knockdown of GM130 (also known as GOLGA2) or p115 (also known as USO1), two regulators of the early secretory pathway, impairs GC and ERES reorganisation. This in turn results in inhibition of myotube fusion and M-cadherin (also known as CDH15) transport to the sarcolemma. Taken together, our data suggest that the correct reorganisation of the early secretory pathway components plays an important role in SKM differentiation and, thus, associated pathologies.


Asunto(s)
Autoantígenos/metabolismo , Diferenciación Celular , Proteínas de la Matriz de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismo , Vías Secretoras , Proteínas de Transporte Vesicular/metabolismo , Animales , Autoantígenos/genética , Línea Celular , Proteínas de la Matriz de Golgi/genética , Proteínas de la Membrana/genética , Ratones , Músculo Esquelético/citología , Sarcolema/genética , Proteínas de Transporte Vesicular/genética
14.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33452023

RESUMEN

Golgins are coiled-coil proteins that play prominent roles in maintaining the structure and function of the Golgi complex. However, the role of golgin proteins in phytopathogenic fungi remains poorly understood. In this study, we functionally characterized the Fusarium graminearum golgin protein RUD3, a homolog of ScRUD3/GMAP-210 in Saccharomyces cerevisiae and mammalian cells. Cellular localization observation revealed that RUD3 is located in the cis-Golgi. Deletion of RUD3 caused defects in vegetative growth, ascospore discharge, deoxynivalenol (DON) production, and virulence. Moreover, the Δrud3 mutant showed reduced expression of tri genes and impairment of the formation of toxisomes, both of which play essential roles in DON biosynthesis. We further used green fluorescent protein (GFP)-tagged SNARE protein SEC22 (SEC22-GFP) as a tool to study the transport between the endoplasmic reticulum (ER) and Golgi and observed that SEC22-GFP was retained in the cis-Golgi in the Δrud3 mutant. RUD3 contains the coiled coil (CC), GRAB-associated 2 (GA2), GRIP-related Arf binding (GRAB), and GRAB-associated 1 (GA1) domains, which except for GA1, are indispensable for normal localization and function of RUD3, whereas only CC is essential for normal RUD3-RUD3 interaction. Together, these results demonstrate how the golgin protein RUD3 mediates retrograde trafficking in the ER-to-Golgi pathway and is necessary for growth, ascospore discharge, DON biosynthesis, and pathogenicity in F. graminearumIMPORTANCEFusarium head blight (FHB) caused by the fungal pathogen Fusarium graminearum is an economically important disease of wheat and other small grain cereal crops worldwide, and limited effective control strategies are available. A better understanding of the regulation mechanisms of F. graminearum development, deoxynivalenol (DON) biosynthesis, and pathogenicity is therefore important for the development of effective control management of this disease. Golgins are attached via their extreme carboxy terminus to the Golgi membrane and are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. In this study, we systematically characterized a highly conserved Golgin protein, RUD3, and found that it is required for vegetative growth, ascospore discharge, DON production, and pathogenicity in F. graminearum Our findings provide a comprehensive characterization of the golgin family protein RUD3 in plant-pathogenic fungus, which could help to identify a new potential target for effective control of this devastating disease.


Asunto(s)
Proteínas Fúngicas/fisiología , Fusarium , Proteínas de la Matriz de Golgi/fisiología , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Fusarium/fisiología , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/genética , Filogenia , Enfermedades de las Plantas/microbiología , Reproducción Asexuada , Esporas Fúngicas , Tricotecenos/metabolismo , Triticum/microbiología , Virulencia
15.
FASEB J ; 34(4): 4918-4933, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067289

RESUMEN

Embryonic development of the alveolar sac of the lung is dependent upon multiple signaling pathways to coordinate cell growth, migration, and the formation of the extracellular matrix. Here, we identify GORAB as a regulator of embryonic alveolar sac formation as genetically disrupting the Gorab gene in mice resulted in fatal saccular maturation defects characterized by a thickened lung mesenchyme. This abnormality is not associated with impairments in cellular proliferation and death, but aberrantly increased protein kinase B (AKT) phosphorylation, elevated Vcan transcription, and enhanced migration of mesenchymal fibroblasts. Genetically augmenting PDGFRα, a potent activator of AKT in lung mesenchymal cells, recapitulated the alveolar phenotypes, whereas disrupting PDGFRα partially rescued alveolar phenotypes in Gorab-deficient mice. Overexpressing or suppressing Vcan in primary embryonic lung fibroblasts could, respectively, mimic or attenuate alveolar sac-like phenotypes in a co-culture model. These findings suggest a role of GORAB in negatively regulating AKT phosphorylation, the expression of Vcan, and the migration of lung mesenchyme fibroblasts, and suggest that alveolar sac formation resembles a patterning event that is orchestrated by molecular signaling and the extracellular matrix in the mesenchyme.


Asunto(s)
Movimiento Celular , Proteínas de la Matriz de Golgi/metabolismo , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Versicanos/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/fisiología , Proteínas de la Matriz de Golgi/genética , Pulmón/citología , Pulmón/embriología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Versicanos/genética
16.
Virol J ; 18(1): 257, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34961524

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein determines virus entry and the palmitoylation of S protein affects virus infection. An acyltransferase complex ZDHHC5/GOGAL7 that interacts with S protein was detected by affinity purification mass spectrometry (AP-MS). However, the palmitoylated cysteine residues of S protein, the effects of ZDHHC5 or GOLGA7 knockout on S protein's subcellular localization, palmitoylation, pseudovirus entry and the enzyme for depalmitoylation of S protein are not clear. METHODS: The palmitoylated cysteine residues of S protein were identified by acyl-biotin exchange (ABE) assays. The interactions between S protein and host proteins were analyzed by co-immunoprecipitation (co-IP) assays. Subcellular localizations of S protein and host proteins were analyzed by fluorescence microscopy. ZDHHC5 or GOGAL7 gene was edited by CRISPR-Cas9. The entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells were analyzed by measuring the activity of Renilla luciferase. RESULTS: In this investigation, all ten cysteine residues in the endodomain of S protein were palmitoylated. The interaction of S protein with ZDHHC5 or GOLGA7 was confirmed. The interaction and colocalization of S protein with ZDHHC5 or GOLGA7 were independent of the ten cysteine residues in the endodomain of S protein. The interaction between S protein and ZDHHC5 was independent of the enzymatic activity and the PDZ-binding domain of ZDHHC5. Three cell lines HEK293T, A549 and Hela lacking ZDHHC5 or GOLGA7 were constructed. Furthermore, S proteins still interacted with one host protein in HEK293T cells lacking the other. ZDHHC5 or GOLGA7 knockout had no significant effect on S protein's subcellular localization or palmitoylation, but significantly decreased the entry efficiencies of SARS-CoV-2 pseudovirus into A549 and Hela cells, while varying degrees of entry efficiencies may be linked to the cell types. Additionally, the S protein interacted with the depalmitoylase APT2. CONCLUSIONS: ZDHHC5 and GOLGA7 played important roles in SARS-CoV-2 pseudovirus entry, but the reason why the two host proteins affected pseudovirus entry remains to be further explored. This study extends the knowledge about the interactions between SARS-CoV-2 S protein and host proteins and probably provides a reference for the corresponding antiviral methods.


Asunto(s)
Aciltransferasas , COVID-19 , Proteínas de la Matriz de Golgi/metabolismo , Lipoilación , Glicoproteína de la Espiga del Coronavirus , Cisteína , Proteínas de la Matriz de Golgi/genética , Células HEK293 , Células HeLa , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
17.
Proc Natl Acad Sci U S A ; 115(48): 12307-12312, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30413616

RESUMEN

The trans-Golgi network (TGN) is an essential tubular-vesicular organelle derived from the Golgi and functions as an independent sorting and trafficking hub within the cell. However, the molecular regulation of TGN biogenesis remains enigmatic. Here we identified an Arabidopsis mutant loss of TGN (lot) that is defective in TGN formation and sterile due to impaired pollen tube growth in the style. The mutation leads to overstacking of the Golgi cisternae and significant reduction in the number of TGNs and vesicles surrounding the Golgi in pollen, which is corroborated by the dispersed cytosolic distribution of TGN-localized proteins. Consistently, deposition of extracellular pectin and plasma membrane localization of kinases and phosphoinositide species are also impaired. Subcellular localization analysis suggests that LOT is localized on the periphery of the Golgi cisternae, but the mutation does not affect the localization of Golgi-resident proteins. Furthermore, the yeast complementation result suggests that LOT could functionally act as a component of the guanine nucleotide exchange factor (GEF) complex of small Rab GTPase Ypt6. Taken together, these findings suggest that LOT is a critical player for TGN biogenesis in the plant lineage.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Tubo Polínico/crecimiento & desarrollo , Red trans-Golgi/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Tubo Polínico/genética , Tubo Polínico/metabolismo , Transporte de Proteínas , Red trans-Golgi/genética
18.
J Biol Chem ; 294(25): 9690-9705, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31073031

RESUMEN

The architecture and organization of the Golgi complex depend on a family of coiled-coil proteins called golgins. Golgins are thought to form extended homodimers that are C-terminally anchored to Golgi membranes, whereas their N termini extend into the cytoplasm to initiate vesicle capture. Previously, we reported that the Saccharomyces cerevisiae golgin Coy1 contributes to intra-Golgi retrograde transport and binds to the conserved oligomeric Golgi (COG) complex and multiple retrograde Golgi Q-SNAREs (where SNARE is soluble NSF-attachment protein receptor). Here, using various engineered yeast strains, membrane protein extraction and fractionation methods, and in vitro binding assays, we mapped the Coy1 regions responsible for these activities. We also report that Coy1 assembles into a megadalton-size complex and that assembly of this complex depends on the most C-terminal coiled-coil and a conserved region between this coiled-coil and the transmembrane domain of Coy1. We found that this conserved region is necessary and sufficient for binding the SNARE protein Sed5 and the COG complex. Mutagenesis of conserved arginine residues within the C-terminal coiled-coil disrupted oligomerization, binding, and function of Coy1. Our findings indicate that the stable incorporation of Coy1 into a higher-order oligomer is required for its interactions and role in maintaining Golgi homeostasis. We propose that Coy1 assembles into a docking platform that directs COG-bound vesicles toward cognate SNAREs on the Golgi membrane.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Sustancias Macromoleculares/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Aparato de Golgi , Proteínas de la Matriz de Golgi/genética , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética
19.
Hum Genet ; 139(10): 1273-1283, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32367404

RESUMEN

Unlike disorders of primary cilium, primary ciliary dyskinesia (PCD) has a much narrower clinical spectrum consistent with the limited tissue distribution of motile cilia. Nonetheless, PCD diagnosis can be challenging due to the overlapping features with other disorders and the requirement for sophisticated tests that are only available in specialized centers. We performed exome sequencing on all patients with a clinical suspicion of PCD but for whom no nasal nitric oxide test or ciliary functional assessment could be ordered. Among 81 patients (56 families), in whom PCD was suspected, 68% had pathogenic or likely pathogenic variants in established PCD-related genes that fully explain the phenotype (20 variants in 11 genes). The major clinical presentations were sinopulmonary infections (SPI) (n = 58), neonatal respiratory distress (NRD) (n = 2), laterality defect (LD) (n = 6), and combined LD/SPI (n = 15). Biallelic likely deleterious variants were also encountered in AKNA and GOLGA3, which we propose as novel candidates in a lung phenotype that overlaps clinically with PCD. We also encountered a PCD phenocopy caused by a pathogenic variant in ITCH, and a pathogenic variant in CEP164 causing Bardet-Biedl syndrome and PCD presentation as a very rare example of the dual presentation of these two disorders of the primary and motile cilia. Exome sequencing is a powerful tool that can help "democratize" the diagnosis of PCD, which is currently limited to highly specialized centers.


Asunto(s)
Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Predisposición Genética a la Enfermedad , Neumonía/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Sinusitis/genética , Autoantígenos/genética , Cilios/patología , Trastornos de la Motilidad Ciliar/complicaciones , Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/patología , Consanguinidad , Proteínas de Unión al ADN/genética , Femenino , Expresión Génica , Proteínas de la Matriz de Golgi/genética , Humanos , Masculino , Proteínas de Microtúbulos/genética , Mutación , Proteínas Nucleares/genética , Linaje , Fenotipo , Neumonía/complicaciones , Neumonía/diagnóstico , Neumonía/patología , Proteínas Represoras/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/complicaciones , Síndrome de Dificultad Respiratoria del Recién Nacido/diagnóstico , Síndrome de Dificultad Respiratoria del Recién Nacido/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Arabia Saudita , Sinusitis/complicaciones , Sinusitis/diagnóstico , Sinusitis/patología , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
20.
J Cell Sci ; 131(9)2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29643119

RESUMEN

Almost every cell in the human body extends a primary cilium. Defective cilia function leads to a set of disorders known as ciliopathies, which are characterised by debilitating developmental defects that affect many tissues. Here, we report a new role for regulator of calcineurin 2 (RCAN2) in primary cilia function. It localises to centrioles and the basal body and is required to maintain normal cilia length. RCAN2 was identified as the most strongly upregulated gene from a comparative RNAseq analysis of cells in which expression of the Golgi matrix protein giantin had been abolished by gene editing. In contrast to previous work where we showed that depletion of giantin by RNAi results in defects in ciliogenesis and in cilia length control, giantin knockout cells generate normal cilia after serum withdrawal. Furthermore, giantin knockout zebrafish show increased expression of RCAN2. Importantly, suppression of RCAN2 expression in giantin knockout cells results in the same defects in the control of cilia length that are seen upon RNAi of giantin itself. Together, these data define RCAN2 as a regulator of cilia function that can compensate for the loss of giantin function.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Proteínas Musculares/metabolismo , Animales , Centriolos/genética , Cilios/genética , Técnicas de Inactivación de Genes , Proteínas de la Matriz de Golgi/genética , Proteínas de la Matriz de Golgi/metabolismo , Humanos , Proteínas Musculares/genética , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA