Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.553
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(19): e2106965119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35522709

RESUMEN

Protein scaffolds direct the organization of amorphous precursors that transform into mineralized tissues, but the templating mechanism remains elusive. Motivated by models for the biomineralization of tooth enamel, wherein amyloid-like amelogenin nanoribbons guide the mineralization of apatite filaments, we investigated the impact of nanoribbon structure, sequence, and chemistry on amorphous calcium phosphate (ACP) nucleation. Using full-length human amelogenin and peptide analogs with an amyloid-like domain, films of ß-sheet nanoribbons were self-assembled on graphite and characterized by in situ atomic force microscopy and molecular dynamics simulations. All sequences substantially reduce nucleation barriers for ACP by creating low-energy interfaces, while phosphoserines along the length of the nanoribbons dramatically enhance kinetic factors associated with ion binding. Furthermore, the distribution of negatively charged residues along the nanoribbons presents a potential match to the Ca­Ca distances of the multi-ion complexes that constitute ACP. These findings show that amyloid-like amelogenin nanoribbons provide potent scaffolds for ACP mineralization by presenting energetically and stereochemically favorable templates of calcium phosphate ion binding and suggest enhanced surface wetting toward calcium phosphates in general.


Asunto(s)
Proteínas del Esmalte Dental , Nanotubos de Carbono , Amelogenina/química , Proteínas Amiloidogénicas , Sitios de Unión , Fosfatos de Calcio
2.
Physiol Rev ; 97(3): 939-993, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28468833

RESUMEN

Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.


Asunto(s)
Ameloblastos/metabolismo , Amelogénesis , Proteínas del Esmalte Dental/metabolismo , Esmalte Dental/metabolismo , Salud Bucal , Anomalías Dentarias/metabolismo , Enfermedades Dentales/metabolismo , Ameloblastos/patología , Animales , Esmalte Dental/patología , Esmalte Dental/fisiopatología , Proteínas del Esmalte Dental/genética , Evolución Molecular , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Especificidad de la Especie , Anomalías Dentarias/genética , Anomalías Dentarias/patología , Anomalías Dentarias/fisiopatología , Enfermedades Dentales/genética , Enfermedades Dentales/patología , Enfermedades Dentales/fisiopatología
3.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 54-60, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650156

RESUMEN

Cervical cancer (CC) is the most common malignant tumor of female reproductive system. MiR-4319 has been identified as an anti-oncogene in various cancers. In the present study, role of miR-4319 in CC was identified. Colony formation, flow cytometer, wound healing, and transwell assays were used to detect CC cell proliferation, apoptosis, migration, and invasion. The expression of miR-4319 was decreased in clinical CC tissues and CC cell lines. Upregulation of miR-4319 suppressed cell viability, proliferation, migration, and invasion, and induced cell apoptosis in CC cells. Moreover, tuftelin 1 (TUFT1) was verified as a direct target of miR-4319, as confirmed by dual-luciferase reporter assay. Additionally, TUFT1 expression was remarkably increased in clinical CC tissues and CC cell lines and was negatively associated with miR-4319 expression. Furthermore, overexpression of TUFT1 partially restored the effects of miR-4319 mimic on cell viability, proliferation, migration, invasion, and cell apoptosis in CC cells. To conclude, miR-4319 played an anti-cancer role in the occurrence and development of CC, which might be achieved by targeting TUFT1.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Proteínas del Esmalte Dental , Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias del Cuello Uterino , Femenino , Humanos , Apoptosis/genética , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo
4.
Environ Res ; 250: 118527, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387489

RESUMEN

Fluoride (F) and sulfur dioxide (SO2) contamination is recognized as a public health concern worldwide. Our previous research has shown that Co-exposure to F and SO2 can cause abnormal enamel mineralization. Ameloblastin (AMBN) plays a crucial role in the process of enamel mineralization. However, the process by which simultaneous exposure to F and SO2 influences enamel formation by regulating AMBN expression still needs to be understood. This study aimed to establish in vivo and in vitro models of F-SO2 Co-exposure and investigate the relationship between AMBN and abnormal enamel mineralization. By overexpressing/knocking out the Fibroblast Growth Factor 9 (FGF9) gene, we investigated the impact of FGF9-mediated Mitogen-Activated Protein Kinase (MAPK) signaling on AMBN synthesis to elucidate the mechanism underlying the induction of abnormal enamel mineralization by F-SO2 Co-exposure in rats. The results showed that F-SO2 exposure damaged the structure of rat enamel and ameloblasts. When exposed to F or SO2, gradual increases in the protein expression of FGF9 and phosphorylated p38 mitogen-activated protein kinase (p-P38) were observed. Conversely, the protein levels of AMBN, phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated c-Jun N-terminal kinase (p-JNK) were decreased. AMBN expression was significantly correlated with FGF9, p-ERK, and p-JNK expression in ameloblasts. Interestingly, FGF9 overexpression reduced the levels of p-ERK and p-JNK, worsening the inhibitory effect of F-SO2 on AMBN. Conversely, FGF9 knockout increased the phosphorylation of ERK and JNK, partially reversing the F-SO2-induced downregulation of AMBN. Taken together, these findings strongly demonstrate that FGF9 plays a critical role in F-SO2-induced abnormal enamel mineralization by regulating AMBN synthesis through the JNK and ERK pathways.


Asunto(s)
Esmalte Dental , Factor 9 de Crecimiento de Fibroblastos , Fluoruros , Sistema de Señalización de MAP Quinasas , Dióxido de Azufre , Animales , Factor 9 de Crecimiento de Fibroblastos/genética , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Ratas , Fluoruros/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Esmalte Dental/efectos de los fármacos , Dióxido de Azufre/toxicidad , Masculino , Ratas Sprague-Dawley , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Calcificación de Dientes/efectos de los fármacos , Ameloblastos/efectos de los fármacos , Ameloblastos/metabolismo
5.
Oral Dis ; 30(2): 537-550, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36650945

RESUMEN

OBJECTIVES: To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS: Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS: All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS: We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.


Asunto(s)
Amelogénesis Imperfecta , Proteínas del Esmalte Dental , Humanos , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/patología , Mutación , Proteínas del Esmalte Dental/genética , Fósforo , Minerales , Carbono
6.
Int Endod J ; 57(6): 745-758, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477421

RESUMEN

AIM: Loss-of-function mutations in FAM20A result in amelogenesis imperfecta IG (AI1G) or enamel-renal syndrome, characterized by hypoplastic enamel, ectopic calcification, and gingival hyperplasia, with some cases reporting spontaneous tooth infection. Despite previous reports on the consequence of FAM20A reduction in gingival fibroblasts and transcriptome analyses of AI1G pulp tissues, suggesting its involvement in mineralization and infection, its role in deciduous dental pulp cells (DDP) remains unreported. The aim of this study was to evaluate the properties of DDP obtained from an AI1G patient, providing additional insights into the effects of FAM20A on the mineralization of DDP. METHODOLOGY: DDP were obtained from a FAM20A-AI1G patient (mutant cells) and three healthy individuals. Cellular behaviours were examined using flow cytometry, MTT, attachment and spreading, colony formation, and wound healing assays. Osteogenic induction was applied to DDP, followed by alizarin red S staining to assess their osteogenic differentiation. The expression of FAM20A-related genes, osteogenic genes, and inflammatory genes was analysed using real-time PCR, Western blot, and/or immunolocalization. Additionally, STRING analysis was performed to predict potential protein-protein interaction networks. RESULTS: The mutant cells exhibited a significant reduction in FAM20A mRNA and protein levels, as well as proliferation, migration, attachment, and colony formation. However, normal FAM20A subcellular localization was maintained. Additionally, osteogenic/odontogenic genes, OSX, OPN, RUNX2, BSP, and DSPP, were downregulated, along with upregulated ALP. STRING analysis suggested a potential correlation between FAM20A and these osteogenic genes. After osteogenic induction, the mutant cells demonstrated reduced mineral deposition and dysregulated expression of osteogenic genes. Remarkably, FAM20A, FAM20C, RUNX2, OPN, and OSX were significantly upregulated in the mutant cells, whilst ALP, and OCN was downregulated. Furthermore, the mutant cells exhibited a significant increase in inflammatory gene expression, that is, IL-1ß and TGF-ß1, whereas IL-6 and NFκB1 expression was significantly reduced. CONCLUSION: The reduction of FAM20A in mutant DDP is associated with various cellular deficiencies, including delayed proliferation, attachment, spreading, and migration as well as altered osteogenic and inflammatory responses. These findings provide novel insights into the biology of FAM20A in dental pulp cells and shed light on the molecular mechanisms underlying AI1G pathology.


Asunto(s)
Amelogénesis Imperfecta , Diferenciación Celular , Proteínas del Esmalte Dental , Pulpa Dental , Nefrocalcinosis , Osteogénesis , Diente Primario , Humanos , Células Cultivadas , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Pulpa Dental/citología , Pulpa Dental/metabolismo , Expresión Génica , Mutación , Osteogénesis/genética
7.
Medicina (Kaunas) ; 60(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38541178

RESUMEN

Background and Objectives: This study addresses the challenge of bone regeneration in calvarial defects, exploring the efficacy of stem cell-based therapies and enamel matrix derivative (EMD) in tissue engineering. It assesses the regenerative potential of two- and three-dimensional cell constructs combined with mesenchymal stem cells (MSCs) and EMD in rabbit calvarial defects. Materials and Methods: This research involved the use of bone-marrow-derived MSCs cultured in silicon elastomer-based concave microwells to form spheroids. White rabbits were grouped for different treatments, with Group 1 as control, Group 2 receiving only EMD, Group 3 getting EMD plus stem cells, and Group 4 being treated with EMD plus stem cell spheroids. Computed tomography (CT) and microcomputed tomography (micro-CT) imaging were used for structural assessment, while histological evaluations were conducted using hematoxylin and eosin, Masson's trichrome, and Picro-sirius red staining. Results: CT and micro-CT analyses revealed varying degrees of bone regeneration among the groups. Group 4, treated with three-dimensional MSC spheroids and EMD, showed the most significant improvement in bone regeneration. Histological analyses corroborated these findings, with Group 4 displaying enhanced bone formation and better collagen fiber organization. Conclusions: The study supported the biocompatibility and potential efficacy of three-dimensional MSC constructs combined with EMD in bone regeneration. Further investigations are needed to confirm these findings and optimize treatment protocols.


Asunto(s)
Proteínas del Esmalte Dental , Células Madre Mesenquimatosas , Osteogénesis , Animales , Conejos , Microtomografía por Rayos X , Regeneración Ósea
8.
Zhonghua Gan Zang Bing Za Zhi ; 32(2): 148-154, 2024 Feb 20.
Artículo en Zh | MEDLINE | ID: mdl-38514264

RESUMEN

Objective: To analyze and evaluate the expressions and clinical value of tuftelin (TUFT1) and Krüppel-like factor 5 (KLF5) in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) tissues. Method: KLF5 mRNA and TUFT1 mRNA transcriptional status in cancer and non-cancer groups were compared according to the Cancer Genome Atlas (TCGA) database. The differences and prognostic value between the groups were analyzed. Postoperative liver cancer and its paired pericancerous tissues, with the approval of the ethics committee, were collected to build tissue chips. The expression of KLF5 and TUFT1 and their intracellular localization were verified by immunohistochemistry. Tissue expression and clinicopathological characteristics were analyzed by immunoblotting. SPSS software was used to analyze the relationship between SPSS and patient prognosis. Results: The transcription level of TUFT1 or KLF5 mRNA was significantly higher in the HCC group than the non-cancer group (P < 0.001), according to TCGA data. Immunohistochemistry and Western blotting examination confirmed the overexpression of TUFT1 and KLF5 in human HCC tissues, which were mainly localized in the cytoplasm and cell membrane. The positivity rates of TUFT1 and KLF5 were 87.1% ( χ(2) = 18.563, P < 0.001) and 95.2% ( χ(2) = 96.435, P < 0.001) in HCC tissues, and both were significantly higher than those in the adjacent group. The expression intensity was higher in stage III-IV than stage I-II of the International Union Against Cancer standard (P < 0.01). The clinicopathological features showed that the abnormalities of the two were significantly related to HBV infection, tumor size, extrahepatic metastasis, TNM stage, and ascites. Univariate analysis was related to tumor size, HBV infection, and survival. Multivariate analysis was an independent prognostic factor for patients with HCC. Conclusion: TUFT1 and KLF5 may both be novel markers possessing clinical value in the diagnosis and prognosis of HBV-related HCC.


Asunto(s)
Carcinoma Hepatocelular , Proteínas del Esmalte Dental , Hepatitis B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Regulación Neoplásica de la Expresión Génica , Hepatitis B/complicaciones , Hepatitis B/genética , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/patología , Pronóstico , ARN Mensajero , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
9.
Evid Based Dent ; 25(1): 54, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182662

RESUMEN

OBJECTIVE: The aim of this study was to investigate clinical periodontal parameters after treatment using the Minimally Invasive Surgical Technique (MIST), Modified Minimally Invasive Surgical Technique (M-MIST), and/or any technique for papilla preservation, such as Entire Papilla Preservation (EPP), modified-papilla preservation technique (M-PPT), or simplified-papilla preservation technique (SPPT). METHODS: The focus question was "For patients with periodontal intrabony defects (P), what is the best minimally invasive regenerative approach (I), comparing MIST, M-MIST, and papilla preservation techniques' outcomes (C) to improve PD, CAL, GR, and periodontal stability (O)?" An online search was conducted on PubMed, Cochrane Library, and Embase. Only randomized clinical trials and case series with a minimum of 10 enrolled patients were included. The risk of bias was evaluated using the Critical Appraisal tools in JBI Systematic Reviews. The meta-analysis compared the data obtained for the periodontal parameters analyzed, and the heterogeneity was verified. RESULTS: After the screening, nine articles were included. Seven studies applied MIST and its modifications; two used M-PPT, one SPPT, and one approached EPP. A general statistically significant PD reduction and CAL gain were noted between the groups, comparing baseline and follow-up for all articles, independently of the technique or materials used. Also, all studies showed a non-significant increase in the gingival recession. Four studies had a low risk of bias, four had a moderate risk, and only 1 had a high risk. Moderate heterogeneity was found in one analysis for CAL (65.73%); moderate and substantial heterogeneity was found in the PD results (71.91% and 89.19%); and no heterogeneity was found within all analyses for gingival recession (0%). CONCLUSION: MIST, M-MIST, and papilla preservation techniques demonstrated their potential and efficacy to improve periodontal conditions of sites with intrabony defects with minimal morbidity.


Asunto(s)
Pérdida de Hueso Alveolar , Proteínas del Esmalte Dental , Recesión Gingival , Humanos , Estudios de Seguimiento , Resultado del Tratamiento , Recesión Gingival/tratamiento farmacológico , Recesión Gingival/cirugía , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/cirugía , Regeneración Tisular Guiada Periodontal/métodos , Proteínas del Esmalte Dental/uso terapéutico , Pérdida de la Inserción Periodontal/tratamiento farmacológico , Pérdida de la Inserción Periodontal/cirugía , Regeneración , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
J Exp Zool B Mol Dev Evol ; 340(7): 455-468, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36464775

RESUMEN

Gars and bichirs develop scales and teeth with ancient actinopterygian characteristics. Their scale surface and tooth collar are covered with enamel, also known as ganoin, whereas the tooth cap is equipped with an enamel-like tissue, acrodin. Here, we investigated the formation and mineralization of the ganoin and acrodin matrices in spotted gar, and the evolution of the scpp5, ameloblastin (ambn), and enamelin (enam) genes, which encode matrix proteins of ganoin. Results suggest that, in bichirs and gars, all these genes retain structural characteristics of their orthologs in stem actinopterygians, presumably reflecting the presence of ganoin on scales and teeth. During scale formation, Scpp5 and Enam were initially found in the incipient ganoin matrix and the underlying collagen matrix, whereas Ambn was detected mostly in a surface region of the well-developed ganoin matrix. Although collagen is the principal acrodin matrix protein, Scpp5 was detected within the matrix. Similarities in timings of mineralization and the secretion of Scpp5 suggest that acrodin evolved by the loss of the matrix secretory stage of ganoin formation: dentin formation is immediately followed by the maturation stage. The late onset of Ambn secretion during ganoin formation implies that Ambn is not essential for mineral ribbon formation, the hallmark of the enamel matrix. Furthermore, Scpp5 resembles amelogenin that is not important for the initial formation of mineral ribbons in mammals. It is thus likely that the evolution of ENAM was vital to the origin of the unique mineralization process of the enamel matrix.


Asunto(s)
Proteínas del Esmalte Dental , Diente , Animales , Peces/genética , Amelogenina/genética , Amelogenina/metabolismo , Minerales , Colágeno , Proteínas del Esmalte Dental/genética , Mamíferos
11.
J Periodontal Res ; 58(4): 708-714, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37143215

RESUMEN

OBJECTIVE: The aim of this study was to explore the associations between defect morphology (defined by clinical and radiographic parameters) and the healing of periodontal intrabony defects treated with minimally invasive non-surgical therapy (MINST). BACKGROUND DATA: MINST has shown to result in favorable clinical and radiographic improvements in intrabony defects. However, it is not clear which types of intrabony defects are most suitable for this treatment. METHODS: Clinical and radiographic analyses were carried out in a total of 71 intrabony defects treated with MINST belonging to two previously published studies. Baseline defect characteristics were analyzed and related to clinical and radiographic outcomes at 12 months post-MINST with or without adjunctive enamel matrix derivative. RESULTS: No associations were detected between defect depth, angle and predicted number of walls and clinical and radiographic healing 12 months post-MINST. CONCLUSIONS: No evidence emerged for associations between defect characteristics and healing following MINST. These data seem to suggest that factors other than defect morphology may influence treatment response to MINST.


Asunto(s)
Pérdida de Hueso Alveolar , Proteínas del Esmalte Dental , Humanos , Resultado del Tratamiento , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/cirugía , Regeneración Tisular Guiada Periodontal , Procedimientos Quirúrgicos Mínimamente Invasivos , Pérdida de la Inserción Periodontal/cirugía , Pérdida de la Inserción Periodontal/tratamiento farmacológico , Proteínas del Esmalte Dental/uso terapéutico , Estudios de Seguimiento
12.
J Oral Pathol Med ; 52(7): 644-653, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37141592

RESUMEN

BACKGROUND: This study aimed to investigate the differentiation of ameloblastic-like cells and the nature of the secreted eosinophilic materials in adenomatoid odontogenic tumors. METHODS: We studied histological and immunohistochemical characteristics of 20 cases using: cytokeratins 14 and 19, amelogenin, collagen I, laminin, vimentin, and CD34. RESULTS: Rosette cells differentiated into ameloblastic-like cells positioned face-to-face, displaying collagen I-positive material between them. Epithelial cells of the rosettes can differentiate into ameloblastic-like cells. This phenomenon probably occurs due to an induction phenomenon between these cells. The secretion of collagen I is probably a brief event. Amelogenin-positive areas were interspersed by epithelial cells in the lace-like areas, outside the rosettes and distant from the ameloblastic-like cells. CONCLUSIONS: There are at least two types of eosinophilic material in different areas within the tumor, one in the rosette and solid areas and another in lace-like areas. The secreted eosinophilic material in the rosettes and solid areas is probably a product of well-differentiated ameloblastic-like cells. It is positive for collagen I and negative for amelogenin, whereas some eosinophilic materials in the lace-like areas are positive for amelogenin. We hypothesize that the latter eosinophilic material could be a product of odontogenic cuboidal epithelial or intermediate stratum-like epithelial cells.


Asunto(s)
Ameloblastoma , Proteínas del Esmalte Dental , Tumores Odontogénicos , Humanos , Amelogenina , Tumores Odontogénicos/patología , Inmunohistoquímica , Ameloblastoma/patología , Células Epiteliales/patología , Colágeno , Diferenciación Celular
13.
J Clin Periodontol ; 50(7): 996-1009, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37051653

RESUMEN

AIM: To assess the long-term stability of attachment gain in infrabony defects (IBDs) 10 years after regenerative treatment with an enamel matrix derivative (EMD) alone. MATERIALS AND METHODS: Two centres (Frankfurt [F] and Heidelberg [HD]) invited patients for re-examination 120 ± 12 months after regenerative therapy. Re-examination included clinical examination (periodontal probing depths (PPD), vertical clinical attachment level (CAL), plaque index (PlI), gingival index (GI), plaque control record, gingival bleeding index and periodontal risk assessment) and review of patient charts (number of supportive periodontal care [SPC] visits). RESULTS: Both centres included 52 patients (29 female; median baseline age: 52.0 years; lower/upper quartile: 45.0/58.8 years; eight smokers), each contributing one IBD. Nine teeth were lost. For the remaining 43 teeth, regenerative therapy showed significant CAL gain after 1 year (3.0; 2.0/4.4 mm; p < .001) and 10 years (3.0; 1.5/4.1 mm; p < .001) during which CAL remained stable (-0.5; -1.0/1.0 mm; p = 1.000) after an average SPC of 9 years. Mixed-model regression analyses revealed a positive association of CAL gain from 1 to 10 years with CAL 12 months post operation (logistic: p = .01) as well as a higher probability for CAL loss with an increasing vertical extent of a three-walled defect component (linear: p = .008). Cox proportional hazard analysis showed a positive association between PlI after 12 months and tooth loss (p = .046). CONCLUSION: Regenerative therapy of IBDs showed stable results over 9 years. CAL gain is associated with CAL after 12 months and decreasing initial defect depth in a three-walled defect morphology. Tooth loss is associated with PlI 12 months post operation. CLINICAL TRIAL NUMBER: DRKS00021148 (URL: https://drks.de).


Asunto(s)
Pérdida de Hueso Alveolar , Proteínas del Esmalte Dental , Recesión Gingival , Pérdida de Diente , Humanos , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , Estudios de Seguimiento , Estudios Retrospectivos , Pérdida de Diente/cirugía , Estudios de Cohortes , Bolsa Periodontal/cirugía , Pérdida de Hueso Alveolar/cirugía , Recesión Gingival/cirugía , Proteínas del Esmalte Dental/uso terapéutico , Regeneración Tisular Guiada Periodontal/métodos , Pérdida de la Inserción Periodontal/cirugía , Pérdida de la Inserción Periodontal/tratamiento farmacológico
14.
Oral Dis ; 29(6): 2334-2365, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37154292

RESUMEN

Amelogenesis imperfecta (AI) is one of the typical dental genetic diseases in human. It can occur isolatedly or as part of a syndrome. Previous reports have mainly clarified the types and mechanisms of nonsyndromic AI. This review aimed to compare the phenotypic differences among the hereditary enamel defects with or without syndromes and their underlying pathogenic genes. We searched the articles in PubMed with different strategies or keywords including but not limited to amelogenesis imperfecta, enamel defects, hypoplastic/hypomaturation/hypocalcified, syndrome, or specific syndrome name. The articles with detailed clinical information about the enamel and other phenotypes and clear genetic background were used for the analysis. We totally summarized and compared enamel phenotypes of 18 nonsyndromic AI with 17 causative genes and 19 syndromic AI with 26 causative genes. According to the clinical features, radiographic or ultrastructural changes in enamel, the enamel defects were basically divided into hypoplastic and hypomineralized (hypomaturated and hypocalcified) and presented a higher heterogeneity which were closely related to the involved pathogenic genes, types of mutation, hereditary pattern, X chromosome inactivation, incomplete penetrance, and other mechanisms.The gene-specific enamel phenotypes could be an important indicator for diagnosing nonsyndromic and syndromic AI.


Asunto(s)
Amelogénesis Imperfecta , Hipoplasia del Esmalte Dental , Proteínas del Esmalte Dental , Humanos , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/patología , Esmalte Dental/química , Proteínas del Esmalte Dental/genética , Fenotipo
15.
Oral Dis ; 29(4): 1622-1631, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35189017

RESUMEN

OBJECTIVES: The ciliopathies are a wide spectrum of human diseases, which are caused by perturbations in the function of primary cilia. Tooth enamel anomalies are often seen in ciliopathy patients; however, the role of primary cilia in enamel formation remains unclear. MATERIALS AND METHODS: We examined mice with epithelial conditional deletion of the ciliary protein, Ift88, (Ift88fl / fl ;K14Cre). RESULTS: Ift88fl / fl ;K14Cre mice showed premature abrasion in molars. A pattern of enamel rods which is determined at secretory stage, was disorganized in Ift88 mutant molars. Many amelogenesis-related molecules expressing at the secretory stage, including amelogenin and ameloblastin, enamelin, showed significant downregulation in Ift88 mutant molar tooth germs. Shh signaling is essential for amelogenesis, which was found to be downregulated in Ift88 mutant molar at the secretory stage. Application of Shh signaling agonist at the secretory stage partially rescued enamel anomalies in Ift88 mutant mice. CONCLUSION: Findings in the present study indicate that the function of the primary cilia via Ift88 is critical for the secretory stage of amelogenesis through involving Shh signaling.


Asunto(s)
Proteínas del Esmalte Dental , Esmalte Dental , Ratones , Animales , Humanos , Amelogenina/genética , Amelogenina/metabolismo , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Amelogénesis/genética , Proteínas Supresoras de Tumor , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(32): 19201-19208, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32737162

RESUMEN

As the hardest tissue formed by vertebrates, enamel represents nature's engineering masterpiece with complex organizations of fibrous apatite crystals at the nanometer scale. Supramolecular assemblies of enamel matrix proteins (EMPs) play a key role as the structural scaffolds for regulating mineral morphology during enamel development. However, to achieve maximum tissue hardness, most organic content in enamel is digested and removed at the maturation stage, and thus knowledge of a structural protein template that could guide enamel mineralization is limited at this date. Herein, by examining a gene-modified mouse that lacked enzymatic degradation of EMPs, we demonstrate the presence of protein nanoribbons as the structural scaffolds in developing enamel matrix. Using in vitro mineralization assays we showed that both recombinant and enamel-tissue-based amelogenin nanoribbons are capable of guiding fibrous apatite nanocrystal formation. In accordance with our understanding of the natural process of enamel formation, templated crystal growth was achieved by interaction of amelogenin scaffolds with acidic macromolecules that facilitate the formation of an amorphous calcium phosphate precursor which gradually transforms into oriented apatite fibers along the protein nanoribbons. Furthermore, this study elucidated that matrix metalloproteinase-20 is a critical regulator of the enamel mineralization as only a recombinant analog of a MMP20-cleavage product of amelogenin was capable of guiding apatite mineralization. This study highlights that supramolecular assembly of the scaffold protein, its enzymatic processing, and its ability to interact with acidic carrier proteins are critical steps for proper enamel development.


Asunto(s)
Amelogenina/química , Esmalte Dental/metabolismo , Amelogénesis , Amelogenina/metabolismo , Animales , Apatitas/química , Apatitas/metabolismo , Esmalte Dental/química , Proteínas del Esmalte Dental/química , Proteínas del Esmalte Dental/metabolismo , Ratones , Nanofibras/química
17.
Int Endod J ; 56(8): 943-954, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37159186

RESUMEN

AIM: Biallelic loss-of-function FAM20A mutations cause amelogenesis imperfecta (AI) type IG, better known as enamel renal syndrome (ERS), characterized by severe enamel hypoplasia, delayed/failed tooth eruption, intrapulpal calcifications, gingival hyperplasia and nephrocalcinosis. FAM20A binds to FAM20C, the Golgi casein kinase (GCK) and potentiates its function to phosphorylate secreted proteins critical for biomineralization. While many FAM20A pathogenic mutations have been reported, the pathogeneses of orodental anomalies in ERS remain to be elucidated. This study aimed to identify disease-causing mutations for patients with ERS phenotypes and to discern the molecular mechanism underlying ERS intrapulpal calcifications. METHODOLOGY: Phenotypic characterization and whole exome analyses were conducted for 8 families and 2 sporadic cases with hypoplastic AI. A minigene assay was performed to investigate the molecular consequences of a FAM20A splice-site variant. RNA sequencing followed by transcription profiling and gene ontology (GO) analyses were carried out for dental pulp tissues of ERS and the control. RESULTS: Biallelic FAM20A mutations were demonstrated for each affected individual, including 7 novel pathogenic variants: c.590-5T>A, c.625T>A (p.Cys209Ser), c.771del (p.Gln258Argfs*28), c.832_835delinsTGTCCGACGGTGTCCGACGGTGTC CA (p.Val278Cysfs*29), c.1232G>A (p.Arg411Gln), c.1297A>G (p.Arg433Gly) and c.1351del (p.Gln451Serfs*4). The c.590-5T>A splice-site mutation caused Exon 3 skipping, which resulted in an in-frame deletion of a unique region of the FAM20A protein, p.(Asp197_Ile214delinsVal). Analyses of differentially expressed genes in ERS pulp tissues demonstrated that genes involved in biomineralization, particularly dentinogenesis, were significantly upregulated, such as DSPP, MMP9, MMP20 and WNT10A. Enrichment analyses indicated overrepresentation of gene sets associated with BMP and SMAD signalling pathways. In contrast, GO terms related to inflammation and axon development were underrepresented. Among BMP signalling genes, BMP agonists GDF7, GDF15, BMP3, BMP8A, BMP8B, BMP4 and BMP6 were upregulated, while BMP antagonists GREM1, BMPER and VWC2 showed decreased expression in ERS dental pulp tissues. CONCLUSIONS: Upregulation of BMP signalling underlies intrapulpal calcifications in ERS. FAM20A plays an essential role in pulp tissue homeostasis and prevention of ectopic mineralization in soft tissues. This critical function probably depends upon MGP (matrix Gla protein), a potent mineralization inhibitor that must be properly phosphorylated by FAM20A-FAM20C kinase complex.


Asunto(s)
Amelogénesis Imperfecta , Calcinosis , Proteínas del Esmalte Dental , Nefrocalcinosis , Humanos , Nefrocalcinosis/genética , Nefrocalcinosis/patología , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/metabolismo , Amelogénesis Imperfecta/patología , Pulpa Dental/metabolismo , Proteínas del Esmalte Dental/genética , Mutación , Perfilación de la Expresión Génica , Proteínas Portadoras/genética
18.
Clin Oral Investig ; 27(9): 5569-5576, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37491613

RESUMEN

OBJECTIVES: To investigate the function of enamel matrix derivative (EMD)-liquid compared to EMD-gel (original Emdogain® with polyglycolic acid-carrier) in inducing soft tissue regeneration using a rat dorsal model. MATERIAL AND METHODS: Four subcutaneous pouches were created through dorsal skin incisions in 18 female Wistar rats and randomly allocated to the following groups: (1) sterile saline + non-crosslinked collagen matrix (CM), (2) EMD-gel + CM, and (3) EMD-liquid + CM. After 2 and 4 weeks of healing, the specimens were harvested and stained with Goldner's trichrome, hematoxylin and eosin, and were immunohistochemically stained with an anti-CD31 antibody. RESULTS: The EMD-liquid group showed the thickest connective tissue compared to the other groups, with statistical significance both at 2 (p < 0.001) and 4 weeks (p = 0.011 and 0.023, respectively). The number of multinucleated giant cells was not significantly different among the groups for both periods. Moreover, there was a tendency to have more blood vessels over a longer period, and the highest number of blood vessels was observed in the EMD-liquid group at 4 weeks (p = 0.009 and 0036, respectively). CONCLUSION: EMD-liquid-treated CM is advantageous compared to using CM alone or EMD-gel-treated CM, owing to the histomorphometric results that show significantly increased soft tissue thickness and number of blood vessels when EMD-liquid was pre-primed to CM. CLINICAL RELEVANCE: EMD with a liquid carrier may be an appropriate biologic supplement to provide cell-inducing properties to the CM scaffold and is clinically more beneficial for phenotype modification therapy than CM only and EMD-gel-treated CM.


Asunto(s)
Colágeno , Proteínas del Esmalte Dental , Ratas , Femenino , Animales , Ratas Wistar , Tejido Conectivo , Esmalte Dental , Proteínas del Esmalte Dental/farmacología , Cicatrización de Heridas
19.
Clin Oral Investig ; 27(3): 1289-1299, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36318336

RESUMEN

OBJECTIVES: To investigate the variant of an amelogenesis imperfecta (AI) family and to explore the function of the FAM83H (family with sequence similarity 83 member H) in the enamel formation. MATERIALS AND METHODS: We investigated a five-generation Chinese family diagnosed with AI; clinical data was collected, whole-exome sequencing (WES) was conducted to explore the pathogenic gene and variants and Sanger sequencing was used to verify the variants. The three-dimensional protein structures of wild-type and mutant FAM83H were predicted using alpha fold 2. To study the possible regulatory function of Fam83h on amelogenesis, immunolocalization was performed to observe the expression of Fam83h protein in Sprague-Dawley rat postnatal incisors. The mRNA and protein level of amelogenin, enamelin, kallikrein-related peptidase-4 and ameloblastin were also detected after the Fam83h was knocked down by small interfering RNA (siRNA) in HAT-7 cells. RESULTS: A known nonsense variant (c.973 C > T) in exon 5 of FAM83H gene was found in this family, causing a truncated protein (p.R325X). Immunolocalization of Fam83h in Sprague-Dawley rat postnatal incisors showed that Fam83h protein expression was detected in presecretory and secretory stages. When Fam83h expression was reduced by siRNA, the expression of amelogenin, enamelin, kallikrein-related peptidase-4 decreased. However, the expression of ameloblastin increased. CONCLUSIONS: FAM83H gene variant (c.973 C > T) causes AI. FAM83H regulates the secretion of enamel matrix proteins and affects ameloblast differentiation. CLINICAL RELEVANCE: This study provided that FAM83H variants could influence enamel formation and provided new insights into the pathogenesis of AI.


Asunto(s)
Amelogénesis Imperfecta , Proteínas del Esmalte Dental , Humanos , Ratas , Animales , Amelogénesis Imperfecta/genética , Amelogenina/genética , Ratas Sprague-Dawley , Pueblos del Este de Asia , Proteínas del Esmalte Dental/genética , Proteínas/genética , Calicreínas
20.
Clin Oral Investig ; 27(1): 105-113, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36002594

RESUMEN

OBJECTIVES: To evaluate the 5-year results of single and multiple recession type (RT) 1 and 2 (Miller I to III) recessions treated with the modified coronally advanced tunnel (MCAT) and connective tissue graft (CTG) with or without an enamel matrix derivative (EMD). The main outcome variable was the stability of obtained root coverage from 6 months to 5 years. MATERIALS AND METHODS: In 24 patients, both complete and mean root coverage (CRC and MRC) and gain of keratinised tissue (KT) were assessed at 6 months and 5 years after recession coverage by means of MCAT and CTG with or without EMD. Aesthetic outcomes after 5 years were evaluated using the root coverage aesthetic score (RES). RESULTS: At 5 years, 24 patients with a total of 43 recessions were evaluated. Eight patients (57.14%) of the test and 6 (60.0%) of the control group showed complete root coverage. MRC revealed no statistically significant differences between the two groups, with 73.87 ± 26.83% (test) and 75.04 ± 22.06% (control), respectively. KT increased from 1.14 ± 0.57 mm to 3.07 ± 2.27 mm in the test group and from 1.24 ± 0.92 mm to 3.02 ± 1.55 mm in the control group, respectively. CONCLUSION: Treatment of single and multiple RT 1 and 2 recessions by means of MCAT and CTG with or without EMD yielded comparable clinical improvements which could be maintained over a period of 5 years. The additional use of EMD did not influence the clinical outcomes. CLINICAL RELEVANCE: The use of MCAT + CTG yielded successful coverage of single and multiple RT 1 and 2 gingival recessions, while the additional application of EMD did not seem to influence the results.


Asunto(s)
Proteínas del Esmalte Dental , Recesión Gingival , Humanos , Encía/trasplante , Resultado del Tratamiento , Colgajos Quirúrgicos , Raíz del Diente/cirugía , Estética Dental , Tejido Conectivo/trasplante , Recesión Gingival/cirugía , Proteínas del Esmalte Dental/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA