Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 585(7825): 414-419, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641828

RESUMEN

Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues1-3. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination. Accordingly, ZIKV replicates less efficiently in the brain and reproductive tissues of Trim7-/- mice. Ubiquitinated E is present on infectious virions of ZIKV when they are released from specific cell types, and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the TIM1 (also known as HAVCR1) receptor of host cells, which enhances virus entry in cells as well as in brain tissue in vivo. Recombinant ZIKV mutants that lack ubiquitination are attenuated in human cells and in wild-type mice, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viraemia in mice. Our results demonstrate that the ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.


Asunto(s)
Ubiquitinación , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Virus Zika/metabolismo , Virus Zika/patogenicidad , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Encéfalo/metabolismo , Línea Celular , Culicidae/citología , Culicidae/virología , Endosomas/metabolismo , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Masculino , Fusión de Membrana , Ratones , Especificidad de Órganos , Poliubiquitina/inmunología , Poliubiquitina/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Tropismo Viral , Viremia/inmunología , Viremia/prevención & control , Viremia/virología , Replicación Viral , Virus Zika/química , Virus Zika/genética , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/virología
2.
J Pathol ; 263(3): 315-327, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38721910

RESUMEN

Hemolysis-induced acute kidney injury (AKI) is attributed to heme-mediated proximal tubule epithelial cell (PTEC) injury and tubular cast formation due to intratubular protein condensation. Megalin is a multiligand endocytic receptor for proteins, peptides, and drugs in PTECs and mediates the uptake of free hemoglobin and the heme-scavenging protein α1-microglobulin. However, understanding of how megalin is involved in the development of hemolysis-induced AKI remains elusive. Here, we investigated the megalin-related pathogenesis of hemolysis-induced AKI and a therapeutic strategy using cilastatin, a megalin blocker. A phenylhydrazine-induced hemolysis model developed in kidney-specific mosaic megalin knockout (MegKO) mice confirmed megalin-dependent PTEC injury revealed by the co-expression of kidney injury molecule-1 (KIM-1). In the hemolysis model in kidney-specific conditional MegKO mice, the uptake of hemoglobin and α1-microglobulin as well as KIM-1 expression in PTECs was suppressed, but tubular cast formation was augmented, likely due to the nonselective inhibition of protein reabsorption in PTECs. Quartz crystal microbalance analysis revealed that cilastatin suppressed the binding of megalin with hemoglobin and α1-microglobulin. Cilastatin also inhibited the specific uptake of fluorescent hemoglobin by megalin-expressing rat yolk sac tumor-derived L2 cells. In a mouse model of hemolysis-induced AKI, repeated cilastatin administration suppressed PTEC injury by inhibiting the uptake of hemoglobin and α1-microglobulin and also prevented cast formation. Hemopexin, another heme-scavenging protein, was also found to be a novel ligand of megalin, and its binding to megalin and uptake by PTECs in the hemolysis model were suppressed by cilastatin. Mass spectrometry-based semiquantitative analysis of urinary proteins in cilastatin-treated C57BL/6J mice indicated that cilastatin suppressed the reabsorption of a limited number of megalin ligands in PTECs, including α1-microglobulin and hemopexin. Collectively, cilastatin-mediated selective megalin blockade is an effective therapeutic strategy to prevent both heme-mediated PTEC injury and cast formation in hemolysis-induced AKI. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Lesión Renal Aguda , Hemólisis , Túbulos Renales Proximales , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones Noqueados , Animales , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , Hemoglobinas/metabolismo , Ratones , Cilastatina/farmacología , Modelos Animales de Enfermedad , Fenilhidrazinas , Ratones Endogámicos C57BL , Masculino , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , alfa-Globulinas/metabolismo , Humanos
3.
J Am Soc Nephrol ; 35(6): 795-808, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353655

RESUMEN

Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.


Asunto(s)
Lesión Renal Aguda , Receptor Celular 1 del Virus de la Hepatitis A , Humanos , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inmunología , Apoptosis , Animales , Biomarcadores/metabolismo
4.
BMC Nephrol ; 25(1): 206, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918734

RESUMEN

BACKGROUND: Tubular biomarkers, which reflect tubular dysfunction or injury, are associated with incident chronic kidney disease and kidney function decline. Several tubular biomarkers have also been implicated in the progression of autosomal dominant polycystic kidney disease (ADPKD). We evaluated changes in multiple tubular biomarkers in four groups of patients with ADPKD who participated in one of two clinical trials (metformin therapy and diet-induced weight loss), based on evidence suggesting that such interventions could reduce tubule injury. METHODS: 66 participants (26 M/40 F) with ADPKD and an estimated glomerular filtration rate (eGFR) ≥ 30 ml/min/1.73m2 who participated in either a metformin clinical trial (n = 22 metformin; n = 23 placebo) or dietary weight loss study (n = 10 daily caloric restriction [DCR]; n = 11 intermittent fasting [IMF]) were included in assessments of urinary tubular biomarkers (kidney injury molecule-1 [KIM-1], fatty-acid binding protein [FABP], interleukin-18 [IL-18], monocyte chemoattractant protein-1 [MCP-1], neutrophil gelatinase-associated lipocalin [NGAL], clusterin, and human cartilage glycoprotein-40 [YKL-40]; normalized to urine creatinine), at baseline and 12 months. The association of baseline tubular biomarkers with both baseline and change in height-adjusted total kidney volume (HtTKV; percent change from baseline to 12 months) and estimated glomerular filtration rate (eGFR; absolute change at 12 months vs. baseline), with covariate adjustment, was also assessed using multiple linear regression. RESULTS: Mean ± s.d. age was 48 ± 8 years, eGFR was 71 ± 16 ml/min/1.73m2, and baseline BMI was 30.5 ± 5.9 kg/m2. None of the tubular biomarkers changed with any intervention as compared to placebo. Additionally, baseline tubular biomarkers were not associated with either baseline or change in eGFR or HtTKV over 12 months, after adjustments for demographics, group assignment, and clinical characteristics. CONCLUSIONS: Tubular biomarkers did not change with dietary-induced weight loss or metformin, nor did they associate with kidney disease progression, in this cohort of patients with ADPKD.


Asunto(s)
Biomarcadores , Restricción Calórica , Tasa de Filtración Glomerular , Túbulos Renales , Metformina , Riñón Poliquístico Autosómico Dominante , Humanos , Metformina/uso terapéutico , Riñón Poliquístico Autosómico Dominante/orina , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/dietoterapia , Masculino , Femenino , Biomarcadores/orina , Persona de Mediana Edad , Túbulos Renales/patología , Túbulos Renales/efectos de los fármacos , Adulto , Lipocalina 2/orina , Quimiocina CCL2/orina , Proteínas de Unión a Ácidos Grasos/orina , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/análisis , Proteína 1 Similar a Quitinasa-3/orina , Hipoglucemiantes/uso terapéutico
5.
Ren Fail ; 46(1): 2346284, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38757700

RESUMEN

BACKGROUND: Chronic liver disease is a common and important clinical problem.Hepatorenal syndrome (HRS) is a life threatening complication. Serum creatinine (Cr) remains the only conventional indicator of renal function. However, the interpretation of serum Cr level can be confounded by malnutrition and reduced muscle mass often observed in patients with severe liver disease. Here, we present a cross-sectional study to explore the sensitivity and specificity of other markers as urinary KIM-1 and NGAL for cases of HRS. METHODS: Cross-sectional study was conducted on 88 patients who were admitted to Alexandria main university hospital. Enrolled patients were divided in two groups; group 1: patients with advanced liver cirrhosis (child B and C) who have normal kidney functions while group 2: patients who developed HRS. Stata© version 14.2 software package was used for analysis. RESULTS: Group 1 included 18 males and 26 females compared to 25 males and 19 females in group 2 (p = 0.135). Only the urinary KIM-1 showed a statistically significant difference between both groups in the multivariate logistic regression analysis adjusted for gender, serum bilirubin, serum albumin, INR, serum K, AST and ALT levels. CONCLUSION: In conclusion, our study aligns with prior research, as seen in the consistent findings regarding Urinary NGAL elevation in cirrhotic patients with AKI. Urinary KIM-1, independent of Urinary NGAL, may have a role in precisely distinguishing between advanced liver cirrhosis and HRS and merits further exploration.


Asunto(s)
Biomarcadores , Receptor Celular 1 del Virus de la Hepatitis A , Síndrome Hepatorrenal , Lipocalina 2 , Cirrosis Hepática , Humanos , Masculino , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/análisis , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Cirrosis Hepática/complicaciones , Cirrosis Hepática/orina , Estudios Transversales , Persona de Mediana Edad , Lipocalina 2/orina , Lipocalina 2/sangre , Biomarcadores/orina , Biomarcadores/sangre , Adulto , Síndrome Hepatorrenal/etiología , Síndrome Hepatorrenal/orina , Síndrome Hepatorrenal/diagnóstico , Modelos Logísticos , Anciano , Creatinina/sangre , Creatinina/orina , Sensibilidad y Especificidad
6.
Bull Exp Biol Med ; 176(5): 567-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38724809

RESUMEN

The expression of marker proteins of acute kidney injury after administration of high doses of lithium carbonate was assessed to evaluate the possibility of lithium use in neutron capture therapy. In mice with implanted skin melanoma B16, the expression of Kim1 (kidney injury molecule 1) and NGAL (neutrophil gelatinase-associated lipocalin) proteins in the kidneys was evaluated immunohistochemically 15, 30, 90, 180 min, and 7 days after peroral administration of lithium carbonate at single doses of 300 and 400 mg/kg. An increase in the expression of the studied proteins was found in 30 and 90 min after administration of 400 mg/kg lithium carbonate, however, 7 days after the drug administration, the expression returned to the level observed in the control group. It can be suggested that single administration of lithium carbonate in the studied doses effective for lithium neutron capture therapy will not significantly affect the renal function.


Asunto(s)
Lesión Renal Aguda , Receptor Celular 1 del Virus de la Hepatitis A , Lipocalina 2 , Carbonato de Litio , Animales , Lipocalina 2/metabolismo , Ratones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inducido químicamente , Carbonato de Litio/administración & dosificación , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Biomarcadores/metabolismo , Biomarcadores/sangre
7.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047470

RESUMEN

Kidney injury molecule-1 (KIM-1) is a biomarker of renal injury and a predictor of cardiovascular disease. Aldosterone, via activation of the mineralocorticoid receptor, is linked to cardiac and renal injury. However, the impact of mineralocorticoid receptor activation and blockade on KIM-1 is uncertain. We investigated whether renal KIM-1 is increased in a cardiorenal injury model induced by L-NAME/ANG II, and whether mineralocorticoid receptor blockade prevents the increase in KIM-1. Since statin use is associated with lower aldosterone, we also investigated whether administering eiSther a lipophilic statin (simvastatin) or a hydrophilic statin (pravastatin) prevents the increase in renal KIM-1. Female Wistar rats (8-10 week old), consuming a high salt diet (1.6% Na+), were randomized to the following conditions for 14 days: control; L-NAME (0.2 mg/mL in drinking water)/ANG II (225 ug/kg/day on days 12-14); L-NAME/ANG II + eplerenone (100 mg/kg/day p.o.); L-NAME/ANG II + pravastatin (20 mg/kg/day p.o.); L-NAME/ANG II + simvastatin (20 mg/kg/day p.o.). Groups treated with L-NAME/ANG II had significantly higher blood pressure, plasma and urine aldosterone, cardiac injury/stroke composite score, and renal KIM-1 than the control group. Both eplerenone and simvastatin reduced 24-h urinary KIM-1 (p = 0.0046, p = 0.031, respectively) and renal KIM-1 immunostaining (p = 0.004, p = 0.037, respectively). Eplerenone also reduced renal KIM-1 mRNA expression (p = 0.012) and cardiac injury/stroke composite score (p = 0.04). Pravastatin did not affect these damage markers. The 24-h urinary KIM-1, renal KIM-1 immunostaining, and renal KIM-1 mRNA expression correlated with cardiac injury/stroke composite score (p < 0.0001, Spearman ranked correlation = 0.69, 0.66, 0.59, respectively). In conclusion, L-NAME/ANG II increases renal KIM-1 and both eplerenone and simvastatin blunt this increase in renal KIM-1.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipertensión , Accidente Cerebrovascular , Animales , Femenino , Ratas , Aldosterona/metabolismo , Angiotensina II/metabolismo , Presión Sanguínea , Eplerenona/farmacología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipertensión/metabolismo , Riñón/metabolismo , NG-Nitroarginina Metil Éster , Pravastatina/farmacología , Ratas Wistar , Receptores de Mineralocorticoides , ARN Mensajero/metabolismo , Simvastatina
8.
Am J Physiol Renal Physiol ; 322(4): F392-F402, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35157527

RESUMEN

In rodents and older patients with elevated blood pressure (BP), high dietary sodium increases excretion of biomarkers of kidney injury, but it is unclear whether this effect occurs in healthy young adults. The purpose of this study was to determine whether short-term high dietary salt increases urinary excretion of the kidney injury biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in healthy young adults. Twenty participants participated in a double-blind, placebo-controlled, randomized crossover study. For 10 days each, participants were asked to consume salt (3,900 mg sodium) or placebo capsules. We measured BP during each visit, obtained 24-h urine samples for measurements of electrolytes, NGAL, and KIM-1, and assessed creatinine clearance. Compared with placebo, salt loading increased daily urinary sodium excretion (placebo: 130.3 ± 62.4 mmol/24 h vs. salt: 287.2 ± 72.0 mmol/24 h, P < 0.01). There was no difference in mean arterial BP (placebo: 77 ± 7 mmHg vs. salt: 77 ± 6 mmHg, P = 0.83) between conditions. However, salt loading increased the urinary NGAL excretion rate (placebo: 59.8 ± 44.4 ng/min vs. salt: 80.8 ± 49.5 ng/min, P < 0.01) and increased creatinine clearance (placebo: 110.5 ± 32.9 mL/min vs. salt: 145.0 ± 24.9 mL/min, P < 0.01). Urinary KIM-1 excretion was not different between conditions. In conclusion, in healthy young adults 10 days of dietary salt loading increased creatinine clearance and increased urinary excretion of the kidney injury biomarker marker NGAL but not KIM-1.NEW & NOTEWORTHY In healthy young adults, 10 days of dietary salt loading increased creatinine clearance and increased urinary excretion of the kidney injury biomarker marker neutrophil gelatinase-associated lipocalin despite no change in resting blood pressure.


Asunto(s)
Cloruro de Sodio Dietético , Biomarcadores/orina , Creatinina/orina , Estudios Cruzados , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Pruebas de Función Renal , Lipocalina 2/orina , Cloruro de Sodio Dietético/efectos adversos , Adulto Joven
9.
Diabetes Metab Res Rev ; 38(6): e3556, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35708187

RESUMEN

Diabetic kidney disease is expected to increase rapidly over the coming decades with rising prevalence of diabetes worldwide. Current measures of kidney function based on albuminuria and estimated glomerular filtration rate do not accurately stratify and predict individuals at risk of declining kidney function in diabetes. As a result, recent attention has turned towards identifying and assessing the utility of biomarkers in diabetic kidney disease. This review explores the current literature on biomarkers of inflammation and kidney injury focussing on studies of single or multiple biomarkers between January 2014 and February 2020. Multiple serum and urine biomarkers of inflammation and kidney injury have demonstrated significant association with the development and progression of diabetic kidney disease. Of the inflammatory biomarkers, tumour necrosis factor receptor-1 and -2 were frequently studied and appear to hold most promise as markers of diabetic kidney disease. With regards to kidney injury biomarkers, studies have largely targeted markers of tubular injury of which kidney injury molecule-1, beta-2-microglobulin and neutrophil gelatinase-associated lipocalin emerged as potential candidates. Finally, the use of a small panel of selective biomarkers appears to perform just as well as a panel of multiple biomarkers for predicting kidney function decline.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Albuminuria/diagnóstico , Albuminuria/etiología , Biomarcadores , Diabetes Mellitus/patología , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Tasa de Filtración Glomerular , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Inflamación/complicaciones , Inflamación/patología , Riñón/patología , Lipocalina 2
10.
BMC Cancer ; 22(1): 370, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35392845

RESUMEN

BACKGROUND: T-cell immunoglobulin mucin-1 (TIM-1) has been reported to be associated with the biological behavior of several malignant tumors; however, it is not clear whether it has a role in cervical cancer (CC). METHODS: TIM-1 expression in cervical epithelial tumor tissues and cells was detected by immunohistochemistry or real-time quantitative-PCR and western blotting. CC cells from cell lines expressing low levels of TIM-1 were infected with lentiviral vectors encoding TIM-1. Changes in the malignant behavior of CC cells were assessed by CCK-8, wound healing, Transwell migration and invasion assays, and flow cytometry in vitro; while a xenograft tumor model was established to analyze the effects of TIM-1 on tumor growth in vivo. Changes in the levels of proteins related to the cell cycle, apoptosis, and Epithelial-mesenchymal transition (EMT) were determined by western blotting. RESULTS: TIM-1 expression was higher in CC tissues, than in high grade squamous intraepithelial lesion, low grade squamous intraepithelial lesion, or normal cervical tissues, and was also expressed in three CC cell lines. In HeLa and SiHa cells overexpressing TIM-1, proliferation, invasion, and migration increased, while whereas apoptosis was inhibited. Furthermore, TIM-1 downregulated the expression of p53, BAX, and E-cadherin, and increased cyclin D1, Bcl-2, Snail1, N-cadherin, vimentin, MMP-2, and VEGF. PI3K, p-AKT, and mTOR protein levels also increased, while total AKT protein levels remained unchanged. CONCLUSIONS: Our study indicated that TIM-1 overexpression promoted cell migration and invasion, and inhibited cell apoptosis in CC through modulation of the PI3K/AKT/p53 and PI3K/AKT/mTOR signaling pathways, and may be a candidate diagnostic biomarker of this disease.


Asunto(s)
Receptor Celular 1 del Virus de la Hepatitis A , Proteínas Proto-Oncogénicas c-akt , Neoplasias del Cuello Uterino , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Procesos Neoplásicos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias del Cuello Uterino/patología
11.
J Pharmacol Sci ; 148(1): 172-178, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34924123

RESUMEN

Renal inflammation and fibrosis are observed in underlying diseases associated with the pathological progression of chronic kidney disease (CKD). The inhibition of renal inflammation and fibrosis is one method to suppress the progression of CKD. Juzentaihoto (TJ-48), a Kampo medicine, effectively relieves chronic wasting diseases and fatigue and has been reported to decrease inflammation. In this study, we investigated whether TJ-48 has a renal protective effect and its underlying mechanism in mice with adenine-induced CKD. BALB/c mice were divided into four groups for examination: (1) control, (2) dietary restriction, (3) adenine, and (4) adenine + TJ-48. Biochemical and histological analyses, gene expression analysis, and complete blood counts were performed. TJ-48 treatment decreased tubular damage and fibrosis. TJ-48 also decreased creatinine levels exacerbated by adenine, suppressed the mRNA expression of tumor necrosis factor-α, chemokine ligand 2, transforming growth factor-ß, and kidney injury molecule-1, and decreased the neutrophil/lymphocyte ratio increased by adenine. TJ-48 exerts a renoprotective effect possibly via the suppression of fibrosis and inflammation.


Asunto(s)
Adenina/efectos adversos , Medicamentos Herbarios Chinos/administración & dosificación , Fallo Renal Crónico/tratamiento farmacológico , Fallo Renal Crónico/patología , Túbulos Renales/patología , Administración Oral , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Medicamentos Herbarios Chinos/farmacología , Fibrosis , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Inflamación , Fallo Renal Crónico/inducido químicamente , Fallo Renal Crónico/prevención & control , Túbulos Renales/metabolismo , Ratones Endogámicos BALB C , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
BMC Nephrol ; 23(1): 254, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35843953

RESUMEN

BACKGROUND: Human Kidney Injury Molecule-1, also known as HAVCR-1 (Hepatitis A virus cellular receptor 1), belongs to the cell-surface protein of immunoglobulin superfamily involved in the phagocytosis by acting as scavenger receptor epithelial cells. The study focused on pinpointing the mechanisms and genes that interact with KIM-1. METHODS: This in-silico study was done from March 2019 to December 2019. The Enrichment and protein-protein interaction (PPI) network carefully choose proteins. In addition, the diagramed gene data sets were accomplished using FunRich version 3.1.3. It was done to unveil the proteins that may affect the regulation of HAVCR1 or may be regulated by this protein. These genes were then further considered in pathway analysis to discover the dysregulated pathways in diabetic nephropathy. The long list of differentially expressed genes is meaningless without pathway analysis. RESULTS: Critical pathways that are dysregulated in diabetic nephropathy patients have been identified. These include Immune System (Total = 237, P < 0.05), Innate Immune System (Total = 140, P < 0.05), Cytokine Signaling Immune system (Total = 116, P < 0.05), Adaptive Immune System (Total = 85) and Neutrophil degranulation (Total = 78). CONCLUSION: The top 5 genes that are interacting directly with HIVCR1 include CASP3, CCL2, SPP1, B2M, and TIMP1 with degrees 161, 144, 108, 107, and 105 respectively for Immune system pathways (Innate Immune System, Cytokine Signaling Immune system, Adaptive Immune System and Neutrophil degranulation).


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Receptor Celular 1 del Virus de la Hepatitis A , Biología Computacional , Citocinas/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Perfilación de la Expresión Génica , Receptor Celular 1 del Virus de la Hepatitis A/genética , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Fagocitosis , Mapas de Interacción de Proteínas
13.
Proc Natl Acad Sci U S A ; 116(12): 5705-5714, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30842281

RESUMEN

The T cell Ig and mucin domain (TIM) proteins inhibit release of HIV-1 and other enveloped viruses by interacting with cell- and virion-associated phosphatidylserine (PS). Here, we show that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. TIM-1 more potently inhibits the release of Nef-deficient relative to Nef-expressing HIV-1, and ectopic expression of Nef relieves restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression, but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Notably, Nef mutants defective in modulating membrane protein endocytic trafficking are incapable of antagonizing TIM-mediated inhibition of HIV-1 release. Intriguingly, depletion of SERINC3 or SERINC5 proteins in human peripheral blood mononuclear cells (PBMCs) attenuates TIM-1 restriction of HIV-1 release, in particular that of Nef-deficient viruses. In contrast, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production. Pulse-chase metabolic labeling reveals that the half-life of TIM-1 is extended by SERINC5 from <2 to ∼6 hours, suggesting that SERINC5 stabilizes the expression of TIM-1. Consistent with a role for SERINC protein in potentiating TIM-1 restriction, we find that MLV glycoGag and EIAV S2 proteins, which, like Nef, antagonize SERINC-mediated diminishment of HIV-1 infectivity, also effectively counteract TIM-mediated inhibition of HIV-1 release. Collectively, our work reveals a role of Nef in antagonizing TIM-1 and highlights the complex interplay between Nef and HIV-1 restriction by TIMs and SERINCs.


Asunto(s)
Infecciones por VIH/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Membrana Celular/metabolismo , Regulación hacia Abajo , Células HEK293 , Seropositividad para VIH , VIH-1/metabolismo , VIH-1/patogenicidad , Receptor Celular 1 del Virus de la Hepatitis A/antagonistas & inhibidores , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Leucocitos Mononucleares/metabolismo , Glicoproteínas de Membrana , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transporte de Proteínas , Receptores de Superficie Celular/metabolismo , Virión/metabolismo , Replicación Viral/efectos de los fármacos , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
14.
J Am Soc Nephrol ; 32(10): 2664-2677, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34544821

RESUMEN

BACKGROUND: Novel urine biomarkers may improve identification of children at greater risk of rapid kidney function decline, and elucidate the pathophysiology of CKD progression. METHODS: We investigated the relationship between urine biomarkers of kidney tubular health (EGF and α-1 microglobulin), tubular injury (kidney injury molecule-1; KIM-1), and inflammation (monocyte chemoattractant protein-1 [MCP-1] and YKL-40) and CKD progression. The prospective CKD in Children Study enrolled children aged 6 months to 16 years with an eGFR of 30-90ml/min per 1.73m2. Urine biomarkers were assayed a median of 5 months [IQR: 4-7] after study enrollment. We indexed the biomarker to urine creatinine by dividing the urine biomarker concentration by the urine creatinine concentration to account for the concentration of the urine. The primary outcome was CKD progression (a composite of a 50% decline in eGFR or kidney failure) during the follow-up period. RESULTS: Overall, 252 of 665 children (38%) reached the composite outcome over a median follow-up of 6.5 years. After adjustment for covariates, children with urine EGF concentrations in the lowest quartile were at a seven-fold higher risk of CKD progression versus those with concentrations in the highest quartile (fully adjusted hazard ratio [aHR], 7.1; 95% confidence interval [95% CI], 3.9 to 20.0). Children with urine KIM-1, MCP-1, and α-1 microglobulin concentrations in the highest quartile were also at significantly higher risk of CKD progression versus those with biomarker concentrations in the lowest quartile. Addition of the five biomarkers to a clinical model increased the discrimination and reclassification for CKD progression. CONCLUSIONS: After multivariable adjustment, a lower urine EGF concentration and higher urine KIM-1, MCP-1, and α-1 microglobulin concentrations were each associated with CKD progression in children.


Asunto(s)
alfa-Globulinas/orina , Quimiocina CCL2/orina , Progresión de la Enfermedad , Factor de Crecimiento Epidérmico/orina , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Insuficiencia Renal Crónica/orina , Adolescente , Albuminuria/orina , Biomarcadores/orina , Niño , Proteína 1 Similar a Quitinasa-3/orina , Creatinina/orina , Femenino , Estudios de Seguimiento , Tasa de Filtración Glomerular , Humanos , Túbulos Renales/lesiones , Túbulos Renales/patología , Masculino , Nefritis/orina , Estudios Prospectivos , Insuficiencia Renal Crónica/fisiopatología
15.
Ren Fail ; 44(1): 233-240, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35172674

RESUMEN

BACKGROUND: Literature with regard to coronavirus disease 2019 (COVID-19) associated morbidities and the risk factors for death are still emerging. In this study, we investigated the presence of kidney damage markers and their predictive value for survival among hospitalized subjects with COVID-19. METHODS: Forty-seven participants was included and grouped as: 'COVID-19 patients before treatment', 'COVID-19 patients after treatment', 'COVID-19 patients under treatment in intensive care unit (ICU)', and 'controls'. Kidney function tests and several kidney injury biomarkers were compared between the groups. Cumulative rates of death from COVID-19 were determined using the Kaplan-Meier method. The associations between covariates including kidney injury markers and death from COVID-19 were examined, as well. RESULTS: Serum creatinine and cystatin C levels, urine Kidney Injury Molecule-1 (KIM-1)/creatinine ratio, and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI), CKD-EPI cystatin C, and CKD-EPI creatinine-cystatin C levels demonstrated significant difference among the groups. The most significant difference was noted between the groups 'COVID-19 patients before treatment' and 'COVID-19 patients under treatment in ICU'. Advancing age, proteinuria, elevated serum cystatin C, and urine KIM-1/creatinine ratio were all significant univariate correlates of death (p < 0.05, for all). However, only elevated urine KIM-1/creatinine ratio retained significance in an age, sex, and comorbidities adjusted multivariable Cox regression (OR 6.11; 95% CI: 1.22-30.53; p = 0.02), whereas serum cystatin C showing only a statistically non-significant trend (OR 1.42; 95% CI: 0.00-2.52; p = 0.09). CONCLUSIONS: Our findings clearly demonstrated the acute kidney injury related to COVID-19. Moreover, urine KIM-1/creatinine ratio was associated with COVID-19 specific death.


Asunto(s)
Lesión Renal Aguda/etiología , Biomarcadores/análisis , COVID-19/complicaciones , Proteinuria/etiología , Lesión Renal Aguda/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/mortalidad , COVID-19/terapia , Creatinina/orina , Cistatina C/sangre , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Proteinuria/diagnóstico , Factores de Riesgo , SARS-CoV-2/metabolismo , Análisis de Supervivencia , Urinálisis
16.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142146

RESUMEN

T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.


Asunto(s)
Células Endoteliales/patología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , MicroARNs , Enzima Convertidora de Angiotensina 2 , COVID-19 , Dengue , Células Endoteliales/metabolismo , Fiebre Hemorrágica Ebola , Humanos , Inmunoglobulinas , MicroARNs/genética , Mucinas , Neuropilina-1/genética , Peptidil-Dipeptidasa A , SARS-CoV-2 , Accidente Cerebrovascular , Virus Zika , Infección por el Virus Zika
17.
Am J Physiol Renal Physiol ; 321(2): F135-F148, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34151589

RESUMEN

Cell-associated kidney injury molecule-1 (KIM-1) exerts an anti-inflammatory role following kidney injury by mediating efferocytosis and downregulating the NF-κB pathway. KIM-1 cleavage blunts its anti-inflammatory activities. We reported that mucin 1 (MUC1) is protective in a mouse model of ischemia-reperfusion injury (IRI). As both KIM-1 and MUC1 are induced in the proximal tubule (PT) during IRI and are a disintegrin and metalloprotease 17 (ADAM17) substrates, we tested the hypothesis that MUC1 protects KIM-1 activity. Muc1 knockout (KO) mice and wild-type (WT) littermates were subjected to IRI. KIM-1, MUC1, and ADAM17 levels (and signaling pathways) were assessed by immunoblot analysis. PT localization was assessed by confocal microscopy and an in situ proximity ligation assay. Findings were extended using human kidneys and urine as well as KIM-1-mediated efferocytosis assays in mouse PT cultures. In response to tubular injury in mouse and human kidneys, we observed induction and coexpression of KIM-1 and MUC1 in the PT. Compared with WT mice, Muc1 KO mice had higher urinary KIM-1 and lower kidney KIM-1. KIM-1 was apical in the PT of WT kidneys but predominately with luminal debris in Muc1 KO mice. Efferocytosis was reduced in Muc1 KO PT cultures compared with WT cultures, whereas inflammation was increased in Muc1 KO kidneys compared with WT kidneys. MUC1 was cleaved by ADAM17 in PT cultures and blocked KIM-1 shedding in Madin-Darby canine kidney cells. We conclude that KIM-1-mediated efferocytosis and thus anti-inflammatory activity during IRI is preserved in the injured kidney by MUC1 inhibition of KIM-1 shedding.NEW & NOTEWORTHY KIM-1 plays a key role in the recovery of the tubule epithelium during renal IRI by mediating efferocytosis and associated signaling that suppresses inflammation. Excessive cleavage of KIM-1 by ADAM17 provides a decoy receptor that aggravates efferocytosis and subsequent signaling. Our data from experiments in mice, patients, and cultured cells show that MUC1 is also induced during IRI and competes with KIM-1 for cleavage by ADAM17. Consequently, MUC1 protects KIM-1 anti-inflammatory activity in the damaged kidney.


Asunto(s)
Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Inflamación/metabolismo , Túbulos Renales Proximales/metabolismo , Riñón/irrigación sanguínea , Mucina-1/metabolismo , Daño por Reperfusión/metabolismo , Proteína ADAM17/metabolismo , Animales , Línea Celular , Perros , Humanos , Riñón/metabolismo , Ratones Noqueados , Ratones Transgénicos , Mucina-1/genética , Fagocitosis/fisiología
18.
Am J Physiol Renal Physiol ; 321(5): F572-F586, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34541900

RESUMEN

Receptor-mediated albumin transport in proximal tubule epithelial cells (PTECs) is important to control proteinuria. Autophagy is an evolutionarily conserved degradation pathway, and its role in intracellular trafficking through interactions with the endocytic pathway has recently been highlighted. Here, we determined whether autophagy regulates albumin transcytosis in PTECs and suppresses albumin-induced cytotoxicity using human proximal tubule (HK-2) cells. The neonatal Fc receptor (FcRn), a receptor for albumin transcytosis, is partially colocalized with autophagosomes. Recycling of FcRn was attenuated, and FcRn accumulated in autophagy-related 7 (ATG7) knockdown HK-2 cells. Colocalization of FcRn with RAB7-positive late endosomes and RAB11-positive recycling endosomes was reduced in ATG7 knockdown cells, which decreased recycling of FcRn to the plasma membrane. In ATG7 or autophagy-related 5 (ATG5) knockdown cells and Atg5 or Atg7 knockout mouse embryonic fibroblasts, albumin transcytosis was significantly reduced and intracellular albumin accumulation was increased. Finally, the release of kidney injury molecule-1, a marker of tubule injury, from ATG7 or ATG5 knockdown cells was increased in response to excess albumin. In conclusion, suppression of autophagy in tubules impairs FcRn transport, thereby inhibiting albumin transcytosis. The resulting accumulation of albumin induces cytotoxicity in tubules.NEW & NOTEWORTHY Albumin transport in proximal tubule epithelial cells (PTECs) is important to control proteinuria. The neonatal Fc receptor (FcRn), a receptor for albumin transcytosis, is partially colocalized with autophagosomes. Recycling of FcRn to the plasma membrane was decreased in autophagy-related 7 (ATG7) knockdown cells. In addition, albumin transcytosis was decreased in ATG7 or autophagy-related 5 (ATG5) knockdown PTECs. Finally, release of kidney injury molecule-1 from ATG7 or ATG5 knockdown cells was increased in response to excess albumin.


Asunto(s)
Autofagosomas/metabolismo , Proteína 7 Relacionada con la Autofagia/metabolismo , Autofagia , Células Epiteliales/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Túbulos Renales Proximales/metabolismo , Albúmina Sérica Bovina/metabolismo , Transcitosis , Animales , Autofagosomas/genética , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Línea Celular , Fluoresceína-5-Isotiocianato/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Túbulos Renales Proximales/citología , Ratones , Receptores Fc/genética , Receptores Fc/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
19.
Am J Physiol Renal Physiol ; 320(1): F87-F96, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283645

RESUMEN

Injured tubule epithelium stimulates a profibrotic milieu that accelerates loss of function in chronic kidney disease (CKD). This study tested the role of signal transducer and activator of transcription 1 (STAT1) in the progressive loss of kidney function in aristolochic acid (AA) nephropathy, a model of CKD. Mean serum creatinine concentration increased in wild-type (WT) littermates treated with AA, whereas Stat1-/- mice were protected. Focal increases in the apical expression of kidney injury molecule (KIM)-1 were observed in the proximal tubules of WT mice with AA treatment but were absent in Stat1-/- mice in the treatment group as well as in both control groups. A composite injury score, an indicator of proximal tubule injury, was reduced in Stat1-/- mice treated with AA. Increased expression of integrin-ß6 and phosphorylated Smad2/3 in proximal tubules as well as interstitial collagen and fibronectin were observed in WT mice following AA treatment but were all decreased in AA-treated Stat1-/- mice. The data indicated that STAT1 activation facilitated the development of progressive kidney injury and interstitial fibrosis in AA nephropathy.


Asunto(s)
Ácidos Aristolóquicos , Matriz Extracelular/metabolismo , Eliminación de Gen , Túbulos Renales Proximales/metabolismo , Insuficiencia Renal Crónica/prevención & control , Factor de Transcripción STAT1/deficiencia , Animales , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Fibrosis , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Cadenas beta de Integrinas/metabolismo , Túbulos Renales Proximales/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Factor de Transcripción STAT1/genética , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
20.
Mol Med ; 27(1): 143, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34736391

RESUMEN

BACKGROUND: LncRNA-ATB is a long noncoding RNA (lncRNA) activated by transforming growth factor ß (TGF-ß) and it has important biological functions in tumours and nontumour diseases. Meanwhile, TGF-ß is the most critical regulatory factor in the process of nephrotic fibrosis and calcium oxalate (CaOx) crystal-induced renal injury. The present study aimed to investigate the biological function and mechanism of lncRNA-ATB in CaOx crystal-induced renal injury. METHODS: The expression level of lncRNA-ATB was detected by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), the expression levels of epithelial-mesenchymal transition (EMT) markers, TGF-ß1 and Kidney Injury Molecule-1 (KIM-1) were detected by qRT-PCR, immunofluorescence staining or western blot analysis, cell proliferation was measured with a CCK-8 kit, cell apoptosis was measured by flow cytometry and TUNEL staining, and cell injury was detected with the Cytotoxicity lactate dehydrogenase (LDH) Assay kit and the expression level of KIM-1. RESULTS: The expression levels of lncRNA-ATB and TGF-ß1 were significantly increased in HK-2 cells after coincubation with calcium oxalate monohydrate (COM). COM stimulation caused significant injury in the HK-2 cells, induced cell apoptosis, inhibited cell proliferation, and induced EMT changes. After COM stimulation, the expression levels of the epithelial cell markers E-cadherin and zonula occludens (ZO)-1 in HK-2 cells significantly decreased, whereas the levels of the mesenchymal cell markers N-cadherin, vimentin and α-smooth muscle actin (α-SMA) significantly increased. Interference with lncRNA-ATB expression significantly relieved the COM-induced cell injury, cell apoptosis, proliferation inhibition, and EMT changes. The expression levels of the microRNA-200 (miR-200) family in the HK-2 cells after coincubation with COM were significantly decreased. MiR-200a mimics relieved the COM-induced cell injury, apoptosis, proliferation inhibition, and EMT changes, whereas miR-200a inhibitors abolished the lncRNA-ATB interference-induced relief of the COM-induced cell injury, apoptosis, proliferation inhibition, and EMT. CONCLUSION: LncRNA-ATB promoted the COM-induced cell injury, cell apoptosis, proliferation inhibition, and EMT to participate in the process of CaOx crystal-induced renal injury by sponging miR-200s.


Asunto(s)
Oxalato de Calcio , Cálculos Renales/genética , MicroARNs , ARN Largo no Codificante , Apoptosis , Línea Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Receptor Celular 1 del Virus de la Hepatitis A/genética , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Cálculos Renales/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA