RESUMEN
Adipose tissues (ATs) are innervated by sympathetic nerves, which drive reduction of fat mass via lipolysis and thermogenesis. Here, we report a population of immunomodulatory leptin receptor-positive (LepR+) sympathetic perineurial barrier cells (SPCs) present in mice and humans, which uniquely co-express Lepr and interleukin-33 (Il33) and ensheath AT sympathetic axon bundles. Brown ATs (BATs) of mice lacking IL-33 in SPCs (SPCΔIl33) had fewer regulatory T (Treg) cells and eosinophils, resulting in increased BAT inflammation. SPCΔIl33 mice were more susceptible to diet-induced obesity, independently of food intake. Furthermore, SPCΔIl33 mice had impaired adaptive thermogenesis and were unresponsive to leptin-induced rescue of metabolic adaptation. We therefore identify LepR+ SPCs as a source of IL-33, which orchestrate an anti-inflammatory BAT environment, preserving sympathetic-mediated thermogenesis and body weight homeostasis. LepR+IL-33+ SPCs provide a cellular link between leptin and immune regulation of body weight, unifying neuroendocrinology and immunometabolism as previously disconnected fields of obesity research.
Asunto(s)
Tejido Adiposo Pardo , Leptina , Animales , Humanos , Ratones , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/metabolismo , Peso Corporal , Metabolismo Energético/fisiología , Interleucina-33/genética , Interleucina-33/metabolismo , Obesidad/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Termogénesis/fisiologíaRESUMEN
Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species.
Asunto(s)
Hipertensión/metabolismo , Leptina/metabolismo , Obesidad/metabolismo , Animales , Leptina/genética , Ratones Endogámicos C57BL , Mutación , Neuronas/metabolismo , Obesidad/patología , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Transducción de SeñalRESUMEN
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Asunto(s)
Leptina , Osificación Heterotópica , Animales , Ratones , Leptina/genética , Ligandos , Ratones Endogámicos C57BL , Osteogénesis , Receptores de Leptina/genética , Receptores de Leptina/metabolismoRESUMEN
Leptin receptor-positive skeletal progenitors constitute an essential cell population in the bone, yet their heterogeneity remains incompletely understood. In this issue, Mo et al (2021) report a single-cell RNA sequencing resource that deconvolutes the pool of LEPR+ skeletal cells under homeostatic and various pathologic conditions, uncovering context-dependent contributions to diverse cell types and functions.
Asunto(s)
Huesos , Receptores de Leptina , Huesos/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismoRESUMEN
ABSTRACT: Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) hematopoietic niche, which regulates HSPC quiescence, self-renewal, and commitment in a demand-adapted manner. Although the complex BM niche is responsible for adult hematopoiesis, evidence exists for simpler, albeit functional and more accessible, extramedullary hematopoietic niches. Inspired by the anecdotal description of retroperitoneal hematopoietic masses occurring at higher frequency upon hormonal dysregulation within the adrenal gland, we hypothesized that the adult adrenal gland could be induced into a hematopoietic-supportive environment in a systematic manner, thus revealing mechanisms underlying de novo niche formation in the adult. Here, we show that upon splenectomy and hormonal stimulation, the adult adrenal gland of mice can be induced to recruit and host functional HSPCs, capable of serial transplantation, and that this phenomenon is associated with de novo formation of platelet-derived growth factor receptor α/leptin receptor (PDGFRα+/LEPR+/-)-expressing stromal nodules. We further show in CXCL12-green fluorescent protein reporter mice that adrenal glands contain a stromal population reminiscent of the CXCL12-abundant reticular cells, which compose the BM HSPC niche. Mechanistically, HSPC homing to hormonally induced adrenal glands was found dependent on the CXCR4-CXCL12 axis. Mirroring our findings in mice, we found reticular CXCL12+ cells coexpressing master niche regulator FOXC1 in primary samples from human adrenal myelolipomas, a benign tumor composed of adipose and hematopoietic tissue. Our findings reignite long-standing questions regarding hormonal regulation of hematopoiesis and provide a novel model to facilitate the study of adult-specific inducible hematopoietic niches, which may pave the way to therapeutic applications.
Asunto(s)
Glándulas Suprarrenales , Quimiocina CXCL12 , Células Madre Hematopoyéticas , Receptores CXCR4 , Nicho de Células Madre , Animales , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Quimiocina CXCL12/metabolismo , Ratones , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Ratones Endogámicos C57BL , Humanos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Hematopoyesis Extramedular , Esplenectomía , Ratones TransgénicosRESUMEN
Activation and clonal expansion of the Ag-specific adaptive immune response in the draining lymph node is essential to clearing influenza A virus infections. Activation sufficient for virus clearance is dependent on the lymph node's architectural organization that is maintained by stromal cells, chiefly fibroblastic reticular cells. During an analysis of influenza A virus clearance in leptin receptor knockout (DB/DB) mice, we observed that the DB/DB mice have markedly reduced numbers of lymph node fibroblastic reticular cells at the steady state. The reduction in lymph node fibroblastic reticular cells resulted in abnormal lymph node organization and diminished numbers of adaptive immune cells in the lymph nodes under homeostatic conditions. As a consequence, the DB/DB mice were impaired in their ability to generate an effective influenza-specific adaptive immune response, which prevented virus clearance. Using leptin receptor mutant mice with point mutations at distinct signaling sites in the leptin receptor, we were able to link the leptin receptor's signaling domain tyrosine 985, which does not contribute to obesity, to lymph node fibroblastic reticular cell development and function. These results demonstrate a novel role for leptin receptor signaling in regulating lymph node development in a manner that is crucial to the generation of Ag-specific adaptive immune responses.
Asunto(s)
Inmunidad Adaptativa , Receptores de Leptina , Ratones , Animales , Receptores de Leptina/genética , Ganglios Linfáticos , Transducción de Señal , Ratones Endogámicos C57BL , LeptinaRESUMEN
The hormone leptin, primarily secreted by adipocytes, plays a crucial role in regulating whole-body energy homeostasis. Homozygous loss-of-function mutations in the leptin gene (LEP) cause hyperphagia and severe obesity, primarily through alterations in leptin's affinity for its receptor or changes in serum leptin concentrations. Although serum concentrations are influenced by various factors (e.g., gene expression, protein synthesis, stability in the serum), proper delivery of leptin from its site of synthesis in the endoplasmic reticulum via the secretory pathway to the extracellular serum is a critical step. However, the regulatory mechanisms and specific machinery involved in this trafficking route, particularly in the context of human LEP mutations, remain largely unexplored. We have employed the Retention Using Selective Hooks system to elucidate the secretory pathway of leptin. We have refined this system into a medium-throughput assay for examining the pathophysiology of a range of obesity-associated LEP variants. Our results reveal that leptin follows the default secretory pathway, with no additional regulatory steps identified prior to secretion. Through screening of leptin variants, we identified three mutations that lead to proteasomal degradation of leptin and one variant that significantly decreased leptin secretion, likely through aberrant disulfide bond formation. These observations have identified novel pathogenic effects of leptin variants, which can be informative for therapeutics and diagnostics. Finally, our novel quantitative screening platform can be adapted for other secreted proteins.
Asunto(s)
Leptina , Humanos , Leptina/metabolismo , Leptina/genética , Obesidad/metabolismo , Obesidad/genética , Vías Secretoras , Células HEK293 , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genéticaRESUMEN
The cross talk between extrinsic niche-derived and intrinsic hematopoietic stem cell (HSC) factors controlling HSC maintenance remains elusive. Here, we demonstrated that amphiregulin (AREG) from bone marrow (BM) leptin receptor (LepR+) niche cells is an important factor that mediates the cross talk between the BM niche and HSCs in stem cell maintenance. Mice deficient of the DNA repair gene Brca2, specifically in LepR+ cells (LepR-Cre;Brca2fl/fl), exhibited increased frequencies of total and myeloid-biased HSCs. Furthermore, HSCs from LepR-Cre;Brca2fl/fl mice showed compromised repopulation, increased expansion of donor-derived, myeloid-biased HSCs, and increased myeloid output. Brca2-deficient BM LepR+ cells exhibited persistent DNA damage-inducible overproduction of AREG. Ex vivo treatment of wild-type HSCs or systemic treatment of C57BL/6 mice with recombinant AREG impaired repopulation, leading to HSC exhaustion. Conversely, inhibition of AREG by an anti-AREG-neutralizing antibody or deletion of the Areg gene in LepR-Cre;Brca2fl/fl mice rescued HSC defects caused by AREG. Mechanistically, AREG activated the phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, promoted HSC cycling, and compromised HSC quiescence. Finally, we demonstrated that BM LepR+ niche cells from other DNA repair-deficient and aged mice also showed persistent DNA damage-associated overexpression of AREG, which exerts similar negative effects on HSC maintenance. Therefore, we identified an important factor that regulates HSCs function under conditions of DNA repair deficiency and aging.
Asunto(s)
Trastornos por Deficiencias en la Reparación del ADN , Receptores de Leptina , Ratones , Animales , Anfirregulina/genética , Anfirregulina/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Ratones Endogámicos C57BL , Células Madre Hematopoyéticas/metabolismo , Envejecimiento/genética , Trastornos por Deficiencias en la Reparación del ADN/metabolismo , Nicho de Células Madre/genética , Mamíferos/metabolismoRESUMEN
The neurons of the melanocortin system regulate feeding and energy homeostasis through a combination of electrical and endocrine mechanisms. However, the molecular basis for this functional heterogeneity is poorly understood. Here, a voltage-gated potassium (Kv+) channel named KCNB1 (alias Kv2.1) forms stable complexes with the leptin receptor (LepR) in a subset of hypothalamic neurons including proopiomelanocortin (POMC) expressing neurons of the Arcuate nucleus (ARHPOMC). Mice lacking functional KCNB1 channels (NULL mice) have less adipose tissue and circulating leptin than WT animals and are insensitive to anorexic stimuli induced by leptin administration. NULL mice produce aberrant amounts of POMC at any developmental stage. Canonical LepR-STAT3 signaling-which underlies POMC production-is impaired, whereas non-canonical insulin receptor substrate PI3K/Akt/FOXO1 and ERK signaling are constitutively upregulated in NULL hypothalami. The levels of proto-oncogene c-Fos-that provides an indirect measure of neuronal activity-are higher in arcuate NULL neurons compared to WT and most importantly do not increase in the former upon leptin stimulation. Hence, a Kv channel provides a molecular link between neuronal excitability and endocrine function in hypothalamic neurons.
Asunto(s)
Hipotálamo , Leptina , Ratones Noqueados , Neuronas , Proopiomelanocortina , Receptores de Leptina , Canales de Potasio Shab , Animales , Ratones , Neuronas/metabolismo , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Hipotálamo/metabolismo , Leptina/metabolismo , Proopiomelanocortina/metabolismo , Canales de Potasio Shab/metabolismo , Canales de Potasio Shab/genética , Transducción de Señal , Masculino , Núcleo Arqueado del Hipotálamo/metabolismo , Factor de Transcripción STAT3/metabolismo , Ratones Endogámicos C57BL , Melanocortinas/metabolismoRESUMEN
Leptin can indirectly regulate fatty-acid metabolism and synthesis in muscle in vivo and directly in incubated muscle ex vivo. In addition, non-synonymous mutations in the bovine leptin gene (LEP) are associated with carcass intramuscular fat (IMF) content. However, the effects of LEP on lipid synthesis of adipocytes have not been clearly studied at the cellular level. Therefore, this study focused on bovine primary intramuscular preadipocytes to investigate the effects of LEP on the proliferation and differentiation of intramuscular preadipocytes, as well as its regulatory mechanism in lipid synthesis. The results showed that both the LEP and leptin receptor gene (LEPR) were highly expressed in IMF tissues, and their mRNA expression levels were positively correlated at different developmental stages of intramuscular preadipocytes. The overexpression of LEP inhibited the proliferation and differentiation of intramuscular preadipocytes, while interference with LEP had the opposite effect. Additionally, LEP significantly promoted the phosphorylation level of AMPKα by promoting the protein expression of CAMKK2. Meanwhile, rescue experiments showed that the increasing effect of AMPK inhibitors on the number of intramuscular preadipocytes was significantly weakened by the overexpression of LEP. Furthermore, the overexpression of LEP could weaken the promoting effect of AMPK inhibitor on triglyceride content and droplet accumulation, and prevent the upregulation of adipogenic protein expression (SREBF1, FABP4, FASN, and ACCα) caused by AMPK inhibitor. Taken together, LEP acted on the AMPK signaling pathway by regulating the protein expression of CAMKK2, thereby downregulating the expression of proliferation-related and adipogenic-related genes and proteins, ultimately reducing intramuscular adipogenesis.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Adipocitos , Adipogénesis , Leptina , Transducción de Señal , Animales , Adipogénesis/fisiología , Bovinos , Adipocitos/metabolismo , Adipocitos/citología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Leptina/metabolismo , Leptina/genética , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/citologíaRESUMEN
BACKGROUND: Lower-limb peripheral artery disease is one of the major complications of diabetes. Peripheral artery disease is associated with poor limb and cardiovascular prognoses, along with a dramatic decrease in life expectancy. Despite major medical advances in the treatment of diabetes, a substantial therapeutic gap remains in the peripheral artery disease population. Praliciguat is an orally available sGC (soluble guanylate cyclase) stimulator that has been reported both preclinically and in early stage clinical trials to have favorable effects in metabolic and hemodynamic outcomes, suggesting that it may have a potential beneficial effect in peripheral artery disease. METHODS: We evaluated the effect of praliciguat on hind limb ischemia recovery in a mouse model of type 2 diabetes. Hind limb ischemia was induced in leptin receptor-deficient (Leprdb/db) mice by ligation and excision of the left femoral artery. Praliciguat (10 mg/kg/day) was administered in the diet starting 3 days before surgery. RESULTS: Twenty-eight days after surgery, ischemic foot perfusion and function parameters were better in praliciguat-treated mice than in vehicle controls. Improved ischemic foot perfusion was not associated with either improved traditional cardiovascular risk factors (ie, weight, glycemia) or increased angiogenesis. However, treatment with praliciguat significantly increased arteriole diameter, decreased ICAM1 (intercellular adhesion molecule 1) expression, and prevented the accumulation of oxidative proangiogenic and proinflammatory muscle fibers. While investigating the mechanism underlying the beneficial effects of praliciguat therapy, we found that praliciguat significantly downregulated Myh2 and Cxcl12 mRNA expression in cultured myoblasts and that conditioned medium form praliciguat-treated myoblast decreased ICAM1 mRNA expression in endothelial cells. These results suggest that praliciguat therapy may decrease ICAM1 expression in endothelial cells by downregulating Cxcl12 in myocytes. CONCLUSIONS: Our results demonstrated that praliciguat promotes blood flow recovery in the ischemic muscle of mice with type 2 diabetes, at least in part by increasing arteriole diameter and by downregulating ICAM1 expression.
Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad Arterial Periférica , Ratones , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptores de Leptina/genética , Células Endoteliales/metabolismo , Isquemia/metabolismo , Modelos Animales de Enfermedad , Reperfusión , Enfermedad Arterial Periférica/complicaciones , Miembro Posterior/irrigación sanguínea , Neovascularización Fisiológica , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BLRESUMEN
Obesity is a chronic disease caused by excessive fat accumulation that impacts the body and brain health. Insufficient leptin or leptin receptor (LepR) is involved in the disease pathogenesis. Leptin is involved with several neurological processes, and it has crucial developmental roles. We have previously demonstrated that leptin deficiency in early life leads to permanent developmental problems in young adult mice, including an imbalance in energy homeostasis, alterations in melanocortin and the reproductive system and a reduction in brain mass. Given that in humans, obesity has been associated with brain atrophy and cognitive impairment, it is important to determine the long-term consequences of early-life leptin deficiency on brain structure and memory function. Here, we demonstrate that leptin-deficient (LepOb) mice exhibit altered brain volume, decreased neurogenesis and memory impairment. Similar effects were observed in animals that do not express the LepR (LepRNull). Interestingly, restoring the expression of LepR in 10-week-old mice reverses brain atrophy, in addition to neurogenesis and memory impairments in older animals. Our findings indicate that leptin deficiency impairs brain development and memory, which are reversible by restoring leptin signalling in adulthood.
Asunto(s)
Encéfalo , Leptina , Neurogénesis , Receptores de Leptina , Animales , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Ratones , Encéfalo/metabolismo , Leptina/deficiencia , Leptina/metabolismo , Neurogénesis/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/genética , Atrofia/patologíaRESUMEN
Dysregulated adipokine production is an influencing factor for the homeostatic imbalance of tendons. High levels of serum leptin may be a potential link between increasing adiposity and tendinopathy, while the detailed mechanistic explanation was not well-defined. In this study, we investigated the regulatory role of leptin in the tendon stem/progenitor cells (TSPCs) and the molecular mechanism within, and determined the effect of high levels of leptin on tendon recovery. We demonstrated that leptin reduced the viability of isolated rat TSPCs in a dose-dependent way, accompanied with increased transdifferentiation and altered gene expression of a series of extracellular matrix (ECM) enzymatic modulators. Also, we found that leptin could dose-dependently promote TSPCs senescence, while exhibiting limited effect in apoptotic or autophagic induction. Mechanistic study evidenced that leptin treatment increased the AKT/mTOR signaling activity and elevated the expression of leptin receptor (LEPR) in TSPCs, without marked change in MAPK or STAT5 activation. Further, we confirmed that rapamycin treatment, but not AKT inhibition, effectively reduced the leptin-promoted TSPCs senescence. In a rat model with Achilles wounding, exposure to leptin profoundly delayed tendon healing, which was effectively rescued with rapamycin treatment. Our results suggested that leptin could cause intrinsic cellular deficits in TSPCs and impede tendon repair through the AKT/mTOR signaling pathway. These findings evidenced for an important role of elevated leptin levels in the care of tendinopathy and tendon tears.
Asunto(s)
Senescencia Celular , Leptina , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal , Células Madre , Serina-Treonina Quinasas TOR , Tendones , Animales , Leptina/metabolismo , Leptina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Senescencia Celular/efectos de los fármacos , Tendones/metabolismo , Tendones/efectos de los fármacos , Tendones/citología , Masculino , Células Cultivadas , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Cicatrización de Heridas/efectos de los fármacosRESUMEN
Proinflammatory cytokine levels and host genetic makeup are key determinants of Clostridioides difficile infection (CDI) outcomes. We previously reported that blocking the inflammatory cytokine macrophage migration inhibitory factor (MIF) ameliorates CDI. Here, we determined kinetics of MIF production and its association with a common genetic variant in leptin receptor (LEPR) using blood from patients with CDI. We found highest plasma MIF early after C difficile exposure and in individuals who express mutant/derived LEPR. Our data suggest that early-phase CDI provides a possible window of opportunity in which MIF targeting, potentially in combination with LEPR genotype, could have therapeutic utility.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Factores Inhibidores de la Migración de Macrófagos , Receptores de Leptina , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/sangre , Humanos , Receptores de Leptina/genética , Infecciones por Clostridium/microbiología , Clostridioides difficile/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Oxidorreductasas Intramoleculares/genética , Genotipo , Polimorfismo de Nucleótido SimpleRESUMEN
Leptin is an adipocyte-derived hormone that modulates food intake, energy balance, neuroendocrine status, thermogenesis, and cognition. Whereas a high density of leptin receptors has been detected in the basolateral amygdala (BLA) neurons, the physiological functions of leptin in the BLA have not been determined yet. We found that application of leptin excited BLA principal neurons by activation of the long form leptin receptor, LepRb. The LepRb-elicited excitation of BLA neurons was mediated by depression of the G protein-activated inwardly rectifying potassium (GIRK) channels. Janus Kinase 2 (JAK2) and phosphoinositide 3-kinase (PI3K) were required for leptin-induced excitation of BLA neurons and depression of GIRK channels. Microinjection of leptin into the BLA reduced food intake via activation of LepRb, JAK2, and PI3K. Our results may provide a cellular and molecular mechanism to explain the physiological roles of leptin in vivo.
Asunto(s)
Complejo Nuclear Basolateral , Fosfatidilinositol 3-Quinasas , Complejo Nuclear Basolateral/metabolismo , Ingestión de Alimentos , Janus Quinasa 2 , Leptina/farmacología , Leptina/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasa , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Masculino , Femenino , Animales , Ratas , Ratas Sprague-Dawley , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismoRESUMEN
BACKGROUND & AIMS: Psychosocial stress has become an unavoidable part of life, which was reported to promote tumor development. Chronic stress significantly promotes the norepinephrine (NE) secretion and the expression of leptin receptor (LEPR), leading to tumor invasion, metastasis, and proliferation. However, the mechanism of chronic stress-induced tumor proliferation remains unclear. METHODS: To reveal the effect of chronic stress on tumor proliferation, subcutaneous tumor models combined with chronic restraint stress (CRS) were established. Combined with the transcript omics database of liver cancer patients, the target pathways were screened and further verified by in vitro experiments. RESULTS: The results showed that the CRS with subcutaneous tumor transplantation (CRS + tumor) group exhibited significantly larger tumor sizes than the subcutaneous tumor transplantation (tumor) group. Compared with the tumor group, CRS obviously increased the mRNA levels of LEPR, FOS, and JUNB of tumor tissues in the CRS + tumor group. Furthermore, the treatment with norepinephrine (NE) significantly elevated the survival rate of H22 cells and enhanced the expression of LEPR, FOS, and JUNB in vitro. Silencing LEPR significantly reduced the expression of FOS and JUNB, accompanied by a decrease in H22 cell viability. CONCLUSIONS: Our study demonstrated that CRS activates the LEPR-FOS-JUNB signaling pathway by NE, aggravating tumor development. These findings might provide a scientific foundation for investigating the underlying pathological mechanisms of tumors in response to chronic stress.
Asunto(s)
Proliferación Celular , Proteínas Proto-Oncogénicas c-fos , Receptores de Leptina , Transducción de Señal , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Animales , Línea Celular Tumoral , Humanos , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Masculino , Proteínas Proto-Oncogénicas c-jun/metabolismo , Estrés Psicológico/metabolismo , Restricción Física , Norepinefrina/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Ratones Endogámicos BALB CRESUMEN
AIM AND OBJECTIVE: Our recent report showed that soluble T-cadherin promotes pancreatic beta-cell proliferation. However, how and where the secretion of soluble T-cadherin is regulated remain unclear. METHODS AND RESULTS: Soluble T-cadherin levels significantly increased in leptin receptor-deficient db/db mice with hypoinsulinaemia or in wild-type mice treated with insulin receptor blockade by S961. Similar results were observed in human subjects; Diabetic ketoacidosis patients at the time of hospitalization had increased plasma soluble T-cadherin levels, which decreased after insulin infusion therapy. Patients with recurrent ovarian cancer who were administered a phosphatidylinositol-3 kinase (PI3K)-alpha inhibitor (a new anticancer drug) had increased plasma soluble T-cadherin and plasma C-peptide levels. Endothelial cell-specific T-cadherin knockout mice, but not skeletal muscle- or cardiac muscle-specific T-cadherin knockout mice, showed a 26 % reduction in plasma soluble T-cadherin levels and a significant increase in blood glucose levels in streptozocin-induced diabetes. The secretion of soluble T-cadherin from human endothelial cells was approximately 20 % decreased by insulin and this decrease was canceled by blockade of insulin receptor/Akt signalling, not Erk signalling. CONCLUSION: We conclude that insulin regulates soluble T-cadherin levels and soluble T-cadherin secretion from endothelial cells is positively regulated by insulin/insulin receptor/Akt signalling.
Asunto(s)
Cadherinas , Insulina , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Cadherinas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insulina/metabolismo , Insulina/sangre , Ratones , Femenino , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Insulina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Masculino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , PéptidosRESUMEN
The hormone leptin reduces food intake through actions in the peripheral and central nervous systems, including in the hindbrain nucleus of the solitary tract (NTS). The NTS receives viscerosensory information via vagal afferents, including information from the gastrointestinal tract, which is then relayed to other central nervous system (CNS) sites critical for control of food intake. Leptin receptors (lepRs) are expressed by a subpopulation of NTS neurons, and knockdown of these receptors increases both food intake and body weight. Recently, we demonstrated that leptin increases vagal activation of lepR-expressing neurons via increased NMDA receptor (NMDAR) currents, thereby potentiating vagally evoked firing. Furthermore, chemogenetic activation of these neurons was recently shown to inhibit food intake. However, the vagal inputs these neurons receive had not been characterized. Here we performed whole cell recordings in brain slices taken from lepRCre × floxedTdTomato mice and found that lepR neurons of the NTS are directly activated by monosynaptic inputs from C-type afferents sensitive to the transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin. CCK administered onto NTS slices stimulated spontaneous glutamate release onto lepR neurons and induced action potential firing, an effect mediated by CCKR1. Interestingly, NMDAR activation contributed to the current carried by spontaneous excitatory postsynaptic currents (EPSCs) and enhanced CCK-induced firing. Peripheral CCK also increased c-fos expression in these neurons, suggesting they are activated by CCK-sensitive vagal afferents in vivo. Our results indicate that the majority of NTS lepR neurons receive direct inputs from CCK-sensitive C vagal-type afferents, with both peripheral and central CCK capable of activating these neurons and NMDARs able to potentiate these effects.
Asunto(s)
Receptores de N-Metil-D-Aspartato , Núcleo Solitario , Animales , Ratones , Leptina/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Solitario/metabolismo , Nervio Vago/fisiologíaRESUMEN
ABSTRACT: Prepubertal obesity is growing at an alarming rate and is now considered a risk factor for renal injury. Recently, we reported that the early development of renal injury in obese Dahl salt-sensitive (SS) leptin receptor mutant (SS LepR mutant) rats was associated with increased T-cell infiltration and activation before puberty. Therefore, the current study investigated the effect of inhibiting T-cell activation with abatacept on the progression of renal injury in young obese SS LepR mutant rats before puberty. Four-week-old SS and SS LepR mutant rats were treated with IgG or abatacept (1 mg/kg; ip, every other day) for 4 weeks. Abatacept reduced the renal infiltration of T cells by almost 50% in SS LepR mutant rats. Treatment with abatacept decreased the renal expression of macrophage inflammatory protein-3 alpha while increasing IL-4 in SS LepR mutant rats without affecting SS rats. While not having an impact on blood glucose levels, abatacept reduced hyperinsulinemia and plasma triglycerides in SS LepR mutant rats without affecting SS rats. We did not observe any differences in the mean arterial pressure among the groups. Proteinuria was markedly higher in SS LepR mutant rats than in SS rats throughout the study, and treatment with abatacept decreased proteinuria by about 40% in SS LepR mutant rats without affecting SS rats. We observed significant increases in glomerular and tubular injury and renal fibrosis in SS LepR mutant rats versus SS rats, and chronic treatment with abatacept significantly reduced these renal abnormalities in SS LepR mutant rats. These data suggest that renal T-cell activation contributes to the early progression of renal injury associated with prepubertal obesity.
Asunto(s)
Abatacept , Riñón , Obesidad , Ratas Endogámicas Dahl , Receptores de Leptina , Linfocitos T , Animales , Abatacept/farmacología , Obesidad/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Receptores de Leptina/deficiencia , Masculino , Ratas , Progresión de la Enfermedad , Modelos Animales de Enfermedad , Proteinuria/tratamiento farmacológico , Enfermedades Renales/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Maduración Sexual/efectos de los fármacosRESUMEN
Leptin, a hormone produced in white adipose tissue, acts in the brain to communicate fuel status, suppress appetite following a meal, promote energy expenditure and maintain blood glucose stability1,2. Dysregulation of leptin or its receptors (LEPR) results in severe obesity and diabetes3-5. Although intensive studies on leptin have transformed obesity and diabetes research2,6, clinical applications of the molecule are still limited 7 , at least in part owing to the complexity and our incomplete understanding of the underlying neural circuits. The hypothalamic neurons that express agouti-related peptide (AGRP) and pro-opiomelanocortin (POMC) have been hypothesized to be the main first-order, leptin-responsive neurons. Selective deletion of LEPR in these neurons with the Cre-loxP system, however, has previously failed to recapitulate, or only marginally recapitulated, the obesity and diabetes that are seen in LEPR-deficient Lepr db/db mice, suggesting that AGRP or POMC neurons are not directly required for the effects of leptin in vivo8-10. The primary neural targets of leptin are therefore still unclear. Here we conduct a systematic, unbiased survey of leptin-responsive neurons in streptozotocin-induced diabetic mice and exploit CRISPR-Cas9-mediated genetic ablation of LEPR in vivo. Unexpectedly, we find that AGRP neurons but not POMC neurons are required for the primary action of leptin to regulate both energy balance and glucose homeostasis. Leptin deficiency disinhibits AGRP neurons, and chemogenetic inhibition of these neurons reverses both diabetic hyperphagia and hyperglycaemia. In sharp contrast to previous studies, we show that CRISPR-mediated deletion of LEPR in AGRP neurons causes severe obesity and diabetes, faithfully replicating the phenotype of Lepr db/db mice. We also uncover divergent mechanisms of acute and chronic inhibition of AGRP neurons by leptin (presynaptic potentiation of GABA (γ-aminobutyric acid) neurotransmission and postsynaptic activation of ATP-sensitive potassium channels, respectively). Our findings identify the underlying basis of the neurobiological effects of leptin and associated metabolic disorders.