Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 588(7839): 658-663, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053563

RESUMEN

Pathological degeneration of axons disrupts neural circuits and represents one of the hallmarks of neurodegeneration1-4. Sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) is a central regulator of this neurodegenerative process5-8, and its Toll/interleukin-1 receptor (TIR) domain exerts its pro-neurodegenerative action through NADase activity9,10. However, the mechanisms by which the activation of SARM1 is stringently controlled are unclear. Here we report the cryo-electron microscopy structures of full-length SARM1 proteins. We show that NAD+ is an unexpected ligand of the armadillo/heat repeat motifs (ARM) domain of SARM1. This binding of NAD+ to the ARM domain facilitated the inhibition of the TIR-domain NADase through the domain interface. Disruption of the NAD+-binding site or the ARM-TIR interaction caused constitutive activation of SARM1 and thereby led to axonal degeneration. These findings suggest that NAD+ mediates self-inhibition of this central pro-neurodegenerative protein.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/metabolismo , NAD/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Animales , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Sitios de Unión , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Femenino , Células HEK293 , Humanos , Ligandos , Ratones , Modelos Moleculares , NAD+ Nucleosidasa/metabolismo , Unión Proteica , Dominios Proteicos , Células Sf9
2.
Proc Natl Acad Sci U S A ; 119(35): e2208457119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994671

RESUMEN

The nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown. Here, we describe the chemical proteomic discovery of a series of tryptoline acrylamides that site-specifically and stereoselectively modify cysteine-311 (C311) in the noncatalytic, autoregulatory armadillo repeat (ARM) domain of SARM1. These covalent compounds inhibit the NADase activity of WT-SARM1, but not C311A or C311S SARM1 mutants, show a high degree of proteome-wide selectivity for SARM1_C311 and stereoselectively block vincristine- and vacor-induced neurite degeneration in primary rodent dorsal root ganglion neurons. Our findings describe selective, covalent inhibitors of SARM1 targeting an allosteric cysteine, pointing to a potentially attractive therapeutic strategy for axon degeneration-dependent forms of neurological disease.


Asunto(s)
Proteínas del Dominio Armadillo , Cisteína , Proteínas del Citoesqueleto , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Axones , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Homeostasis , NAD+ Nucleosidasa , Proteómica
3.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468661

RESUMEN

Axon degeneration is an active program of self-destruction mediated by the protein SARM1. In healthy neurons, SARM1 is autoinhibited and, upon injury autoinhibition is relieved, activating the SARM1 enzyme to deplete NAD+ and induce axon degeneration. SARM1 forms a homomultimeric octamer with each monomer composed of an N-terminal autoinhibitory ARM domain, tandem SAM domains that mediate multimerization, and a C-terminal TIR domain encoding the NADase enzyme. Here we discovered multiple intramolecular and intermolecular domain interfaces required for SARM1 autoinhibition using peptide mapping and cryo-electron microscopy (cryo-EM). We identified a candidate autoinhibitory region by screening a panel of peptides derived from the SARM1 ARM domain, identifying a peptide mediating high-affinity inhibition of the SARM1 NADase. Mutation of residues in full-length SARM1 within the region encompassed by the peptide led to loss of autoinhibition, rendering SARM1 constitutively active and inducing spontaneous NAD+ and axon loss. The cryo-EM structure of SARM1 revealed 1) a compact autoinhibited SARM1 octamer in which the TIR domains are isolated and prevented from oligomerization and enzymatic activation and 2) multiple candidate autoinhibitory interfaces among the domains. Mutational analysis demonstrated that five distinct interfaces are required for autoinhibition, including intramolecular and intermolecular ARM-SAM interfaces, an intermolecular ARM-ARM interface, and two ARM-TIR interfaces formed between a single TIR and two distinct ARM domains. These autoinhibitory regions are not redundant, as point mutants in each led to constitutively active SARM1. These studies define the structural basis for SARM1 autoinhibition and may enable the development of SARM1 inhibitors that stabilize the autoinhibited state.


Asunto(s)
Proteínas del Dominio Armadillo/química , Proteínas del Citoesqueleto/química , Ganglios Espinales/enzimología , NAD/química , Neuronas/enzimología , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Ganglios Espinales/citología , Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Mutación , NAD/metabolismo , Neuronas/citología , Péptidos/síntesis química , Cultivo Primario de Células , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
4.
Brain ; 144(10): 3226-3238, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33964142

RESUMEN

Axonal degeneration is an early and ongoing event that causes disability and disease progression in many neurodegenerative disorders of the peripheral and central nervous systems. Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of morbidity and the main cause of dose reductions and discontinuations in cancer treatment. Preclinical evidence indicates that activation of the Wallerian-like degeneration pathway driven by sterile alpha and TIR motif containing 1 (SARM1) is responsible for axonopathy in CIPN. SARM1 is the central driver of an evolutionarily conserved programme of axonal degeneration downstream of chemical, inflammatory, mechanical or metabolic insults to the axon. SARM1 contains an intrinsic NADase enzymatic activity essential for its pro-degenerative functions, making it a compelling therapeutic target to treat neurodegeneration characterized by axonopathies of the peripheral and central nervous systems. Small molecule SARM1 inhibitors have the potential to prevent axonal degeneration in peripheral and central axonopathies and to provide a transformational disease-modifying treatment for these disorders. Using a biochemical assay for SARM1 NADase we identified a novel series of potent and selective irreversible isothiazole inhibitors of SARM1 enzymatic activity that protected rodent and human axons in vitro. In sciatic nerve axotomy, we observed that these irreversible SARM1 inhibitors decreased a rise in nerve cADPR and plasma neurofilament light chain released from injured sciatic nerves in vivo. In a mouse paclitaxel model of CIPN we determined that Sarm1 knockout mice prevented loss of axonal function, assessed by sensory nerve action potential amplitudes of the tail nerve, in a gene-dosage-dependent manner. In that CIPN model, the irreversible SARM1 inhibitors prevented loss of intraepidermal nerve fibres induced by paclitaxel and provided partial protection of axonal function assessed by sensory nerve action potential amplitude and mechanical allodynia.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Axones/efectos de los fármacos , Proteínas del Citoesqueleto/antagonistas & inhibidores , Paclitaxel/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Tiazoles/uso terapéutico , Animales , Antineoplásicos Fitogénicos/toxicidad , Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/genética , Axones/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Noqueados , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Tiazoles/farmacología
5.
Biochemistry ; 59(8): 933-942, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32049506

RESUMEN

Sterile alpha and toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) plays a pivotal role in triggering the neurodegenerative processes that underlie peripheral neuropathies, traumatic brain injury, and neurodegenerative diseases. Importantly, SARM1 knockdown or knockout prevents degeneration, thereby demonstrating that SARM1 is a promising therapeutic target. Recently, SARM1 was shown to promote neurodegeneration via its ability to hydrolyze NAD+, forming nicotinamide and ADP ribose (ADPR). Herein, we describe the initial kinetic characterization of full-length SARM1, as well as the truncated constructs corresponding to the SAM1-2TIR and TIR domains, highlighting the distinct challenges that have complicated efforts to characterize this enzyme. Moreover, we show that bacterially expressed full-length SARM1 (kcat/KM = 6000 ± 2000 M-1 s-1) is at least as active as the TIR domain alone (kcat/KM = 1500 ± 300 M-1 s-1). Finally, we show that the SARM1 hydrolyzes NAD+ via an ordered uni-bi reaction in which nicotinamide is released prior to ADPR.


Asunto(s)
Proteínas del Dominio Armadillo/química , Proteínas del Citoesqueleto/química , Adenosina Difosfato Ribosa/química , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/aislamiento & purificación , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/química , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/aislamiento & purificación , Pruebas de Enzimas , Inhibidores Enzimáticos/química , Humanos , Cinética , Niacinamida/análogos & derivados , Dominios Proteicos , Receptores Acoplados a Proteínas G/química
6.
Bioorg Med Chem ; 28(18): 115644, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32828421

RESUMEN

Sterile Alpha and Toll Interleukin Receptor Motif-containing protein 1 (SARM1) is a key therapeutic target for diseases that exhibit Wallerian-like degeneration; Wallerian degeneration is characterized by degeneration of the axon distal to the site of injury. These diseases include traumatic brain injury, peripheral neuropathy, and neurodegenerative diseases. SARM1 promotes neurodegeneration by catalyzing the hydrolysis of NAD+ to form a mixture of ADPR and cADPR. Notably, SARM1 knockdown prevents degeneration, indicating that SARM1 inhibitors will likely be efficacious in treating these diseases. Consistent with this hypothesis is the observation that NAD+ supplementation is axoprotective. To identify compounds that block the NAD+ hydrolase activity of SARM1, we developed and performed a high-throughput screen (HTS). This HTS assay exploits an NAD+ analog, etheno-NAD+ (ENAD) that fluoresces upon cleavage of the nicotinamide moiety. From this screen, we identified berberine chloride and zinc chloride as the first noncompetitive inhibitors of SARM1. Though modest in potency, the noncompetitive mode of inhibition, suggests the presence of an allosteric binding pocket on SARM1 that can be targeted for future therapeutic development. Additionally, zinc inhibition and site-directed mutagenesis reveals that cysteines 629 and 635 are critical for SARM1 catalysis, highlighting these sites for the design of inhibitors targeting SARM1.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Berberina/química , Cloruros/química , Proteínas del Citoesqueleto/antagonistas & inhibidores , Degeneración Walleriana/tratamiento farmacológico , Compuestos de Zinc/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Axones/metabolismo , Berberina/metabolismo , Berberina/farmacología , Sitios de Unión , Catálisis , Cloruros/metabolismo , Cloruros/farmacología , Técnicas de Silenciamiento del Gen , Ensayos Analíticos de Alto Rendimiento , Humanos , Hidrolasas/metabolismo , Mutagénesis , NAD/metabolismo , Niacinamida/química , Unión Proteica , Compuestos de Zinc/metabolismo , Compuestos de Zinc/farmacología
7.
EMBO Rep ; 12(10): 1047-54, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21869817

RESUMEN

We report the identification of yan, an ETS-domain transcription factor belonging to the Drosophila epidermal growth factor receptor (DER) pathway, as an antagonist of the Wingless signalling pathway. We demonstrate that cells lacking yan function in the Drosophila eye show increased Wingless pathway activity, and inhibition of Wingless signalling in yan(-/-) cells rescues the yan mutant phenotype. Biochemical analysis shows that Yan physically associates with Armadillo, a crucial effector of the Wingless pathway, thereby suggesting a direct regulatory mechanism. We conclude that yan represents a new and unsuspected molecular link between the Wingless and DER pathways.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas del Ojo/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Proteína Wnt1/metabolismo , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Línea Celular , Drosophila/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Ojo/metabolismo , Proteínas del Ojo/genética , Expresión Génica , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Unión Proteica , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Factores de Transcripción/antagonistas & inhibidores
8.
Neuron ; 109(18): 2864-2883.e8, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34384519

RESUMEN

The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.


Asunto(s)
Proteínas del Dominio Armadillo/biosíntesis , Axones/metabolismo , Proteínas del Citoesqueleto/biosíntesis , Proteínas de Drosophila/biosíntesis , Evolución Molecular , Morfogénesis/fisiología , Proteínas Serina-Treonina Quinasas/biosíntesis , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Línea Celular Tumoral , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Embarazo , Proteínas Serina-Treonina Quinasas/genética
9.
Exp Neurol ; 345: 113842, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34403688

RESUMEN

SARM1 is an inducible NAD+ hydrolase that is the central executioner of pathological axon loss. Recently, we elucidated the molecular mechanism of SARM1 activation, demonstrating that SARM1 is a metabolic sensor regulated by the levels of NAD+ and its precursor, nicotinamide mononucleotide (NMN), via their competitive binding to an allosteric site within the SARM1 N-terminal ARM domain. In healthy neurons with abundant NAD+, binding of NAD+ blocks access of NMN to this allosteric site. However, with injury or disease the levels of the NAD+ biosynthetic enzyme NMNAT2 drop, increasing the NMN/ NAD+ ratio and thereby promoting NMN binding to the SARM1 allosteric site, which in turn induces a conformational change activating the SARM1 NAD+ hydrolase. Hence, NAD+ metabolites both regulate the activation of SARM1 and, in turn, are regulated by the SARM1 NAD+ hydrolase. This dual upstream and downstream role for NAD+ metabolites in SARM1 function has hindered mechanistic understanding of axoprotective mechanisms that manipulate the NAD+ metabolome. Here we reevaluate two methods that potently block axon degeneration via modulation of NAD+ related metabolites, 1) the administration of the NMN biosynthesis inhibitor FK866 in conjunction with the NAD+ precursor nicotinic acid riboside (NaR) and 2) the neuronal expression of the bacterial enzyme NMN deamidase. We find that these approaches not only lead to a decrease in the levels of the SARM1 activator NMN, but also an increase in the levels of the NAD+ precursor nicotinic acid mononucleotide (NaMN). We show that NaMN inhibits SARM1 activation, and demonstrate that this NaMN-mediated inhibition is important for the long-term axon protection induced by these treatments. Analysis of the NaMN-ARM domain co-crystal structure shows that NaMN competes with NMN for binding to the SARM1 allosteric site and promotes the open, autoinhibited configuration of SARM1 ARM domain. Together, these results demonstrate that the SARM1 allosteric pocket can bind a diverse set of metabolites including NMN, NAD+, and NaMN to monitor cellular NAD+ homeostasis and regulate SARM1 NAD+ hydrolase activity. The relative promiscuity of the allosteric site may enable the development of potent pharmacological inhibitors of SARM1 activation for the treatment of neurodegenerative disorders.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/metabolismo , Mononucleótido de Nicotinamida/análogos & derivados , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Proteínas del Dominio Armadillo/genética , Células Cultivadas , Proteínas del Citoesqueleto/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mononucleótido de Nicotinamida/farmacología
10.
Elife ; 102021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33944777

RESUMEN

SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. Library screening identified a derivative of nisoldipine (NSDP) as a covalent inhibitor of SARM1 that reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, protecting axons from degeneration. The Cryo-EM structure showed that SARM1 was locked into an inactive conformation by the inhibitor, uncovering a potential neuroprotective mechanism of dihydropyridines.


Asunto(s)
Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Colorantes Fluorescentes , Neuroprotección/efectos de los fármacos , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Dihidropiridinas/uso terapéutico , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Preparaciones Farmacéuticas
11.
Trends Pharmacol Sci ; 41(4): 281-293, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32107050

RESUMEN

Attempts to develop neuroprotective treatments for neurodegenerative disorders have not yet been clinically successful. Axonal degeneration has been recognized as a predominant driver of disability and disease progression in central nervous system (CNS) diseases such as amyotrophic lateral sclerosis (ALS), multiple sclerosis, and Parkinson's disease, peripheral nervous system (PNS) disorders such as chemotherapy-induced, diabetic, and inherited neuropathies, and ocular disorders, such as glaucoma. In recent years, sterile alpha and TIR motif containing 1 (SARM1) has emerged as the first compelling axonal-specific target for therapeutic intervention. In this review, we discuss the role of axonal degeneration in neurodegenerative disorders, with a focus on SARM1 and the discovery of its intrinsic enzymatic function. Establishment of neurofilament light chain (NfL) as a reliable biomarker of axonal damage, and the availability of an ultrasensitive method for measuring NfL in plasma or serum, provide translational tools to make development of axonal protective, SARM1 inhibitors a viable approach to treat multiple neurodegenerative disorders.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Axones/patología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/efectos de los fármacos , Axones/enzimología , Proteínas del Citoesqueleto/metabolismo , Humanos , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/enzimología
12.
Cell Chem Biol ; 27(1): 1-13, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31761689

RESUMEN

Wallerian degeneration is a neuronal death pathway that is triggered in response to injury or disease. Death was thought to occur passively until the discovery of a mouse strain, i.e., Wallerian degeneration slow (WLDS), which was resistant to degeneration. Given that the WLDS mouse encodes a gain-of-function fusion protein, its relevance to human disease was limited. The later discovery that SARM1 (sterile alpha and toll/interleukin receptor [TIR] motif-containing protein 1) promotes Wallerian degeneration suggested the existence of a pathway that might be targeted therapeutically. More recently, SARM1 was found to execute degeneration by hydrolyzing NAD+. Notably, SARM1 knockdown or knockout prevents neuron degeneration in response to a range of insults that lead to peripheral neuropathy, traumatic brain injury, and neurodegenerative disease. Here, we discuss the role of SARM1 in Wallerian degeneration and the opportunities to target this enzyme therapeutically.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Citoesqueleto/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Degeneración Walleriana/tratamiento farmacológico , Animales , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/química , Degeneración Walleriana/metabolismo
13.
Brain Res ; 1727: 146539, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689415

RESUMEN

The programmed axon degeneration pathway has emerged as an important process contributing to the pathogenesis of several neurological diseases. The most crucial events in this pathway include activation of the central executioner SARM1 and NAD+ depletion, which leads to an energetic failure and ultimately axon destruction. Given the prevalence of this pathway, it is not surprising that inhibitory therapies are currently being developed in order to treat multiple neurological diseases with the same therapy. Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of neurological diseases that may also benefit from this therapeutic approach. To evaluate the appropriateness of this strategy, the contribution of the programmed axon degeneration pathway to the pathogenesis of different CMT subtypes is being actively investigated. The subtypes CMT1A, CMT1B and CMT2D are the first to have been examined. Based on the results from these studies and advances in developing therapies to block the programmed axon degeneration pathway, promising therapeutics for CMT are now on the horizon.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/terapia , Terapia Genética , Terapia Molecular Dirigida , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Axones/patología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Humanos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Nicotinamida-Nucleótido Adenililtransferasa/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa/genética
14.
J Exp Med ; 216(2): 294-303, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30642945

RESUMEN

Axonal degeneration (AxD) following nerve injury, chemotherapy, and in several neurological disorders is an active process driven by SARM1, an injury-activated NADase. Axons of SARM1-null mice exhibit greatly delayed AxD after transection and in models of neurological disease, suggesting that inhibiting SARM1 is a promising strategy to reduce pathological AxD. Unfortunately, no drugs exist to target SARM1. We, therefore, developed SARM1 dominant-negatives that potently block AxD in cellular models of axotomy and neuropathy. To assess efficacy in vivo, we used adeno-associated virus-mediated expression of the most potent SARM1 dominant-negative and nerve transection as a model of severe AxD. While axons of vehicle-treated mice degenerate rapidly, axons of mice expressing SARM1 dominant-negative can remain intact for >10 d after transection, similar to the protection observed in SARM1-null mice. We thus developed a novel in vivo gene therapeutic to block pathological axon degeneration by inhibiting SARM1, an approach that may be applied clinically to treat manifold neurodegenerative diseases characterized by axon loss.


Asunto(s)
Proteínas del Dominio Armadillo , Axones/metabolismo , Proteínas del Citoesqueleto , Dependovirus , Marcación de Gen , Terapia Genética , Degeneración Nerviosa , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/terapia , Transducción Genética
15.
Pain ; 160 Suppl 1: S17-S22, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31008845

RESUMEN

Peripheral neuropathy is the most common neurodegenerative disease affecting hundreds of millions of patients worldwide and is an important cause of chronic pain. Typical peripheral neuropathies are characterized by dysesthesias including numbness, crawling skin, a sensation of "pins and needles," and burning and stabbing pain. In addition, peripheral neuropathy can affect the motor and autonomic systems leading to symptoms such as weakness, constipation, and dysregulation of blood pressure. Peripheral neuropathies can be either hereditary or acquired and are a common consequence of diabetes and treatment with chemotherapy agents. Many neuropathies are due to degeneration of long axons; however, the mechanisms driving axon loss were unknown, and so no therapies are available to preserve vulnerable axons and prevent the development of peripheral neuropathy. With the recent identification of SARM1 as an injury-activated NADase enzyme that triggers axon degeneration, there is now a coherent picture emerging for the mechanism of axonal self-destruction. Here, we will present evidence that inhibiting the SARM1 pathway can prevent the development of peripheral neuropathy, describe the emerging mechanistic understanding of the axon degeneration program, and discuss how these mechanistic insights may be translated to the clinic for the prevention and treatment of peripheral neuropathy and other neurodegenerative disorders.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/metabolismo , Degeneración Nerviosa/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Animales , Axones/efectos de los fármacos , Axones/patología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/patología
16.
Nat Commun ; 9(1): 2829, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026490

RESUMEN

Recent studies suggest the emerging roles of armadillo (ARM) family proteins in tumor progression. However, the functions and underlying mechanisms of ARM members in tumorigenesis and aggressiveness of neuroblastoma (NB) remain to be determined. Herein, we identify armadillo repeat containing 12 (ARMC12) as an ARM member associated with NB progression. ARMC12 promotes the growth and aggressiveness of NB cell lines. Mechanistically, ARMC12 physically interacts with retinoblastoma binding protein 4 (RBBP4) to facilitate the formation and activity of polycomb repressive complex 2, resulting in transcriptional repression of tumor suppressive genes. Blocking the interaction between ARMC12 and RBBP4 by cell-penetrating inhibitory peptide activates the downstream gene expression and suppresses the tumorigenesis and aggressiveness of NB cells. Both ARMC12 and RBBP4 are upregulated in NB tissues, and are associated with unfavorable outcome of patients. These findings suggest the crucial roles of ARMC12 in tumor progression and a potential therapeutic approach for NB.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Neuroblastoma/genética , Proteína 4 de Unión a Retinoblastoma/genética , Animales , Antineoplásicos/farmacología , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Péptidos de Penetración Celular/farmacología , Progresión de la Enfermedad , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/mortalidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Pronóstico , Unión Proteica , Proteína 4 de Unión a Retinoblastoma/antagonistas & inhibidores , Proteína 4 de Unión a Retinoblastoma/metabolismo , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Biosci ; 32(6): 1133-8, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17954973

RESUMEN

Beta-catenin is the key transducer of Wingless-type MMTV integration site family member (Wnt) signalling, upregulation of which is the cause of cancer of the colon and other tissues. In the absence of Wnt signals, beta-catenin is targeted to ubiquitin-proteasome-mediated degradation. Here we present the functional characterization of E3-ubiquitin ligase encoded by cul4B. RNAi-mediated knock-down of Cul4B in a mouse cell line C3H T10 (1/2) results in an increase in beta-catenin levels. Loss-of-function mutation in Drosophila cul4 also shows increased beta-catenin/Armadillo levels in developing embryos and displays a characteristic naked-cuticle phenotype. Immunoprecipitation experiments suggest that Cul4B and beta-catenin are part of a signal complex in Drosophila, mouse and human. These preliminary results suggest a conserved role for Cul4B in the regulation of beta-catenin levels.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas Cullin/fisiología , Regulación hacia Abajo/fisiología , Proteínas de Drosophila/fisiología , Factores de Transcripción/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/fisiología , beta Catenina/antagonistas & inhibidores , Animales , Animales Modificados Genéticamente , Proteínas del Dominio Armadillo/metabolismo , Línea Celular Tumoral , Proteínas Cullin/genética , Regulación hacia Abajo/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Humanos , Larva/genética , Ratones , Ratones Endogámicos C3H , Factores de Transcripción/metabolismo , beta Catenina/metabolismo
18.
Cell Rep ; 21(1): 10-16, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978465

RESUMEN

Studies with the WldS mutant mouse have shown that axon and synapse pathology in several models of neurodegenerative diseases are mechanistically related to injury-induced axon degeneration (Wallerian degeneration). Crucially, an absence of SARM1 delays Wallerian degeneration as robustly as WldS, but their relative capacities to confer long-term protection against related, non-injury axonopathy and/or synaptopathy have not been directly compared. While Sarm1 deletion or WldS can rescue perinatal lethality and widespread Wallerian-like axonopathy in young NMNAT2-deficient mice, we report that an absence of SARM1 enables these mice to survive into old age with no overt phenotype, whereas those rescued by WldS invariantly develop a progressive neuromuscular defect in their hindlimbs from around 3 months of age. We therefore propose Sarm1 deletion as a more reliable tool than WldS for investigating Wallerian-like mechanisms in disease models and suggest that SARM1 blockade may have greater therapeutic potential than WLDS-related strategies.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/genética , Genes Letales , Atrofia Muscular/genética , Proteínas del Tejido Nervioso/genética , Nicotinamida-Nucleótido Adenililtransferasa/genética , Degeneración Walleriana/genética , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/deficiencia , Axones/metabolismo , Axones/patología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/deficiencia , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Miembro Posterior/inervación , Miembro Posterior/metabolismo , Miembro Posterior/patología , Humanos , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Proteínas del Tejido Nervioso/deficiencia , Nicotinamida-Nucleótido Adenililtransferasa/deficiencia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factores de Tiempo , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología , Degeneración Walleriana/prevención & control
19.
Sci Rep ; 6: 36436, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819314

RESUMEN

IL-22 ameliorates liver fibrosis by inhibiting hepatic stellate cells (HSC), and loss of miR-200a is associated with the development of liver fibrosis. The study aimed to investigate the interplay between IL-22 and miR-200a in regulating liver fibrosis in vivo and in vitro. We observed that IL-22 significantly reduced the proliferation of HSC and increased the expression of p-STAT3. ß-catenin was identified as a target gene of miR-200a by luciferase reporter assay, and upregulation of miR-200a significantly attenuated the proliferation of HSC and reduced ß-catenin expression. IL-22 treatment increased expression of miR-200a and decreased expression of ß-catenin in HSC. The expression of p-STAT3 and miR-200a was elevated while ß-catenin was decreased in fibrotic rat liver after IL-22 treatment. Expression levels of ß-catenin and p-STAT3 were inversely correlated in fibrotic rat liver and HSC. Upregulation of ß-catenin suppressed expression of p-STAT3 in HSC. We concluded that IL-22 inhibits HSC activation and ameliorates liver fibrosis through enhancing expression of miR-200a and reducing expression of ß-catenin, suggesting there may be a crosstalk between IL-22/STAT3 and ß-catenin pathway.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Interleucinas/uso terapéutico , Cirrosis Hepática/prevención & control , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Actinas/análisis , Animales , Antagomirs/metabolismo , Apoptosis/efectos de los fármacos , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Colágeno Tipo I/análisis , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Interleucinas/farmacología , Cirrosis Hepática/patología , Masculino , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Alineación de Secuencia , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia Arriba/efectos de los fármacos , Interleucina-22
20.
Cell Death Differ ; 20(3): 478-89, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23175186

RESUMEN

Following acute-phase infection, activated T cells are terminated to achieve immune homeostasis, failure of which results in lymphoproliferative and autoimmune diseases. We report that sterile α- and heat armadillo-motif-containing protein (SARM), the most conserved Toll-like receptors adaptor, is proapoptotic during T-cell immune response. SARM expression is significantly reduced in natural killer (NK)/T lymphoma patients compared with healthy individuals, suggesting that decreased SARM supports NK/T-cell proliferation. T cells knocked down of SARM survived and proliferated more significantly compared with wild-type T cells following influenza infection in vivo. During activation of cytotoxic T cells, the SARM level fell before rising, correlating inversely with cell proliferation and subsequent T-cell clearance. SARM knockdown rescued T cells from both activation- and neglect-induced cell deaths. The mitochondria-localized SARM triggers intrinsic apoptosis by generating reactive oxygen species and depolarizing the mitochondrial potential. The proapoptotic function is attributable to the C-terminal sterile alpha motif and Toll/interleukin-1 receptor domains. Mechanistically, SARM mediates intrinsic apoptosis via B cell lymphoma-2 (Bcl-2) family members. SARM suppresses B cell lymphoma-extra large (Bcl-xL) and downregulates extracellular signal-regulated kinase phosphorylation, which are cell survival effectors. Overexpression of Bcl-xL and double knockout of Bcl-2 associated X protein and Bcl-2 homologous antagonist killer substantially reduced SARM-induced apoptosis. Collectively, we have shown how T-cell death following infection is mediated by SARM-induced intrinsic apoptosis, which is crucial for T-cell homeostasis.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Mitocondrias/metabolismo , Linfocitos T/metabolismo , Animales , Apoptosis , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Caspasa 9/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Activación de Linfocitos , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Ratones , Ratones Transgénicos , Fosforilación , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Linfocitos T/inmunología , Transfección , Proteína X Asociada a bcl-2/antagonistas & inhibidores , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA