Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 266: 110-118, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29746853

RESUMEN

Although tachykinin-like neuropeptides have been identified in molluscs more than two decades ago, knowledge on their function and signalling has so far remained largely elusive. We developed a cell-based assay to address the functionality of the tachykinin G-protein coupled receptor (Cragi-TKR) in the oyster Crassostrea gigas. The oyster tachykinin neuropeptides that are derived from the tachykinin precursor gene Cragi-TK activate the Cragi-TKR in nanomolar concentrations. Receptor activation is sensitive to Ala-substitution of critical Cragi-TK amino acid residues. The Cragi-TKR gene is expressed in a variety of tissues, albeit at higher levels in the visceral ganglia (VG) of the nervous system. Fluctuations of Cragi-TKR expression is in line with a role for TK signalling in C. gigas reproduction. The expression level of the Cragi-TK gene in the VG depends on the nutritional status of the oyster, suggesting a role for TK signalling in the complex regulation of feeding in C. gigas.


Asunto(s)
Crassostrea/metabolismo , Transducción de Señal , Taquicininas/metabolismo , Secuencia de Aminoácidos , Animales , Crassostrea/genética , Regulación de la Expresión Génica , Filogenia , Receptores de Taquicininas/química , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Reproducción , Taquicininas/química , Taquicininas/genética
2.
FEBS J ; 274(9): 2229-39, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17419732

RESUMEN

The tachykinin (TK) and tachykinin-related peptide (TKRP) family represent one of the largest peptide families in the animal kingdom and exert their actions via a subfamily of structurally related G-protein-coupled receptors. In this study, we have identified a novel TKRP receptor from the Octopus heart, oct-TKRPR. oct-TKRPR includes domains and motifs typical of G-protein-coupled receptors. Xenopus oocytes that expressed oct-TKRPR, like TK and TKRP receptors, elicited an induction of membrane chloride currents coupled to the inositol phosphate/calcium pathway in response to Octopus TKRPs (oct-TKRP I-VII) with moderate ligand selectivity. Substance P and Octopus salivary gland-specific TK, oct-TK-I, completely failed to activate oct-TKRPR, whereas a Substance P analog containing a C-terminal Arg-NH2 exhibited equipotent activation of oct-TKRPs. These functional analyses prove that oct-TKRPs, but not oct-TK-I, serve as endogenous functional ligands through oct-TKRPR, although both of the family peptides were identified in a single species, and the importance of C-terminal Arg-NH2 in the specific recognition of TKRPs by TKRPR is conserved through evolutionary lineages of Octopus. Southern blotting of RT-PCR products revealed that the oct-TKRPR mRNA was widely distributed in the central and peripheral nervous systems plus several peripheral tissues. These results suggest multiple physiologic functions of oct-TKRPs as neuropeptides both in the Octopus central nervous system and in peripheral tissues. This is the first report on functional discrimination between invertebrate TKRPs and salivary gland-specific TKs.


Asunto(s)
Evolución Molecular , Octopodiformes/química , Péptidos/química , Receptores de Taquicininas/química , Taquicininas/química , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Datos de Secuencia Molecular , Miocardio/química , Octopodiformes/genética , Péptidos/genética , Receptores de Taquicininas/genética , Taquicininas/genética , Taquicininas/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
3.
Curr Drug Targets ; 7(8): 963-74, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16918325

RESUMEN

Tachykinins (TKs) constitute the largest vertebrate brain/gut peptide family. Since discovery of Substance P as a structurally unidentified vasodilatory and contractile compound in 1931, continuous and tremendous advances have been made regarding molecular and functional characterization of TKs and their receptors, revealing diverse molecular species of TK peptides with a C-terminal consensus -Phe-X-Gly-Leu-Met-NH2, not ubiquitous but wide distribution and multiple biological activities of TKs and their receptors in central and peripheral tissues, elaborate and complicated ligand-recognition and multiple functional conformation of receptors, evolutionary aspects of brain/gut peptides, and the implication of TK peptides and receptors in many disorders of current keen interest. Indeed, the tachykinergic systems are now regarded as promising targets of novel clinical agents aimed at a variety of pathological symptoms and processes such as nociception, inflammation, neurodegeneration, and neuroprotection. In this review, we present an overview of basic knowledge and a buildup of recent advances in extensive fields of the 'tachykinin kingdom' including mammalian non-neuronal TKs, invertebrate salivary gland-specific TKs and TK-related brain/gut peptides (TKRPs). These findings shed new light on (1) the biological and biochemical significance of TKs, (2) evolutionary relationship of the structures and functions between mammalian and non-mammalian TK family peptides and receptors, and (3) the binding mode for the TK family peptides and their receptors and the resultant activation of the complexes that are essential for design and development of leading compounds.


Asunto(s)
Receptores de Taquicininas/química , Receptores de Taquicininas/fisiología , Taquicininas/química , Taquicininas/fisiología , Secuencia de Aminoácidos/genética , Animales , Humanos , Datos de Secuencia Molecular , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Taquicininas/genética , Taquicininas/metabolismo , Distribución Tisular/fisiología
4.
Trends Pharmacol Sci ; 18(10): 372-86, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9357322

RESUMEN

The recent development of selective and highly potent nonpeptide antagonists for peptide receptors has constituted a major breakthrough in the field of neuropeptide research. Following the discovery of the first nonpeptide antagonists for peptide receptors ten years ago, numerous other antagonists have been developed for most neuropeptide families. These new, metabolically stable compounds, orally active and capable of crossing the blood-brain barrier, offer clear advantages over the previously available peptide antagonists. Nonpeptide antagonists have provided valuable tools to investigate peptide receptors at the molecular, pharmacological and anatomical levels, and have considerably advanced our understanding of the pathophysiological roles of peptides in the CNS and periphery. Evidence from animal and clinical studies suggests that nonpeptide antagonists binding to peptide receptors could be useful for the treatment of disease states associated with high levels of neuropeptides. In this article Catalina Batancur, Mounia Azzi and William Rostène will address the recent developments in nonpeptide antagonists for neuropeptide receptors, with a particular focus on their CNS actions.


Asunto(s)
Receptores de Neuropéptido/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Receptores de Neuropéptido/química , Receptores de Taquicininas/antagonistas & inhibidores , Receptores de Taquicininas/química
5.
Peptides ; 26(8): 1369-82, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16042977

RESUMEN

The tachykinins form one of the largest peptide families in nature. In this review, we describe the comparative features of the tachykinin peptides and their receptors, focusing particularly on amphibians. We also summarize our systematic studies of the localization, characteristics, and actions of bufokinin, a toad substance P-related peptide, in its species of origin. In addition, we discuss the establishment of multiple isoforms of the NK1-like receptor in the toad, and their structure, pharmacology and tissue distributions. We conclude that tachykinin peptides and receptors are well conserved in terms of their structures, physiological functions and coupling mechanisms during tetrapod evolution.


Asunto(s)
Anfibios/metabolismo , Fragmentos de Péptidos , Receptores de Taquicininas , Taquicininas , Secuencia de Aminoácidos , Animales , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/fisiología , Filogenia , Receptores de Taquicininas/química , Receptores de Taquicininas/metabolismo , Receptores de Taquicininas/fisiología , Alineación de Secuencia , Taquicininas/química , Taquicininas/metabolismo , Taquicininas/fisiología
6.
Int J Biochem Cell Biol ; 28(7): 721-38, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8925404

RESUMEN

Tachykinins belong to an evolutionarily conserved family of peptide neurotransmitters. The mammalian tachykinins include substance P, neurokinin A and neurokinin B, which exert their effects by binding to specific receptors. These tachykinin receptors are divided into three types, designated NK1, NK2 and NK3, respectively. Tachykinin receptors have been cloned and contain seven segments spanning the cell membrane, indicating their inclusion in the G-protein-linked receptor family. The continued development of selective agonists and antagonists for each receptor has helped elucidate roles for these mediators, ranging from effects in the central nervous system to the perpetuation of the inflammatory response in the periphery. Various selective ligands have shown both inter- and intraspecies differences in binding potencies, indicating distinct binding sites in the tachykinin receptor. The interaction of tachykinin with its receptor activates Gq, which in turn activates phospholipase C to break down phosphatidyl inositol bisphosphate into inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 acts on specific receptors in the sarcoplasmic reticulum to release intracellular stores of Ca2+, while DAG acts via protein kinase C to open L-type calcium channels in the plasma membrane. The rise in intracellular [Ca2+] induces the tissue response. With an array of actions as diverse as that seen with tachykinins, there is scope for numerous therapeutic possibilities. With the development of potent, selective non-peptide antagonists, there could be potential benefits in the treatment of a variety of clinical conditions, including chronic pain, Parkinson's disease, Alzheimer's disease, depression, rheumatoid arthritis, irritable bowel syndrome and asthma.


Asunto(s)
Receptores de Taquicininas , Taquicininas , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Unión al GTP/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Receptores de Taquicininas/agonistas , Receptores de Taquicininas/antagonistas & inhibidores , Receptores de Taquicininas/química , Receptores de Taquicininas/metabolismo , Taquicininas/biosíntesis , Taquicininas/química , Taquicininas/metabolismo
7.
FEBS Lett ; 439(1-2): 35-40, 1998 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-9849872

RESUMEN

In the wild-type tachykinin NK3A receptor histidyl residues are present at two positions in TM-V, V:01 and V:05, at which Zn2+ functions as an antagonist in NK1 and kappa-opioid receptors with engineered metal-ion sites. Surprisingly, in the NK3A receptor Zn2+ instead increased the binding of the agonist 125I-[MePhe7]neurokinin B to 150%. [MePhe7]neurokinin B bound to the NK3A receptor in a two-component mode of which Zn2+ eliminated the subnanomolar binding mode but induced a higher binding capacity of the nanomolar binding mode. Signal transduction was not induced by ZnCl2 but 10 microM ZnCl2 enhanced the effect of neurokinin B. Ala-substitution of HisV:01 eliminated the enhancing effect of Zn2+ on peptide binding. It is concluded that physiological concentrations of Zn2+ have a positive modulatory effect on the binding and function of neurokinin B on the NK3A receptor through a bis-His site in TM-V.


Asunto(s)
Histidina/química , Proteínas de la Membrana/química , Neuroquinina B/farmacología , Receptores de Taquicininas/agonistas , Receptores de Taquicininas/química , Zinc/química , Secuencia de Aminoácidos , Animales , Unión Competitiva , Células COS , Humanos , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Receptores de Taquicininas/genética
8.
Curr Med Chem ; 11(15): 2045-81, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15279567

RESUMEN

In addition to the classical neurotransmitters, acetylcholine and noradrenaline, a wide number of peptides with neurotransmitter activity have been identified in the past few years. Among them, the tachykinins substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) appear to act as mediators of nonadrenergic, noncholinergic (NANC) excitatory neurotransmission. Tachykinins interact with specific membrane proteins, belonging to the family of G protein-coupling cell membrane receptors. Until now, three tachykinin receptors termed NK1 (NK1R), NK2 (NK2R) and NK3 (NK3R) have been cloned in different species. A large amount of reports suggests that these peptides are involved in nociception and neuroimmunomodulation, and in the development of different diseases such as bronchial asthma, inflammatory bowel syndrome and psychiatric disorders. Tachykinin receptor antagonists are therefore promising, therapeutically relevant agents. However, and in spite of extensive research, the obtention of selective antagonists of tachykinin receptors have revealed very difficult. An understanding of how ligands interact with their receptors is essential to permit a rational design of compounds acting selectively at the tachykinin receptor level. The major aim of the present article is to review the structure-activity data that exist for tachykinins and their receptors, with the purpose of getting insight into basic structural requirements that determine ligand/receptor interaction.


Asunto(s)
Receptores de Taquicininas/química , Taquicininas/química , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Receptores de Taquicininas/fisiología , Relación Estructura-Actividad , Taquicininas/fisiología
9.
Prog Brain Res ; 104: 93-108, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-8552786

RESUMEN

In summary, all three tachykinin receptors appear to be important modulators of physiological systems in the spinal cord. However, although there is a good deal of data concerning binding characteristics in peripheral tissues, work done in the spinal cord is scanty, leading to a number of unanswered questions. Firstly, Lui et al. (1993) have suggested a discrepancy between the location of SP binding sites and SP containing terminals. This might explain the conflicting evidence on the role of NK1 receptors in the dorsal horn. Furthermore, evidence that NK2 receptors are involved in nociception is increasing, however binding sites for these receptors in the spinal cord have not been demonstrated. This appears to be due to the difficulty in locating an ideal receptor specific ligand. The role of NK2 receptors in autonomic function is also unclear, perhaps for the same reason. Finally, there is evidence indicating that NK3 binding sites are increased following transection of the LIV-VI dorsal roots, however, studies on the effects of inflammation have not been done, as they have with the NK1 and NK2 receptors. All of these and many more unanswered questions require further investigation.


Asunto(s)
Receptores de Taquicininas/química , Médula Espinal/química , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Receptores de Taquicininas/fisiología
10.
Ann N Y Acad Sci ; 897: 374-87, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10676464

RESUMEN

Tachykinin-like peptides have been identified in many vertebrate and invertebrate species. On the basis of the data reviewed in this paper, these peptides can be classified into two distinct subfamilies, which are recognized by their respective sequence characteristics. All known vertebrate tachykinins and a few invertebrate ones share a common C-terminal sequence motif, -FXGLMa. The insect tachykinins, which have a common -GFX1GX2Ra C-terminus, display about 30% of sequence homology with the first group. Tachykinins are multifunctional brain/gut peptides. In mammals and insects, various isoforms play an important neuromodulatory role in the central nervous system. They are involved in the processing of sensory information and in the control of motor activities. In addition, members of both subfamilies elicit stimulatory responses on a variety of visceral muscles. The receptors for mammalian and insect tachykinins show a high degree of sequence conservation and their functional characteristics are very similar. In both mammals and insects, angiotensin-converting enzyme (ACE) plays a prominent role in tachykinin peptide metabolism.


Asunto(s)
Receptores de Taquicininas/fisiología , Taquicininas/fisiología , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Insectos , Mamíferos , Datos de Secuencia Molecular , Músculo Liso/fisiología , Peptidil-Dipeptidasa A/metabolismo , Receptores de Taquicininas/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Taquicininas/química
11.
Peptides ; 18(1): 1-5, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9114446

RESUMEN

STKR is a 4118 bp clone from a stable fly, Stomoxys calcitrans, cDNA library which encodes a protein with significant amino acid identity to tachykinin-like peptide receptors. Ribonuclease protection assays and RT-PCR were utilized to examine the transcriptional expression of STKR from various life stages of the stable fly. STKR expression was detectable in all stages, but was most abundant in isolated adult fly gut and lowest in developing embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas de Insectos , Muscidae/genética , Receptores de Péptidos de Invertebrados/genética , Receptores de Taquicininas/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , ADN Complementario/química , Datos de Secuencia Molecular , Muscidae/embriología , Muscidae/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Receptores de Péptidos de Invertebrados/biosíntesis , Receptores de Péptidos de Invertebrados/química , Receptores de Taquicininas/biosíntesis , Receptores de Taquicininas/química , Ribonucleasas/metabolismo , Homología de Secuencia de Aminoácido , Transcripción Genética/genética
12.
Peptides ; 22(7): 1037-42, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11445231

RESUMEN

The influence of the tachykinin NK3 receptor agonist, aminosenktide on the immobility in the forced swimming test was studied in mouse lines selectively bred for divergent magnitudes of stress-induced analgesia. The high analgesia (HA) line is known to display enhanced, and the low analgesia (LA) line displays reduced activity of the opioid system. Aminosenktide at doses of 125 microg/kg or 250 microg/kg intraperitoneally (IP) reduced, in naltrexone-reversible manner, the immobility more of opioid receptor-dense HA than of unselected mice, but was ineffective in the opioid receptor-deficient LA line. The effect of aminosenktide was quite similar to the antiimmobility action of desipramine (10 mg/kg IP), a prototypic antidepressant agent. None of the compounds increased animals' locomotion as found with an open field test; therefore their antiimmobility effect cannot be attributed to a change in general motility. The results claim that aminosenktide causes an antidepressant effect, and endogenous opioids are involved in this process.


Asunto(s)
Antidepresivos/farmacología , Indometacina/análogos & derivados , Naltrexona/análogos & derivados , Narcóticos/metabolismo , Fragmentos de Péptidos/química , Receptores de Taquicininas/química , Sustancia P/química , Analgesia , Animales , Conducta Animal/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Femenino , Indometacina/farmacología , Masculino , Ratones , Naltrexona/farmacología , Fragmentos de Péptidos/farmacología , Sustancia P/análogos & derivados , Sustancia P/farmacología , Natación
13.
Naunyn Schmiedebergs Arch Pharmacol ; 370(1): 35-45, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15235762

RESUMEN

Two tachykinin peptides, bufokinin and Xenopus neurokinin A (X-NKA) were recently isolated from Xenopus laevis. In this study we investigated the tachykinin receptors in the Xenopus gastrointestinal tract. In functional studies using stomach circular muscle strips, all peptides had similar potencies (EC50 values 1-7 nM). The rank order of potency to contract the intestine was physalaemin (EC50 1 nM)> or =bufokinin (EC50 3 nM)>substance P (SP)> or =cod SP>NKA>>X-NKA (EC50 1,900 nM). No maximum response could be obtained for [Sar9,Met(O2)11]SP, eledoisin and kassinin. In stomach strips, the mammalian tachykinin receptor antagonists RP 67580 (NK1) and MEN 10376 (NK2) had agonistic effects but did not antagonize bufokinin or X-NKA. In intestinal strips, RP 67580 (1 microM) reduced the maximal response to X-NKA but not bufokinin, while MEN 10376 was ineffective. [125I]BH-bufokinin bound with high affinity to a single class of sites, of KD 213+/-35 (stomach) and 172+/-9.3 pM (intestine). Specific binding of [125I]BH-bufokinin was displaced by bufokinin> or =SP>NKA> or =eledoisin approximately kassinin>X-NKA, indicating binding to a tachykinin NK1-like receptor. Selective tachykinin receptor antagonists were weak or ineffective. Other iodinated tachykinins ([125I]NKA and [125I]BH-eledoisin) displayed biphasic competition profiles, with the majority of sites preferring bufokinin rather than X-NKA. In conclusion, there is evidence for two different tachykinin receptors in Xenopus gastrointestinal tract. Both receptors may exist in stomach, whereas the bufokinin-preferring NK1-like receptor predominates in longitudinal muscle of the small intestine. Antagonists appear to interact differently with amphibian receptors, compared with mammalian receptors.


Asunto(s)
Neuroquinina A/análogos & derivados , Fisalemina/análogos & derivados , Receptores de Taquicininas/química , Receptores de Taquicininas/efectos de los fármacos , Especificidad de la Especie , Sustancia P/análogos & derivados , Xenopus/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Cardias/citología , Cardias/efectos de los fármacos , Cardias/metabolismo , Relación Dosis-Respuesta a Droga , Eledoisina/farmacología , Femenino , Indoles/farmacología , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Intestino Delgado/citología , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Radioisótopos de Yodo , Isoindoles , Kasinina/farmacología , Masculino , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Neuroquinina A/antagonistas & inhibidores , Neuroquinina A/química , Neuroquinina A/farmacología , Fragmentos de Péptidos/farmacología , Fisalemina/farmacología , Receptores de Taquicininas/fisiología , Sustancia P/farmacología
14.
Life Sci ; 74(12): 1445-63, 2004 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-14729395

RESUMEN

The peptides of the tachykinin family are widely distributed within the mammalian peripheral and central nervous systems and play a well-recognized role as excitatory neurotransmitters. Currently, the concept that tachykinins act exclusively as neuropeptides is being challenged, since the best known members of the family, substance P, neurokinin A and neurokinin B, are also present in non-neuronal cells and in non-innervated tissues. Moreover, the recently cloned mammalian tachykinins hemokinin-1 and endokinins are primarily expressed in non-neuronal cells, suggesting a widespread distribution and important role for these peptides as intercellular signaling molecules. The biological actions of tachykinins are mediated through three types of receptors denoted NK(1), NK(2) and NK(3) that belong to the family of G protein-coupled receptors. The identification of additional tachykinins has reopened the debate of whether more tachykinin receptors exist. In this review, we summarize the current knowledge of tachykinins and their receptors.


Asunto(s)
Receptores de Taquicininas/metabolismo , Taquicininas/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Neuronas/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estructura Secundaria de Proteína , Receptores de Taquicininas/química , Receptores de Taquicininas/clasificación , Receptores de Taquicininas/genética , Taquicininas/genética
15.
Peptides ; 47: 71-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23850991

RESUMEN

It has been previously shown that octopus venoms contain novel tachykinin peptides that despite being isolated from an invertebrate, contain the motifs characteristic of vertebrate tachykinin peptides rather than being more like conventional invertebrate tachykinin peptides. Therefore, in this study we examined the effect of three variants of octopus venom tachykinin peptides on invertebrate and vertebrate tissues. While there were differential potencies between the three peptides, their relative effects were uniquely consistent between invertebrate and vertebrae tissue assays. The most potent form (OCT-TK-III) was not only the most anionically charged but also was the most structurally stable. These results not only reveal that the interaction of tachykinin peptides is more complex than previous structure-function theories envisioned, but also reinforce the fundamental premise that animal venoms are rich resources of novel bioactive molecules, which are useful investigational ligands and some of which may be useful as lead compounds for drug design and development.


Asunto(s)
Íleon/efectos de los fármacos , Venenos de Moluscos/química , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Taquicininas/farmacología , Secuencia de Aminoácidos , Animales , Astacoidea/efectos de los fármacos , Astacoidea/fisiología , Íleon/fisiología , Masculino , Datos de Secuencia Molecular , Músculo Liso/fisiología , Octopodiformes/química , Unión Proteica , Ratas , Receptores de Taquicininas/química , Receptores de Taquicininas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Taquicininas/síntesis química
16.
Mol Cell Endocrinol ; 361(1-2): 202-12, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22580006

RESUMEN

Tachykinins are a family of peptides that are conserved from invertebrates to mammals. However, little is known about the evolutionary history of tachykinin (TAC) and tachykinin receptor (TACR) genes in vertebrates, especially in the teleost group. In the present study, five TACs and six TACRs genes were identified in the zebrafish genome. Genomic synteny analysis and phylogenetic tree analysis indicate that the increased numbers of TAC and TACR genes in vertebrates are the result of both genome duplications and local individual gene duplication. The full-length cDNA sequences encoding multiple TAC3s (TAC3a and TAC3b) and TACR3s (TACR3a1, TACR3a2 and TACR3b) were subsequently cloned from zebrafish brain samples. Sequence analysis suggested that four putative neurokinin B (NKB)-like peptides (NKBa-13, NKBa-10, NKBb-13 and NKBb-11) might be generated by the processing of two zebrafish TAC3 precursors. Tissue distribution studies in zebrafish revealed that TAC3 and TACR3 are mainly expressed in the brain regions. The biological activities of four zebrafish NKB peptides and three TACR3s were further examined using transcription reporter assays in cultured eukaryotic cells. All the synthetic NKB peptides were able to evoke the downstream signaling events of TACR3s with the exception of NKBb-11. These results indicated that the multiple TAC/TACR genes identified in vertebrates evolved from gene duplication events and that the TAC3/TACR3 systems also operate in the teleost group.


Asunto(s)
Evolución Molecular , Receptores de Taquicininas/genética , Taquicininas/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Clonación Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Genoma/genética , Humanos , Datos de Secuencia Molecular , Péptidos/farmacología , Filogenia , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Taquicininas/química , Receptores de Taquicininas/metabolismo , Homología de Secuencia de Aminoácido , Sintenía/genética , Taquicininas/química , Taquicininas/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
19.
J Mol Recognit ; 20(3): 145-53, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17444559

RESUMEN

Crystallography, mutational mapping and crosslinking are but a few of the experimental techniques that have helped to elucidate the underlying principles of molecular recognition between macromolecules and to improve our understanding of the evolution of the structure-activity relationship (SAR). While this development has been particularly successful for small and rigid ligands and substrates that bind to larger hydrophilic biomolecules, our understanding of membrane-embedded proteins is still rather limited. This review uses the example of the neuropeptide family of tachykinins and their G-protein coupled receptors (GPCR) to present how complementary experimental strategies over the past decades have nourished and modified conceptual models of the structural requisites of molecular recognition and function. Given the little we know, the pertinent question is how we proceed from here.


Asunto(s)
Taquicininas/historia , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Conformación Proteica , Receptores de Taquicininas/química , Receptores de Taquicininas/historia , Relación Estructura-Actividad , Taquicininas/química
20.
Eur J Biochem ; 269(17): 4238-46, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12199702

RESUMEN

Structurally tachykinin-related peptides have been isolated from various invertebrate species and shown to exhibit their biological activities through a G-protein-coupled receptor (GPCR) for a tachykinin-related peptide. In this paper, we report the identification of a novel tachykinin-related peptide receptor, the urechistachykinin receptor (UTKR) from the echiuroid worm, Urechis unitinctus. The deduced UTKR precursor includes seven transmembrane domains and typical sites for mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors. A functional analysis of the UTKR expressed in Xenopus oocytes demonstrated that UTKR, like tachykinin receptors and tachykinin-related peptide receptors, activates calcium-dependent signal transduction upon binding to its endogenous ligands, urechistachykinins (Uru-TKs) I-V and VII, which were isolated as Urechis tachykinin-related peptides from the nervous tissue of the Urechis unitinctus in our previous study. UTKR responded to all Uru-TKs equivalently, showing that UTKR possesses no selective affinity with Uru-TKs. In contrast, UTKR was not activated by substance P or an Uru-TK analog containing a C-terminal Met-NH2 instead of Arg-NH2. Furthermore, the genomic analysis revealed that the UTKR gene, like mammalian tachykinin receptor genes, consists of five exons interrupted by four introns, and all the intron-inserted positions are completely compatible with those of mammalian tachykinin receptor genes. These results suggest that mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors were evolved from a common ancestral GPCR gene. This is the first identification of an invertebrate tachykinin-related peptide receptor from other species than insects and also of the genomic structure of a tachykinin-related peptide receptor gene.


Asunto(s)
Anélidos/genética , Receptores de Taquicininas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Cartilla de ADN/química , ADN Complementario , Exones , Expresión Génica , Genoma , Intrones , Microinyecciones , Datos de Secuencia Molecular , Oocitos/fisiología , Sistemas de Lectura Abierta , Fragmentos de Péptidos , ARN/metabolismo , Receptores de Taquicininas/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA