Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 788
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107481, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38901558

RESUMEN

Beta-adrenergic receptors (ßARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine hormone-induced stress responses, such as elevation of heart rate. Besides those that are plasma membrane-bound, endomembrane ßARs are also signaling competent. Dysregulation of ßAR pathways underlies severe pathological conditions. Emerging evidence indicates pathological molecular signatures in deeper endomembrane ßARs signaling, likely contributing to conditions such as cardiomyocyte hypertrophy and apoptosis. However, the lack of approaches to control endomembrane ß1ARs has impeded linking signaling with pathology. Informed by the ß1AR-catecholamine interactions, we engineered an efficient photolabile proligand (OptoIso) to trigger ßAR signaling exclusively in endomembrane regions using blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. OptoIso also allows optical activation of plasma membrane ßAR signaling in selected single cells with native fidelity, which can be reversed by terminating blue light. Thus, OptoIso will be a valuable experimental tool to elicit spatial and temporal control of ßAR signaling in user-defined endomembrane or plasma membrane regions in unmodified cells with native fidelity.


Asunto(s)
Membrana Celular , Receptores Adrenérgicos beta 1 , Transducción de Señal , Humanos , Membrana Celular/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/genética , Células HEK293 , Luz , Animales
2.
Nature ; 559(7714): 423-427, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995853

RESUMEN

G-protein-coupled receptors (GPCRs) are involved in many physiological processes and are therefore key drug targets1. Although detailed structural information is available for GPCRs, the effects of lipids on the receptors, and on downstream coupling of GPCRs to G proteins are largely unknown. Here we use native mass spectrometry to identify endogenous lipids bound to three class A GPCRs. We observed preferential binding of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) over related lipids and confirm that the intracellular surface of the receptors contain hotspots for PtdIns(4,5)P2 binding. Endogenous lipids were also observed bound directly to the trimeric Gαsßγ protein complex of the adenosine A2A receptor (A2AR) in the gas phase. Using engineered Gα subunits (mini-Gαs, mini-Gαi and mini-Gα12)2, we demonstrate that the complex of mini-Gαs with the ß1 adrenergic receptor (ß1AR) is stabilized by the binding of two PtdIns(4,5)P2 molecules. By contrast, PtdIns(4,5)P2 does not stabilize coupling between ß1AR and other Gα subunits (mini-Gαi or mini-Gα12) or a high-affinity nanobody. Other endogenous lipids that bind to these receptors have no effect on coupling, highlighting the specificity of PtdIns(4,5)P2. Calculations of potential of mean force and increased GTP turnover by the activated neurotensin receptor when coupled to trimeric Gαißγ complex in the presence of PtdIns(4,5)P2 provide further evidence for a specific effect of PtdIns(4,5)P2 on coupling. We identify key residues on cognate Gα subunits through which PtdIns(4,5)P2 forms bridging interactions with basic residues on class A GPCRs. These modulating effects of lipids on receptors suggest consequences for understanding function, G-protein selectivity and drug targeting of class A GPCRs.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Humanos , Simulación de Dinámica Molecular , Estabilidad Proteica , Ratas , Receptores Adrenérgicos alfa 2/química , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Neurotensina/química , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo , Especificidad por Sustrato , Pavos
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088840

RESUMEN

A key question in receptor signaling is how specificity is realized, particularly when different receptors trigger the same biochemical pathway(s). A notable case is the two ß-adrenergic receptor (ß-AR) subtypes, ß1 and ß2, in cardiomyocytes. They are both coupled to stimulatory Gs proteins, mediate an increase in cyclic adenosine monophosphate (cAMP), and stimulate cardiac contractility; however, other effects, such as changes in gene transcription leading to cardiac hypertrophy, are prominent only for ß1-AR but not for ß2-AR. Here, we employ highly sensitive fluorescence spectroscopy approaches, in combination with a fluorescent ß-AR antagonist, to determine the presence and dynamics of the endogenous receptors on the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. These techniques allow us to visualize that the ß2-AR is confined to and diffuses within the T-tubular network, as opposed to the ß1-AR, which is found to diffuse both on the outer plasma membrane as well as on the T-tubules. Upon overexpression of the ß2-AR, this compartmentalization is lost, and the receptors are also seen on the cell surface. Such receptor segregation depends on the development of the T-tubular network in adult cardiomyocytes since both the cardiomyoblast cell line H9c2 and the cardiomyocyte-differentiated human-induced pluripotent stem cells express the ß2-AR on the outer plasma membrane. These data support the notion that specific cell surface targeting of receptor subtypes can be the basis for distinct signaling and functional effects.


Asunto(s)
Membrana Celular/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Imagen Molecular , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animales , Línea Celular , Membrana Celular/genética , Humanos , Ratones , Ratones Transgénicos , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética
4.
Environ Toxicol ; 39(6): 3425-3433, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450887

RESUMEN

Recent reports indicate a potential oncogenic role of antihypertensive drugs in common cancers. However, it remains uncertain whether this phenomenon influences the risk of glioblastoma multiforme (GBM). This study aimed to assess the potential causal effects of blood pressure (BP) and antihypertensive drugs on GBM. Genome-wide association study (GWAS) summary statistics for systolic blood pressure (SBP), diastolic blood pressure (DBP), and GBM in Europeans were downloaded. To represent the effects of antihypertensive drugs, we utilized single nucleotide polymorphisms (SNPs) associated with SBP/DBP adjacent to the coding regions of different antihypertensive drugs as instrumental variables to model five antihypertensive drugs, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, calcium channel blockers, ß-receptor blockers (BBs), and thiazide diuretics. Positive control studies were performed using GWAS data in chronic heart failure. The primary method for causality estimation was the inverse-variance-weighted method. Mendelian randomization analysis showed that BBs with the ß1-adrenergic receptor (ADRB1) as a therapeutic target could significantly reduce the risk of GBM by mediating DBP (OR = 0.431, 95% CI: 0.267-0.697, p < .001) and that they could also significantly reduce the risk of GBM by mediating SBP (OR = 0.595, 95% CI: 0.422-0.837, p = .003). Sensitivity analysis and colocalization analysis reinforced the robustness of these findings. Finally, the low expression of the ADRB1 gene in malignant gliomas was found by GBM data from TCGA and single-cell RNA sequencing, which most likely contributed to the poor prognosis of GBM patients. In summary, our study provides preliminary evidence of some causal relationship between ADRB1-targeted BBs and glioblastoma development. However, more studies are needed to validate these findings and further reveal the complex relationship between BP and GBM.


Asunto(s)
Antihipertensivos , Estudio de Asociación del Genoma Completo , Glioblastoma , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Receptores Adrenérgicos beta 1 , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Humanos , Antihipertensivos/uso terapéutico , Receptores Adrenérgicos beta 1/genética , Sitios de Carácter Cuantitativo , Presión Sanguínea/efectos de los fármacos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Antagonistas Adrenérgicos beta/uso terapéutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico
5.
J Therm Biol ; 123: 103906, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38970835

RESUMEN

Research has shown that pigs from different regions exhibit varying responses to cold stimuli. Typically, cold stimuli induce browning of white adipose tissue mediated by adrenaline, promoting non-shivering thermogenesis. However, the molecular mechanisms underlying differential response of pig breeds to norepinephrine are unclear. The aim of this study was to investigate the differences and molecular mechanisms of the effects of norepinephrine (NE) treatment on adipocytes of Min pigs (a cold-resistant pig breed) and Duroc-Landrace-Yorkshire (DLY) pigs. Real time-qPCR, western blot, and immunofluorescence were performed following NE treatment on cell cultures of adipocytes originating from Min pigs (n = 3) and DLY pigs (n = 3) to assess the expressions of adipogenesis markers, beige fat markers, and mitochondrial biogenesis markers. The results showed that NE did not affect browning of adipocytes in DLY pigs, whereas promoted browning of adipocytes in Min pigs. Further, the expression of ADRB1 (Adrenoceptor Beta 1, ADRB1) was higher in subcutaneous adipose tissue and adipocytes of Min pigs than those of DLY pigs. Overexpression of ADRB1 in DLY pig adipocytes enhanced sensitivity to NE, exhibiting decreased adipogenesis markers, upregulated beige fat markers, and increased mitochondrial biogenesis. Conversely, adipocytes treated with ADRB1 antagonist in Min pigs resulted in decreased cellular sensitivity to NE. Further studies revealed differential CpG island methylation in ADRB1 promoter region, with lower methylation levels in Min pigs compared to DLY pigs. In conclusion, differential methylation of the ADRB1 promoter region leads to different ADRB1 expression, resulting in varying responsiveness to NE in adipocytes of two pig breeds. Our results provide new insights for further analysis of the differential cold responsiveness in pig breeds from different regions.


Asunto(s)
Adipocitos , Adipogénesis , Norepinefrina , Receptores Adrenérgicos beta 1 , Animales , Norepinefrina/farmacología , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/genética , Porcinos , Adipogénesis/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Termogénesis/efectos de los fármacos , Metilación de ADN , Células Cultivadas
6.
Wiad Lek ; 77(1): 105-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38431814

RESUMEN

OBJECTIVE: Aim: To analyze the role of cytokines in the progression of heart failure (HF) in patients with concomitant pathology of the thyroid gland. PATIENTS AND METHODS: Materials and Methods: The systematization of literature data on the role of cytokines in the progression of HF in patients with concomitant thyroid pathology (TP) was carried out. The results of our own research were presented. CONCLUSION: Conclusions: The final chapter in the history of the role of cytokines in the progression of HF has not yet been written. Further studies, including genetic ones, are necessary. The patients with HF have higher levels of TNFß and IL-6, and a lower concentration of IL-4, compared to the control group. Patients with a fatal outcome of the disease, in contrast to those who survived for two years, have an increased level of TNFß. In patients with concomitant TP, who had repeated hospitalization, a lower level was registered, compared to that under conditions of a more favorable course of heart failure. Concentrations of cytokines in the blood of patients with HF are associated with gene polymorphisms of the ß-adrenoreceptor system: the C-allele of the Gly389A polymorphism of the ß1-adrenoceptor gene leads to a decrease in the risk of increasing TNFα; IL-1α increases in the presence of the A-allele of the Ser49Gly polymorphism of this gene. In patients with HF and concomitant thyroid pathology, the risk of IL-6 growth increases in homozygous (C) patients for the Ser275 polymorphism of the ß3 subunit of the G-protein.


Asunto(s)
Insuficiencia Cardíaca , Glándula Tiroides , Humanos , Citocinas/genética , Interleucina-6/genética , Receptores Adrenérgicos beta 1/genética , Polimorfismo Genético , Insuficiencia Cardíaca/genética
7.
Circ Res ; 128(2): 246-261, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33183171

RESUMEN

RATIONALE: ß1ARs (ß1-adrenoceptors) exist at intracellular membranes and OCT3 (organic cation transporter 3) mediates norepinephrine entry into cardiomyocytes. However, the functional role of intracellular ß1AR in cardiac contractility remains to be elucidated. OBJECTIVE: Test localization and function of intracellular ß1AR on cardiac contractility. METHODS AND RESULTS: Membrane fractionation, super-resolution imaging, proximity ligation, coimmunoprecipitation, and single-molecule pull-down demonstrated a pool of ß1ARs in mouse hearts that were associated with sarco/endoplasmic reticulum Ca2+-ATPase at the sarcoplasmic reticulum (SR). Local PKA (protein kinase A) activation was measured using a PKA biosensor targeted at either the plasma membrane (PM) or SR. Compared with wild-type, myocytes lacking OCT3 (OCT3-KO [OCT3 knockout]) responded identically to the membrane-permeant ßAR agonist isoproterenol in PKA activation at both PM and SR. The same was true at the PM for membrane-impermeant norepinephrine, but the SR response to norepinephrine was suppressed in OCT3-KO myocytes. This differential effect was recapitulated in phosphorylation of the SR-pump regulator phospholamban. Similarly, OCT3-KO selectively suppressed calcium transients and contraction responses to norepinephrine but not isoproterenol. Furthermore, sotalol, a membrane-impermeant ßAR-blocker, suppressed isoproterenol-induced PKA activation at the PM but permitted PKA activation at the SR, phospholamban phosphorylation, and contractility. Moreover, pretreatment with sotalol in OCT3-KO myocytes prevented norepinephrine-induced PKA activation at both PM and the SR and contractility. CONCLUSIONS: Functional ß1ARs exists at the SR and is critical for PKA-mediated phosphorylation of phospholamban and cardiac contractility upon catecholamine stimulation. Activation of these intracellular ß1ARs requires catecholamine transport via OCT3.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Membrana Celular/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Frecuencia Cardíaca , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas de Transporte de Catión Orgánico/genética , Fosforilación , Conejos , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Retículo Sarcoplasmático/metabolismo , Transducción de Señal
8.
Medicina (Kaunas) ; 59(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38138160

RESUMEN

Background and Objectives: Tachycardia is a common cardiovascular disease. Drugs blocking ß1-adrenergic receptors (ADRB1) are used in the therapy of arrhythmogenic heart diseases. Disease-related polymorphisms can be observed within the ADRB1 gene. The two most important are Ser49Gly and Arg389Gly, and they influence the treatment efficacy. The family of the cytochrome P450 system consists of the isoenzyme CYP2D6 (Debrisoquine 4-hydroxylase), which is involved in phase I metabolism of almost 25% of clinically important drugs, including antiarrhythmic drugs. A study was conducted to detect the ADRB1 and CYP2D6 gene polymorphisms. Materials and Methods: The material for the test was whole blood from 30 patients with ventricular and supraventricular tachycardia and 20 controls. The samples were obtained from the Department of Pediatric Cardiology. The first to be made was the extraction of DNA using a GeneMATRIX Quick Blood DNA Purification Kit from EURx. The selected ADRB1 and CYP2D6 gene polymorphisms were detected by high-resolution melting polymerase chain reaction (HRM-PCR) analysis. Results: Based on the analysis of melt profile data for each PCR product, the identification of polymorphisms was carried out. Heterozygotes and homozygotes were found in the examined alleles. Conclusions: The frequency of the Arg389Gly polymorphism differs statistically significantly between the control group and patients with supraventricular and ventricular arrhythmias, as well as between these two groups of patients. Moreover, the Arg389Gly polymorphism was statistically more prevalent in the group of girls with SVT arrhythmia compared to girls with VT. A few carriers of homozygous and heterozygous systems of the S49G polymorphism were detected among patients with arrhythmias, as well as control group. The percentage of individuals carrying the CYP2D6 4 allele as either homozygous or heterozygous was observed in the study and control groups. The high prevalence of the CYP2D6*4 allele carriers in both groups prompts the optimization of beta-1 blocker therapy.


Asunto(s)
Antagonistas Adrenérgicos beta , Citocromo P-450 CYP2D6 , Niño , Femenino , Humanos , Antagonistas Adrenérgicos beta/uso terapéutico , Arritmias Cardíacas/genética , Citocromo P-450 CYP2D6/genética , ADN , Polimorfismo Genético/genética , Receptores Adrenérgicos beta 1/genética
9.
Wiad Lek ; 76(9): 2054-2060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37898944

RESUMEN

OBJECTIVE: The aim: To study the association of left ventricular hypertrophy (LVH) and polymorphisms rs1801253 and rs1801252 of the ADRB1 gene with the risk of sudden cardiac death (SCD). PATIENTS AND METHODS: Materials and methods: The study included 179 patients which underwent clinical investigation, echocardiography, elektrokardiography. The examined were divided into groups with a low (110 people) and high risk (69 people) of SCD. The distribution of allelic polymorphisms was investigated with polymerase chain reaction (PCR). RESULTS: Results: All patients of group with high-risk cardiovascular mortality showed a decrease in heart rate variability (RV) due to an increase in sympathetic activity (p=0.013). Also, in the group of patients with LVH, predictors of sudden cardiac death and arrhythmogenic substrate, were observed. The variability of the allele C1165G rs1801253 of the ADRB1 gene was associated with an increased risk (2.55-fold increase) of SCD and LVH. Also, the associations of polymorphic locus A145G (rs1801252) of the ADRB1 gene proved the presence of a permanent difference for the "risky" allele A in patients with a high risk of SCD. CONCLUSION: Conclusions: It was set the probable association of alleles rs1801253 (C1165G) and rs1801252 (A145G) ADRB1 at the patients with a high risk of SCD compared to the control group.


Asunto(s)
Hipertensión , Hipertrofia Ventricular Izquierda , Humanos , Alelos , Hipertrofia Ventricular Izquierda/genética , Hipertensión/complicaciones , Hipertensión/genética , Polimorfismo Genético , Muerte Súbita Cardíaca/etiología , Factores de Riesgo , Receptores Adrenérgicos beta 1/genética
10.
PLoS Med ; 19(2): e1003897, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35113855

RESUMEN

BACKGROUND: Epidemiological studies have reported conflicting findings on the potential adverse effects of long-term antihypertensive medication use on cancer risk. Naturally occurring variation in genes encoding antihypertensive drug targets can be used as proxies for these targets to examine the effect of their long-term therapeutic inhibition on disease outcomes. METHODS AND FINDINGS: We performed a mendelian randomization analysis to examine the association between genetically proxied inhibition of 3 antihypertensive drug targets and risk of 4 common cancers (breast, colorectal, lung, and prostate). Single-nucleotide polymorphisms (SNPs) in ACE, ADRB1, and SLC12A3 associated (P < 5.0 × 10-8) with systolic blood pressure (SBP) in genome-wide association studies (GWAS) were used to proxy inhibition of angiotensin-converting enzyme (ACE), ß-1 adrenergic receptor (ADRB1), and sodium-chloride symporter (NCC), respectively. Summary genetic association estimates for these SNPs were obtained from GWAS consortia for the following cancers: breast (122,977 cases, 105,974 controls), colorectal (58,221 cases, 67,694 controls), lung (29,266 cases, 56,450 controls), and prostate (79,148 cases, 61,106 controls). Replication analyses were performed in the FinnGen consortium (1,573 colorectal cancer cases, 120,006 controls). Cancer GWAS and FinnGen consortia data were restricted to individuals of European ancestry. Inverse-variance weighted random-effects models were used to examine associations between genetically proxied inhibition of these drug targets and risk of cancer. Multivariable mendelian randomization and colocalization analyses were employed to examine robustness of findings to violations of mendelian randomization assumptions. Genetically proxied ACE inhibition equivalent to a 1-mm Hg reduction in SBP was associated with increased odds of colorectal cancer (odds ratio (OR) 1.13, 95% CI 1.06 to 1.22; P = 3.6 × 10-4). This finding was replicated in the FinnGen consortium (OR 1.40, 95% CI 1.02 to 1.92; P = 0.035). There was little evidence of association of genetically proxied ACE inhibition with risk of breast cancer (OR 0.98, 95% CI 0.94 to 1.02, P = 0.35), lung cancer (OR 1.01, 95% CI 0.92 to 1.10; P = 0.93), or prostate cancer (OR 1.06, 95% CI 0.99 to 1.13; P = 0.08). Genetically proxied inhibition of ADRB1 and NCC were not associated with risk of these cancers. The primary limitations of this analysis include the modest statistical power for analyses of drug targets in relation to some less common histological subtypes of cancers examined and the restriction of the majority of analyses to participants of European ancestry. CONCLUSIONS: In this study, we observed that genetically proxied long-term ACE inhibition was associated with an increased risk of colorectal cancer, warranting comprehensive evaluation of the safety profiles of ACE inhibitors in clinical trials with adequate follow-up. There was little evidence to support associations across other drug target-cancer risk analyses, consistent with findings from short-term randomized controlled trials for these medications.


Asunto(s)
Antihipertensivos/efectos adversos , Análisis de la Aleatorización Mendeliana/métodos , Neoplasias/genética , Peptidil-Dipeptidasa A/genética , Receptores Adrenérgicos beta 1/genética , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Neoplasias/inducido químicamente , Neoplasias/epidemiología , Polimorfismo de Nucleótido Simple/efectos de los fármacos , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética
11.
Am J Physiol Heart Circ Physiol ; 322(3): H486-H491, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35148234

RESUMEN

ß1-Adrenergic receptors (ß1ARs) are the principal mediators of catecholamine action in cardiomyocytes. We previously showed that ß1ARs accumulate as both full-length and NH2-terminally truncated species in cells, that maturational processing of full-length ß1ARs to an NH2-terminally truncated form is attributable to O-glycan-regulated proteolytic cleavage of the ß1AR NH2-terminus at R31 ↓ L32 by ADAM17, and that NH2-terminally truncated ß1ARs remain signaling competent but they acquire a distinct signaling phenotype. NH2-terminally truncated ß1ARs differ from full-length ß1ARs in their signaling bias to cAMP/PKA versus ERK pathways and only the NH2-terminally truncated form of the ß1AR constitutively activates AKT and confers protection against doxorubicin-dependent apoptosis in cardiomyocytes. Since the R31 ↓ L32 sequence conforms to a trypsin consensus cleavage site, we used immunoblotting methods to test the hypothesis that ß1ARs are also cleaved at R31 ↓ L32 by trypsin (an enzyme typically used to isolate cardiomyocytes from the intact ventricle). We show that full-length ß1ARs are cleaved by trypsin and that trypsin cleaves the full-length ß1AR NH2-terminus specifically at R31 ↓ L32 in CHO-Pro5 cells. Trypsin also cleaves ß1ARs in cardiomyocytes, but at a second site that results in the formation of ∼40-kDa NH2-terminal and ∼30-kDa COOH-terminal fragments. The observation that cardiomyocyte ß1ARs are cleaved by trypsin (a mechanism that constitutes a heretofore-unrecognized mechanism that would influence ß1AR-signaling responses) suggests that studies that use standard trypsin-based procedures to isolate adult cardiomyocytes from the intact ventricle should be interpreted with caution.NEW & NOTEWORTHY Current concepts regarding the molecular basis for ß1AR responses derive from literature predicated on the assumption that ß1ARs signal exclusively as full-length receptor proteins. However, we recently showed that ß1ARs accumulate as both full-length and NH2-terminally truncated forms. This manuscript provides novel evidence that ß1-adrenergic receptors can be cleaved by trypsin and that cell surface ß1AR cleavage constitutes a heretofore unrecognized mechanism to alter catecholamine-dependent signaling responses.


Asunto(s)
Miocitos Cardíacos , Receptores Adrenérgicos beta 1 , Catecolaminas/metabolismo , Miocitos Cardíacos/metabolismo , Proteolisis , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Transducción de Señal , Tripsina/metabolismo
12.
Basic Res Cardiol ; 117(1): 37, 2022 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-35842861

RESUMEN

We have recently identified a pool of intracellular ß1 adrenergic receptors (ß1ARs) at the sarcoplasmic reticulum (SR) crucial for cardiac function. Here, we aim to characterize the integrative control of intracellular catecholamine for subcellular ß1AR signaling and cardiac function. Using anchored Förster resonance energy transfer (FRET) biosensors and transgenic mice, we determined the regulation of compartmentalized ß1AR-PKA signaling at the SR and plasma membrane (PM) microdomains by organic cation transporter 3 (OCT3) and monoamine oxidase A (MAO-A), two critical modulators of catecholamine uptake and homeostasis. Additionally, we examined local PKA substrate phosphorylation and excitation-contraction coupling in cardiomyocyte. Cardiac-specific deletion of MAO-A (MAO-A-CKO) elevates catecholamines and cAMP levels in the myocardium, baseline cardiac function, and adrenergic responses. Both MAO-A deletion and inhibitor (MAOi) selectively enhance the local ß1AR-PKA activity at the SR but not PM, and augment phosphorylation of phospholamban, Ca2+ cycling, and myocyte contractile response. Overexpression of MAO-A suppresses the SR-ß1AR-PKA activity and PKA phosphorylation. However, deletion or inhibition of OCT3 by corticosterone prevents the effects induced by MAOi and MAO-A deletion in cardiomyocytes. Deletion or inhibition of OCT3 also negates the effects of MAOi and MAO-A deficiency in cardiac function and adrenergic responses in vivo. Our data show that MAO-A and OCT3 act in concert to fine-tune the intracellular SR-ß1AR-PKA signaling and cardiac fight-or-flight response. We reveal a drug contraindication between anti-inflammatory corticosterone and anti-depressant MAOi in modulating adrenergic regulation in the heart, providing novel perspectives of these drugs with cardiac implications.


Asunto(s)
Corticosterona , Proteínas Quinasas Dependientes de AMP Cíclico , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Animales , Calcio/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacología , Cationes/metabolismo , Cationes/farmacología , Corticosterona/metabolismo , Corticosterona/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Ratones , Monoaminooxidasa/metabolismo , Monoaminooxidasa/farmacología , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Fosforilación , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Retículo Sarcoplasmático
13.
Pharmacogenomics J ; 22(1): 62-68, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34642472

RESUMEN

Single nucleotide polymorphisms (SNPs) have been associated with differential beta-blocker (BB) effects on heart rate, blood pressure, and left ventricular ejection fraction in various patient populations. This study aimed to determine if SNPs previously associated with BB response are also associated with differential survival in heart failure (HF) patients receiving BBs. HF patient data were derived from electronic health records and the Social Security Death Index. Associations and interactions between BB dose, SNP genotype, and the outcome of death were assessed using a Cox proportional-hazard model adjusting for covariates known to be associated with differential survival in HF patients. Two SNPs, ADRB1 Arg389Gly and ADRB2 Glu27Gln, displayed significant interactions (Pint = 0.043 and Pint = 0.017, respectively) with BB dose and their association with mortality. Our study suggests that ADRB2 27Glu and ADRB1 389Arg may confer a larger survival benefit with higher BB doses in patients with HF.


Asunto(s)
Antagonistas Adrenérgicos beta/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/mortalidad , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Antagonistas Adrenérgicos beta/administración & dosificación , Anciano , Anciano de 80 o más Años , Relación Dosis-Respuesta a Droga , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo Genético/genética , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales , Análisis de Supervivencia
14.
J Cardiovasc Pharmacol ; 80(3): 334-341, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35881897

RESUMEN

ABSTRACT: Adrenergic receptors are critical regulators of cardiac function with profound effects on cardiac output during sympathetic stimulation. Chronic stimulation of the adrenergic system of the heart under conditions of cardiac stress leads to cardiac dysfunction, hypertrophy, and ultimately failure. Emerging data have revealed that G protein-coupled receptors in intracellular compartments are functionally active and regulate distinct cellular processes from those at the cell surface. ß2 adrenergic receptors internalize onto endosomes in various cell types where they have recently been shown to continue to stimulate cAMP production to selectively regulate gene expression. Other studies have identified ß1 adrenergic receptors at the nuclear envelope and the Golgi apparatus. Here, we discuss data on signaling by ß1 and ß2 adrenergic receptors in the heart and the possible influence of their subcellular locations on their divergent physiological functions in cardiac myocytes and in cardiac pathology. Understanding the relative roles of these receptors at these locations could have a significant impact on pharmacological targeting of these receptors for the treatment of heart failure and cardiac diseases.


Asunto(s)
Insuficiencia Cardíaca , Receptores Adrenérgicos beta , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Humanos , Miocitos Cardíacos , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal
15.
Nature ; 530(7589): 237-41, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26840483

RESUMEN

G protein-coupled receptors (GPCRs) are physiologically important transmembrane signalling proteins that trigger intracellular responses upon binding of extracellular ligands. Despite recent breakthroughs in GPCR crystallography, the details of ligand-induced signal transduction are not well understood owing to missing dynamical information. In principle, such information can be provided by NMR, but so far only limited data of functional relevance on few side-chain sites of eukaryotic GPCRs have been obtained. Here we show that receptor motions can be followed at virtually any backbone site in a thermostabilized mutant of the turkey ß1-adrenergic receptor (ß1AR). Labelling with [(15)N]valine in a eukaryotic expression system provides over twenty resolved resonances that report on structure and dynamics in six ligand complexes and the apo form. The response to the various ligands is heterogeneous in the vicinity of the binding pocket, but gets transformed into a homogeneous readout at the intracellular side of helix 5 (TM5), which correlates linearly with ligand efficacy for the G protein pathway. The effect of several pertinent, thermostabilizing point mutations was assessed by reverting them to the native sequence. Whereas the response to ligands remains largely unchanged, binding of the G protein mimetic nanobody NB80 and G protein activation are only observed when two conserved tyrosines (Y227 and Y343) are restored. Binding of NB80 leads to very strong spectral changes throughout the receptor, including the extracellular ligand entrance pocket. This indicates that even the fully thermostabilized receptor undergoes activating motions in TM5, but that the fully active state is only reached in presence of Y227 and Y343 by stabilization with a G protein-like partner. The combined analysis of chemical shift changes from the point mutations and ligand responses identifies crucial connections in the allosteric activation pathway, and presents a general experimental method to delineate signal transmission networks at high resolution in GPCRs.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Transducción de Señal , Agonistas de Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Animales , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Agonismo Parcial de Drogas , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ligandos , Modelos Moleculares , Movimiento , Mutación Puntual/genética , Estabilidad Proteica , Estructura Secundaria de Proteína/efectos de los fármacos , Receptores Adrenérgicos beta 1/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Pavos
16.
J Mol Cell Cardiol ; 154: 70-79, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33556394

RESUMEN

ß1-adrenergic receptors (ß1ARs) are the principle mediators of catecholamine action in cardiomyocytes. We previously showed that the ß1AR extracellular N-terminus is a target for post-translational modifications that impact on signaling responses. Specifically, we showed that the ß1AR N-terminus carries O-glycan modifications at Ser37/Ser41, that O-glycosylation prevents ß1AR N-terminal cleavage, and that N-terminal truncation influences ß1AR signaling to downstream effectors. However, the site(s) and mechanism for ß1AR N-terminal cleavage in cells was not identified. This study shows that ß1ARs are expressed in cardiomyocytes and other cells types as both full-length and N-terminally truncated species and that the truncated ß1AR species is formed as a result of an O-glycan regulated N-terminal cleavage by ADAM17 at R31↓L32. We identify Ser41 as the major O-glycosylation site on the ß1AR N-terminus and show that an O-glycan modification at Ser41 prevents ADAM17-dependent cleavage of the ß1-AR N-terminus at S41↓L42, a second N-terminal cleavage site adjacent to this O-glycan modification (and it attenuates ß1-AR N-terminal cleavage at R31↓L32). We previously reported that oxidative stress leads to a decrease in ß1AR expression and catecholamine responsiveness in cardiomyocytes. This study shows that redox-inactivation of cardiomyocyte ß1ARs is via a mechanism involving N-terminal truncation at R31↓L32 by ADAM17. In keeping with the previous observation that N-terminally truncated ß1ARs constitutively activate an AKT pathway that affords protection against doxorubicin-dependent apoptosis, overexpression of a cleavage resistant ß1AR mutant exacerbates doxorubicin-dependent apoptosis. These studies identify the ß1AR N-terminus as a structural determinant of ß1AR responses that can be targeted for therapeutic advantage.


Asunto(s)
Proteína ADAM17/metabolismo , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Receptores Adrenérgicos beta 1/metabolismo , Expresión Génica , Glicosilación , Humanos , Estrés Oxidativo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteolisis , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética
17.
J Cell Mol Med ; 25(8): 3922-3934, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33619882

RESUMEN

Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is an X-linked disease affecting male and rarely adult heterozygous females, resulting in death by the late 20s to early 30s. Previous studies reported depressed left ventricular function in DMD patients which may result from deranged intracellular Ca2+ -handling. To decipher the mechanism(s) underlying the depressed LV function, we tested the hypothesis that iPSC-CMs generated from DMD patients feature blunted positive inotropic response to ß-adrenergic stimulation. To test the hypothesis, [Ca2+ ]i transients and contractions were recorded from healthy and DMD-CMs. While in healthy CMs (HC) isoproterenol caused a prominent positive inotropic effect, DMD-CMs displayed a blunted inotropic response. Next, we tested the functionality of the sarcoplasmic reticulum (SR) by measuring caffeine-induced Ca2+ release. In contrast to HC, DMD-CMs exhibited reduced caffeine-induced Ca2+ signal amplitude and recovery time. In support of the depleted SR Ca2+ stores hypothesis, in DMD-CMs the negative inotropic effects of ryanodine and cyclopiazonic acid were smaller than in HC. RNA-seq analyses demonstrated that in DMD CMs the RNA-expression levels of specific subunits of the L-type calcium channel, the ß1-adrenergic receptor (ADRß1) and adenylate cyclase were down-regulated by 3.5-, 2.8- and 3-fold, respectively, which collectively contribute to the depressed ß-adrenergic responsiveness.


Asunto(s)
Adrenérgicos/farmacología , Calcio/metabolismo , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/patología , Distrofia Muscular de Duchenne/patología , Contracción Miocárdica , Miocitos Cardíacos/patología , Adulto , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Diferenciación Celular , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , RNA-Seq , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología
18.
Pflugers Arch ; 473(1): 37-51, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33210151

RESUMEN

Carotid body (CB) hyperactivity promotes hypertension in response to chronic intermittent hypoxia (CIH). The plasma concentration of adrenaline is reported to be elevated in CIH and our previous work suggests that adrenaline directly activates the CB. However, a role for chronic adrenergic stimulation in mediating CB hyperactivity is currently unknown. This study evaluated whether beta-blocker treatment with propranolol (Prop) prevented the development of CB hyperactivity, vascular sympathetic nerve growth and hypertension caused by CIH. Adult male Wistar rats were assigned into 1 of 4 groups: Control (N), N + Prop, CIH and CIH + Prop. The CIH paradigm consisted of 8 cycles h-1, 8 h day-1, for 3 weeks. Propranolol was administered via drinking water to achieve a dose of 40 mg kg-1 day-1. Immunohistochemistry revealed the presence of both ß1 and ß2-adrenoceptor subtypes on the CB type I cell. CIH caused a 2-3-fold elevation in basal CB single-fibre chemoafferent activity and this was prevented by chronic propranolol treatment. Chemoafferent responses to hypoxia and mitochondrial inhibitors were attenuated by propranolol, an effect that was greater in CIH animals. Propranolol decreased respiratory frequency in normoxia and hypoxia in N and CIH. Propranolol also abolished the CIH mediated increase in vascular sympathetic nerve density. Arterial blood pressure was reduced in propranolol groups during hypoxia. Propranolol exaggerated the fall in blood pressure in most (6/7) CIH animals during hypoxia, suggestive of reduced sympathetic tone. These findings therefore identify new roles for ß-adrenergic stimulation in evoking CB hyperactivity, sympathetic vascular hyperinnervation and altered blood pressure control in response to CIH.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Cuerpo Carotídeo/efectos de los fármacos , Hipoxia , Propranolol/farmacología , Antagonistas Adrenérgicos beta , Animales , Dióxido de Carbono , Esquema de Medicación , Masculino , Ratas , Ratas Wistar , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos
19.
Pharmacogenet Genomics ; 31(4): 75-82, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33395026

RESUMEN

In pharmacogenomics, variable receptor phenotypes, resulting from genetic polymorphisms, are often described as a change in protein function or regulation observed upon exposure to a drug. However, in some instances, phenotypes are defined using a class of medications rather than individual drugs. This paradigm assumes that a variation associated with a drug response phenotype will retain the magnitude and direction of the effect for other drugs with the same mechanism of action. However, nonsynonymous polymorphisms may have ligand-specific effects. The purpose of this study was to investigate the potential for point mutations to asymmetrically affect the binding of different drugs to a common target. Ligand binding data from site-directed mutagenesis studies on five G-protein coupled receptors (beta-1 and -2 adrenergic, dopamine D2, angiotensin II and mu-opioid receptor) were collected and analyzed. Binding data from 81 studies for 253 ligands with 447 mutant proteins, including 10 naturally occurring human variants, were analyzed, yielding 1989 mutation-ligand pairs. Fold change in binding affinity for mutant proteins, relative to the wild-type, for different drugs was examined for ligand-specific effects, with a fold-change difference of one or more orders of magnitude between agents considered significant. Of the mutations examined, 49% were associated with ligand-specific effects. One human variant (T164I, beta-2 adrenergic receptor) showed ligand-specific effects for antiasthmatic agents. These results indicate that ligand-specific changes in binding are a possible consequence of missense mutations. This implies that caution needs to be exercised when grouping drugs together during design or interpretation of genotype-phenotype association studies.


Asunto(s)
Mutagénesis Sitio-Dirigida , Pruebas de Farmacogenómica , Receptores Acoplados a Proteínas G/genética , Receptores Opioides mu/genética , Antagonistas de Receptores de Angiotensina/farmacología , Estudios de Asociación Genética , Humanos , Ligandos , Polimorfismo Genético/genética , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/genética , Receptores de Angiotensina/genética , Receptores de Dopamina D2/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Opioides mu/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Mutación Silenciosa/genética
20.
Cell Commun Signal ; 19(1): 78, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34284799

RESUMEN

The urinary tract is highly innervated by autonomic nerves which are essential in urinary tract development, the production of growth factors, and the control of homeostasis. These neural signals may become dysregulated in several genitourinary (GU) disease states, both benign and malignant. Accordingly, the autonomic nervous system is a therapeutic target for several genitourinary pathologies including cancer, voiding dysfunction, and obstructing nephrolithiasis. Adrenergic receptors (adrenoceptors) are G-Protein coupled-receptors that are distributed throughout the body. The major function of α1-adrenoceptors is signaling smooth muscle contractions through GPCR and intracellular calcium influx. Pharmacologic intervention of α-and ß-adrenoceptors is routinely and successfully implemented in the treatment of benign urologic illnesses, through the use of α-adrenoceptor antagonists. Furthermore, cell-based evidence recently established the antitumor effect of α1-adrenoceptor antagonists in prostate, bladder and renal tumors by reducing neovascularity and impairing growth within the tumor microenvironment via regulation of the phenotypic epithelial-mesenchymal transition (EMT). There has been a significant focus on repurposing the routinely used, Food and Drug Administration-approved α1-adrenoceptor antagonists to inhibit GU tumor growth and angiogenesis in patients with advanced prostate, bladder, and renal cancer. In this review we discuss the current evidence on (a) the signaling events of the autonomic nervous system mediated by its cognate α- and ß-adrenoceptors in regulating the phenotypic landscape (EMT) of genitourinary organs; and (b) the therapeutic significance of targeting this signaling pathway in benign and malignant urologic disease. Video abstract.


Asunto(s)
Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos beta 1/genética , Enfermedades Urológicas/genética , Neoplasias Urológicas/genética , Antagonistas Adrenérgicos beta/uso terapéutico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Masculino , Próstata/metabolismo , Próstata/patología , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/genética , Sistema Urinario/metabolismo , Sistema Urinario/patología , Enfermedades Urológicas/patología , Neoplasias Urológicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA