Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 924
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cancer ; 22(1): 79, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120508

RESUMEN

A major obstacle to chemotherapeutic success in cancer treatment is the development of drug resistance. This occurs when a tumour fails to reduce in size after treatment or when there is clinical relapse after an initial positive response to treatment. A unique and serious type of resistance is multidrug resistance (MDR). MDR causes the simultaneous cross resistance to unrelated drugs used in chemotherapy. MDR can be acquired through genetic alterations following drug exposure, or as discovered by us, through alternative pathways mediated by the transfer of functional MDR proteins and nucleic acids by extracellular vesicles (M Bebawy V Combes E Lee R Jaiswal J Gong A Bonhoure GE Grau, 23 9 1643 1649, 2009).Multiple myeloma is an incurable cancer of bone marrow plasma cells. Treatment involves high dose combination chemotherapy and patient response is unpredictable and variable due to the presence of multisite clonal tumour infiltrates. This clonal heterogeneity can contribute to the development of MDR. There is currently no approved clinical test for the minimally invasive testing of MDR in myeloma.Extracellular vesicles comprise a group of heterogeneous cell-derived membranous structures which include; exosomes, microparticles (microvesicles), migrasomes and apoptotic bodies. Extracellular vesicles serve an important role in cellular communication through the intercellular transfer of cellular protein, nucleic acid and lipid cargo. Of these, microparticles (MPs) originate from the cell plasma membrane and vary in size from 0.1-1um. We have previously shown that MPs confer MDR through the transfer of resistance proteins and nucleic acids. A test for the early detection of MDR would benefit clinical decision making, improve survival and support rational drug use. This review focuses on microparticles as novel clinical biomarkers for the detection of MDR in Myeloma and discusses their role in the therapeutic management of the disease.


Asunto(s)
Mieloma Múltiple , Ácidos Nucleicos , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/diagnóstico , Resistencia a Antineoplásicos/fisiología , Recurrencia Local de Neoplasia , Resistencia a Múltiples Medicamentos/fisiología
2.
Proc Natl Acad Sci U S A ; 117(47): 29609-29617, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168729

RESUMEN

P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transporte Biológico/fisiología , Resistencia a Múltiples Medicamentos/fisiología , Preparaciones Farmacéuticas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Sustitución de Aminoácidos/fisiología , Animales , Sitios de Unión/fisiología , Línea Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/fisiología , Células HeLa , Humanos , Insectos , Simulación del Acoplamiento Molecular/métodos , Rodamina 123/metabolismo , Especificidad por Sustrato/fisiología
3.
Mol Cancer ; 21(1): 103, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459184

RESUMEN

BACKGROUND: Multidrug resistance (MDR) mediated by ATP binding cassette subfamily B member 1 (ABCB1/P-gp) is a major cause of cancer chemotherapy failure, but the regulation mechanisms are largely unknown. METHODS: Based on single gene knockout, we studied the regulation of CDK6-PI3K axis on ABCB1-mediated MDR in human cancer cells. CRISPR/Cas9 technique was performed in KB-C2 cells to knockout cdk6 or cdk4 gene. Western blot, RT-PCR and transcriptome analysis were performed to investigate target gene deletion and expression of critical signaling factors. The effect of cdk4 or cdk6 deficiency on cell apoptosis and the cell cycle was analyzed using flow cytometry. In vivo studies were performed to study the sensitivity of KB-C2 tumors to doxorubicin, tumor growth and metastasis. RESULTS: Deficiency of cdk6 led to remarkable downregulation of ABCB1 expression and reversal of ABCB1-mediated MDR. Transcriptomic analysis revealed that CDK6 knockout regulated a series of signaling factors, among them, PI3K 110α and 110ß, KRAS and MAPK10 were downregulated, and FOS-promoting cell autophagy and CXCL1-regulating multiple factors were upregulated. Notably, PI3K 110α/110ß deficiency in-return downregulated CDK6 and the CDK6-PI3K axis synergizes in regulating ABCB1 expression, which strengthened the regulation of ABCB1 over single regulation by either CDK6 or PI3K 110α/110ß. High frequency of alternative splicing (AS) of premature ABCB1 mRNA induced by CDK6, CDK4 or PI3K 110α/110ß level change was confirmed to alter the ABCB1 level, among them 10 common skipped exon (SE) events were found. In vivo experiments demonstrated that loss of cdk6 remarkably increased the sensitivity of KB-C2 tumors to doxorubicin by increasing drug accumulation of the tumors, resulting in remarkable inhibition of tumor growth and metastasis, as well as KB-C2 survival in the nude mice. CONCLUSIONS: CDK6-PI3K as a new target signaling axis to reverse ABCB1-mediated MDR is reported for the first time in cancers. Pathways leading to inhibition of cancer cell proliferation were revealed to be accompanied by CDK6 deficiency.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Antineoplásicos , Quinasa 6 Dependiente de la Ciclina , Neoplasias , Fosfatidilinositol 3-Quinasas , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/genética , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Humanos , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
4.
Exp Cell Res ; 405(2): 112728, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34246653

RESUMEN

ATP-binding cassette (ABC) transporter C10 (ABCC10), also named multidrug resistance protein 7 (MRP7), is a member of ABC transporter superfamily and has been revealed to transport a wide range of chemotherapeutic agents including taxanes, epothilone B, Vinca alkaloids, and anthracyclines. In our previous study, a 5-cyano-6-phenylpyrimidin derivative CP55 was synthesized and found significantly reversal effect of multidrug resistance (MDR) mediated by ABCB1. In this study, we found CP55 also efficiently reversed MDR mediated by ABCC10. Our in vitro study showed that co-treatment with CP55 significantly increased the efficacy of ABCC10-substrate anticancer drugs in MDR cells overexpressing ABCC10. Furthermore, we showed that treatment with CP55 increased the intracellular accumulation of [3H]-labeled anticancer drugs and in-turn decreasing drug efflux by inhibiting the transport activity, without altering ABCC10 protein ex-pression level or cellular localization. Potential CP55-ABCC10 interactions were predicted via docking analysis using human ABCC10 homology model and obtained high docking score. Therefore, CP55 represents a promising therapeutic agent in the combinational treatment of chemo-resistant cancer related to ABCC10.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/fisiología , Humanos , Proteínas de Neoplasias/metabolismo , Sensibilidad y Especificidad
5.
Cell Mol Life Sci ; 78(21-22): 7025-7041, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34626204

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most difficult cancer types to treat. Liver cancer is often diagnosed at late stages and therapeutic treatment is frequently accompanied by development of multidrug resistance. This leads to poor outcomes for cancer patients. Understanding the fundamental molecular mechanisms leading to liver cancer development is crucial for developing new therapeutic approaches, which are more efficient in treating cancer. Mice with a liver specific UDP-glucose ceramide glucosyltransferase (UGCG) knockout (KO) show delayed diethylnitrosamine (DEN)-induced liver tumor growth. Accordingly, the rationale for our study was to determine whether UGCG overexpression is sufficient to drive cancer phenotypes in liver cells. We investigated the effect of UGCG overexpression (OE) on normal murine liver (NMuLi) cells. Increased UGCG expression results in decreased mitochondrial respiration and glycolysis, which is reversible by treatment with EtDO-P4, an UGCG inhibitor. Furthermore, tumor markers such as FGF21 and EPCAM are lowered following UGCG OE, which could be related to glucosylceramide (GlcCer) and lactosylceramide (LacCer) accumulation in glycosphingolipid-enriched microdomains (GEMs) and subsequently altered signaling protein phosphorylation. These cellular processes lead to decreased proliferation in NMuLi/UGCG OE cells. Our data show that increased UGCG expression itself does not induce pro-cancerous processes in normal liver cells, which indicates that increased GlcCer expression leads to different outcomes in different cancer types.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Metabolismo Energético/fisiología , Glucosilceramidas/metabolismo , Hígado/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular , Resistencia a Múltiples Medicamentos/fisiología , Glucosiltransferasas/metabolismo , Glucólisis/fisiología , Glicoesfingolípidos/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones , Mitocondrias/metabolismo , Transducción de Señal/fisiología
6.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163973

RESUMEN

The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.


Asunto(s)
Resistencia a Múltiples Medicamentos/fisiología , Melatonina/metabolismo , Priones/metabolismo , Animales , Resistencia a Múltiples Medicamentos/genética , Humanos , Peroxidación de Lípido , Melatonina/farmacología , Melatonina/fisiología , Microdominios de Membrana/metabolismo , Neoplasias/metabolismo , Proteínas Priónicas/metabolismo , Priones/química , Priones/genética , Transducción de Señal , Microambiente Tumoral/fisiología
7.
Bioconjug Chem ; 32(1): 73-81, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33393280

RESUMEN

Multidrug resistance (MDR) is the main obstacle in cancer chemotherapy. ATP-binding cassette (ABC) transporters can transport a wide range of antitumor drugs out of cells, which is the most common reason in the development of resistance to drugs. Currently, various therapeutic strategies are used to reverse MDR, among which CRISPR/Cas9 gene editing technique is expected to be an effective way. Here, we reviewed the research progress of reversing ABC-mediated drug resistance by CRISPR/Cas9 system.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Sistemas CRISPR-Cas , Resistencia a Múltiples Medicamentos/fisiología , Animales , Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Edición Génica , Humanos
8.
Ann Hematol ; 100(1): 169-180, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33159239

RESUMEN

The purpose of our study is to identify the efficacy of ruxolitinib in human leukocyte antigen (HLA) haploidentical hematopoietic stem cell transplantation (haplo-HSCT) recipients with multidrug-resistant (MDR)-graft-versus-host disease (GVHD, n = 34). MDR-GVHD was defined as GVHD showing no improvement after at least 3 types of treatments. The median number of previous GVHD-therapies was 4 for both MDR-acute GVHD (aGVHD) and MDR-chronic GVHD (cGVHD). For MDR-aGVHD (n = 15), the median time to response was 10 days (range 2 to 65), and the overall response rate (ORR) was 60.0% (9/15), including 40.0% (6/15) complete response (CR) and 20.0% (3/15) partial response (PR). The 1-year probability of overall survival after ruxolitinib was 66.7%. The rates of hematologic and infectious toxicities were 73.3% and 46.7% after ruxolitinib treatment. For MDR-cGVHD (n = 19), the median time to response was 29 days (range 6 to 175), and the ORR was 89.5% (17/19), including 26.3% (5/19) CR and 63.2% (12/19) PR. All patients remained alive until our last follow-up. The rates of hematologic and infectious toxicities were 36.8% and 47.4% after ruxolitinib treatment. Ruxolitinib is an effective salvage treatment for MDR-GVHD in haplo-HSCT recipients.


Asunto(s)
Ciclofosfamida , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas , Pirazoles/uso terapéutico , Terapia Recuperativa , Trasplante Haploidéntico , Adolescente , Adulto , Niño , Preescolar , Resistencia a Múltiples Medicamentos/fisiología , Femenino , Estudios de Seguimiento , Enfermedad Injerto contra Huésped/diagnóstico , Trasplante de Células Madre Hematopoyéticas/tendencias , Humanos , Masculino , Persona de Mediana Edad , Nitrilos , Pirimidinas , Estudios Retrospectivos , Terapia Recuperativa/tendencias , Trasplante Haploidéntico/tendencias , Trasplante Homólogo/tendencias , Resultado del Tratamiento , Adulto Joven
9.
Cell Biol Int ; 45(8): 1644-1653, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33760350

RESUMEN

Overexpression of breast cancer resistance protein (BCRP) plays a crucial role in the acquired multidrug resistance (MDR) in breast cancer. The elucidation of molecular events that confer BCRP-mediated MDR is of major therapeutic importance in breast cancer. Epithelial cell adhesion molecule (EpCAM) has been implicated in tumor progression and drug resistance in various types of cancers, including breast cancer. However, the role of EpCAM in BCRP-mediated MDR in breast cancer remains unknown. In the present study, we revealed that EpCAM expression was upregulated in BCRP-overexpressing breast cancer MCF-7/MX cells, and EpCAM knockdown using siRNA reduced BCRP expression and increased the sensitivity of MCF-7/MX cells to mitoxantrone (MX). The epithelial-mesenchymal transition (EMT) promoted BCRP-mediated MDR in breast cancer cells, and EpCAM knockdown partially suppressed EMT progression in MCF-7/MX cells. In addition, Wnt/ß-catenin signaling was activated in MCF-7/MX cells, and the inhibition of this signaling attenuated EpCAM and BCRP expression and partially reversed EMT. Together, this study illustrates that EpCAM upregulation by Wnt/ß-catenin signaling induces partial EMT to promote BCRP-mediated MDR resistance in breast cancer cells. EpCAM may be a potential therapeutic target for overcoming BCRP-mediated resistance in human breast cancer.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/biosíntesis , Neoplasias de la Mama/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/fisiología , Molécula de Adhesión Celular Epitelial/biosíntesis , Transición Epitelial-Mesenquimal/fisiología , Proteínas de Neoplasias/biosíntesis , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Molécula de Adhesión Celular Epitelial/antagonistas & inhibidores , Molécula de Adhesión Celular Epitelial/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Mitoxantrona/farmacología , Proteínas de Neoplasias/genética , ARN Interferente Pequeño/administración & dosificación
10.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948392

RESUMEN

Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.


Asunto(s)
Antiinfecciosos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Glucanos/biosíntesis , Antibacterianos , Antiinfecciosos/química , Antifúngicos , COVID-19 , Quitina/farmacología , Quitosano/química , Resistencia a Múltiples Medicamentos/fisiología , Embalaje de Alimentos , Glucanos/metabolismo , Glucanos/farmacología , Humanos , Nanopartículas del Metal/química , Nanocompuestos/química , Nisina/farmacología , Polímeros/química , SARS-CoV-2
11.
Molecules ; 26(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071039

RESUMEN

ABCG2 is an ABC membrane protein reverse transport pump, which removes toxic substances such as medicines out of cells. As a result, drug bioavailability is an unexpected change and negatively influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity), leading to multi-drug resistance (MDR). Currently, in spite of promising studies, screening for ABCG2 inhibitors showed modest results. The aim of this study was to search for small molecules that could inhibit the ABCG2 pump. We first used the WISS MODEL automatic server to build up ABCG2 homology protein from 655 amino acids. Pharmacophore models, which were con-structed based on strong ABCG2 inhibitors (IC50 < 1 µM), consist of two hydrophobic (Hyd) groups, two hydrogen bonding acceptors (Acc2), and an aromatic or conjugated ring (Aro|PiR). Using molecular docking method, 714 substances from the DrugBank and 837 substances from the TCM with potential to inhibit the ABCG2 were obtained. These chemicals maybe favor synthesized or extracted and bioactivity testing.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/química , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
12.
Pharm Dev Technol ; 26(1): 21-29, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33070673

RESUMEN

Multidrug resistance (MDR) is a serious challenge in chemotherapy and also a major threat to breast cancer treatment. As an intracellular energy factory, mitochondria provide energy for drug efflux and are deeply involved in multidrug resistance. Mitochondrial targeted delivery of doxorubicin can overcome multidrug resistance by disrupting mitochondrial function. By incorporating a reactive oxygen species (ROS)-responsive hydrophobic group into the backbone structure of hyaluronic acid - a natural ligand for the highly expressed CD44 receptor on tumor surfaces, a novel ROS-responsive and CD44-targeting nano-carriers was constructed. In this study, mitochondria-targeted triphenylphosphine modified-doxorubicin (TPP-DOX) and amphipathic ROS-responsive hyaluronic acid derivatives (HA-PBPE) were synthesized and confirmed by 1H NMR. The nanocarriers TPP-DOX @ HA-PBPE was prepared in a regular shape and particle size of approximately 200 nm. Compared to free DOX, its antitumor activity in vitro and tumor passive targeting in vivo has been enhanced. The ROS-responsive TPP-DOX@HA-PBPE nanocarriers system provide a promising strategy for the reverse of MDR and efficient delivery of doxorubicin derivatives into drug-resistant cancer cells.


Asunto(s)
Antineoplásicos/metabolismo , Neoplasias de la Mama/metabolismo , Doxorrubicina/metabolismo , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Nanopartículas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Nanopartículas/administración & dosificación , Nanopartículas/química , Especies Reactivas de Oxígeno/química
13.
J Cell Mol Med ; 24(3): 2123-2134, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31957179

RESUMEN

Fibroblast growth factor receptor-like 1 (FGFRL1), a member of the FGFR family, has been demonstrated to play important roles in various cancers. However, the role of FGFRL1 in small-cell lung cancer (SCLC) remains unclear. Our study aimed to investigate the role of FGFRL1 in chemoresistance of SCLC and elucidate the possible molecular mechanism. We found that FGFRL1 levels are significantly up-regulated in multidrug-resistant SCLC cells (H69AR and H446DDP) compared with the sensitive parental cells (H69 and H446). In addition, clinical samples showed that FGFRL1 was overexpressed in SCLC tissues, and high FGFRL1 expression was associated with the clinical stage, chemotherapy response and survival time of SCLC patients. Knockdown of FGFRL1 in chemoresistant SCLC cells increased chemosensitivity by increasing cell apoptosis and cell cycle arrest, whereas overexpression of FGFRL1 in chemosensitive SCLC cells produced the opposite results. Mechanistic investigations showed that FGFRL1 interacts with ENO1, and FGFRL1 was found to regulate the expression of ENO1 and its downstream signalling pathway (the PI3K/Akt pathway) in SCLC cells. In brief, our study demonstrated that FGFRL1 modulates chemoresistance of SCLC by regulating the ENO1-PI3K/Akt pathway. FGFRL1 may be a predictor and a potential therapeutic target for chemoresistance in SCLC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/fisiología , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Tipo 5 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/fisiología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico
14.
Tumour Biol ; 42(9): 1010428320957506, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32914709

RESUMEN

The development of the multidrug resistance phenotype is one of the major challenges faced in the treatment of cancer. The multidrug resistance phenotype is characterized by cross-resistance to drugs with different chemical structures and mechanisms of action. In this work, we hypothesized that the acquisition of resistance in cancer is accompanied by activation of the epithelial-to-mesenchymal transition process, where the tumor cell acquires a more mobile and invasive phenotype; a fundamental step in tumor progression and in promoting the invasion of other organs and tissues. In addition, it is known that atypical glycosylations are characteristic of tumor cells, being used as biomarkers. We believe that the acquisition of the multidrug resistance phenotype and the activation of epithelial-to-mesenchymal transition provoke alterations in the cell glycophenotype, which can be used as glycomarkers for chemoresistance and epithelial-to-mesenchymal transition processes. Herein, we induced the multidrug resistance phenotype in the PC-3 human prostate adenocarcinoma line through the continuous treatment with the drug paclitaxel. Our results showed that the induced cell multidrug resistance phenotype (1) acquired a mixed profile between epithelial and mesenchymal phenotypes and (2) modified the glycophenotype, showing an increase in the level of sialylation and in the number of branched glycans. Both mechanisms are described as indicators of poor prognosis.


Asunto(s)
Adenocarcinoma/patología , Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos/fisiología , Transición Epitelial-Mesenquimal/fisiología , Paclitaxel/farmacología , Adenocarcinoma/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Glicosilación , Humanos , Células PC-3 , Fenotipo
15.
Pharmacol Res ; 158: 104880, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32442721

RESUMEN

Sirtuins (SIRTs), a class III histone deacetylases (HDACs) that require NAD+ as a cofactor and include SIRT1-7 proteins in mammals. Accumulative evidence has established that every sirtuin possesses exclusive and poised biology, implicating their role in the regulation of multifaceted biological functions leading to breast cancer initiation, progression, and metastasis. This article provides an outline of recent developments in the role of sirtuins in breast cancer metastasis and development of multidrug resistance (MDR). In addition, we have also highlighted the impending prospects of targeting SIRTs to overcome MDR to bring advancement in breast cancer management. Further, this review will focus on strategies for improving the activity and efficacy of existing cancer therapeutics by combining (adjuvant treatment/therapy) them with sirtuin inhibitors/modulators. All available as well as newly discovered synthetic and dietary sirtuin inhibitors, activators/modulators have been extensively reviewed and compiled to provide a rationale for targeting sirtuins. Further, we discuss their potential in developing future therapeutics against sirtuins proposing their use along with conventional chemotherapeutics to overcome the problem of breast cancer metastasis and MDR.


Asunto(s)
Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/tendencias , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Sirtuinas/antagonistas & inhibidores , Animales , Antineoplásicos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Neoplasias de la Mama/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Múltiples Medicamentos/fisiología , Femenino , Humanos , Sirtuinas/metabolismo
16.
Biol Pharm Bull ; 43(10): 1526-1533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32999163

RESUMEN

Imatinib-resistance is a significant concern for Bcr-Abl-positive chronic myelogenous leukemia (CML) treatment. Emodin, the predominant compound of traditional medicine rhubarb, was reported to inhibit the multidrug resistance by downregulating P-glycoprotein of K562/ADM cells with overexpression of P-glycoprotein in our previous studies. In the present study, we found that emodin can be a potential inhibitor for the imatinib-resistance in K562/G01 cells which are the imatinib-resistant subcellular line of human chronic myelogenous leukemia cells with overexpression of breakpoint cluster region-abelson (Bcr-Abl) oncoprotein. Emodin greatly enhanced cell sensitivity to imatinib, suppressed resistant cell proliferation and increased potentiated apoptosis induced by imatinib in K562/G01 cells. After treatment of emodin and imatinib together, the levels of p-Bcr-Abl and Bcr-Abl were significantly downregulated. Moreover, Bcr-Abl important downstream target, STAT5 and its phosphorylation were affected. Furthermore, the expression of Bcr-Abl and signal transducers and activators of transcription 5 (STAT5) related molecules, including c-MYC, MCL-1, poly(ADP-ribose)polymerase (PARP), Bcl-2 and caspase-3, were changed. Emodin also decreased Src expression and its phosphorylation. More importantly, emodin simultaneously targeted both the ATP-binding and allosteric sites on Bcr-Abl by molecular docking, with higher affinity with the myristoyl-binding site for enhanced Bcr-Abl kinase inhibition. Overall, these data indicated emodin might be an effective therapeutic agent for inhibiting resistance to imatinib in CML treatment.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Emodina/farmacología , Genes abl/efectos de los fármacos , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva , Factor de Transcripción STAT5/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/fisiología , Emodina/uso terapéutico , Genes abl/fisiología , Humanos , Mesilato de Imatinib/uso terapéutico , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Simulación del Acoplamiento Molecular/métodos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Estructura Secundaria de Proteína , Factor de Transcripción STAT5/metabolismo
17.
Clin Exp Pharmacol Physiol ; 47(3): 503-516, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31788833

RESUMEN

Colorectal cancer (CRC), a leading cause of cancer death, has recently been known as the most prevalent malignancy worldwide. Although chemotherapy is an important therapeutic option for CRC patients, multidrug resistance (MDR) still remains a major cause of chemotherapy failure. Transmembrane protein 45A (TMEM45A) has been found highly expressed in various cancers, and is also proposed as an interesting biomarker for chemoresistance. However, the association between TMEM45A and MDR in CRC remains unclear. This study aimed to investigate the key role of TMEM45A in CRC by knockdown of its expression in 5-FU-resistant CRC cells (HCT-8/5-FU and SW480/5-FU) and their parental cells (HCT-8 and SW480). Data showed that TMEM45A was significantly up-regulated in HCT-8/5-FU and SW480/5-FU cells in comparison with their parental HCT-8 and SW480 cells. Knockdown of TMEM45A enhanced 5-FU sensitivity and 5-FU-induced apoptosis in HCT-8/5-FU and SW480/5-FU cells. It was also found that inhibition of TMEM45A increased the intracellular accumulation of Rhodamine-123 and down-regulated the expression of MDR1 in HCT-8/5-FU and SW480/5-FU cells. In addition, knockdown of TMEM45A suppressed migration and invasion of HCT-8/5-FU and SW480/5-FU cells. Furthermore, knockdown of TMEM45A not only attenuated MDR-enhanced epithelial-mesenchymal transition (EMT), but also suppressed MDR-enhanced activation of the TGF-ß signalling pathway in HCT-8/5-FU and SW480/5-FU cells. Taken together, our study suggests that knockdown of TMEM45A can effectively overcome MDR and inhibit EMT via suppression of the TGF-ß signalling pathway in human CRC cells, and that targeting TMEM45A will be a potential strategy in the treatment of MDR in CRC.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/fisiología , Transición Epitelial-Mesenquimal/fisiología , Proteínas de la Membrana/deficiencia , Factor de Crecimiento Transformador beta/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fluorouracilo/farmacología , Técnicas de Silenciamiento del Gen/métodos , Humanos , Proteínas de la Membrana/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores
18.
Xenobiotica ; 50(8): 988-996, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31928387

RESUMEN

Human ABCG2 is a half transporter implicated in drug efflux and development of multidrug resistance (MDR) in cancer cells. Here we present the regulatory effects of early endocytic Rab GTPases, Rab5A and Rab21 on ABCG2.ABCG2 was stably expressed in MCF-7 cells (MCF-7/G2). Rab5A and Rab21 were manipulated in MCF-7/G2 cells by co-expression or siRNA knockdown and their effect on ABCG2-mediated drug efflux was quantified using fluorescence microscopy.The ectopically expressed ABCG2 was predominantly confined to the plasma membrane and was capable of drug efflux. Expression of constitutively active Rab5A-Q79L mutant in MCF-7/G2 cells decreased the cell surface expression of ABCG2, resulting in the reduction of ABCG2-mediated drug efflux. In contrast, expression of inactive Rab5A-S34N mutant enhanced cell surface expression of ABCG2 and drug efflux. Moreover, reduction in endogenous Rab21 levels in MCF-7/G2 cells by siRNA knockdown, increased the surface localisation of ABCG2. Consequently, efflux ability of cells increased and intracellular retention of doxorubicin and Hoechst 33342; substrates of ABCG2, decreased significantly.These findings suggest that Rab5A and Rab21 play important roles in regulating ABCG2 surface localisation and turnover and can be exploited as a potential strategy to overcome MDR in cancer cells.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Línea Celular Tumoral , Humanos , Células MCF-7
19.
Proteomics ; 19(1-2): e1800165, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30520565

RESUMEN

Microvesicles (MV) are emerging as important mediators of intercellular communication. While MVs are important signaling vectors for many physiological processes, they are also implicated in cancer pathology and progression. Cellular activation is perhaps the most widely reported initiator of MV biogenesis, however, the precise mechanism remains undefined. Uncovering the proteins involved in regulating MV biogenesis is of interest given their role in the dissemination of deleterious cancer traits. MVs shed from drug-resistant cancer cells transfer multidrug resistance (MDR) proteins to drug-sensitive cells and confer the MDR phenotype in a matter of hours. MDR is attributed to the overexpression of ABC transporters, primarily P-glycoprotein and MRP1. Their expression and functionality is dependent on a number of proteins. In particular, FERM domain proteins have been implicated in supporting the functionality of efflux transporters in drug-resistant cells and in recipient cells during intercellular transfer by vesicles. Herein, the most recent research on the proteins involved in MV biogenesis and in the dissemination of MV-mediated MDR are discussed. Attention is drawn to unanswered questions in the literature that may prove to be of benefit in ongoing efforts to improve clinical response to chemotherapy and circumventing MDR.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Vesículas Extracelulares/metabolismo , Animales , Antineoplásicos/uso terapéutico , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Resistencia a Antineoplásicos , Vesículas Extracelulares/efectos de los fármacos , Humanos , Fosfolípidos/metabolismo , Transducción de Señal/fisiología
20.
PLoS Med ; 16(2): e1002745, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30768615

RESUMEN

BACKGROUND: The emergence and spread of multidrug-resistant Plasmodium falciparum in the Greater Mekong Subregion (GMS) threatens global malaria elimination efforts. Mass drug administration (MDA), the presumptive antimalarial treatment of an entire population to clear the subclinical parasite reservoir, is a strategy to accelerate malaria elimination. We report a cluster randomised trial to assess the effectiveness of dihydroartemisinin-piperaquine (DP) MDA in reducing falciparum malaria incidence and prevalence in 16 remote village populations in Myanmar, Vietnam, Cambodia, and the Lao People's Democratic Republic, where artemisinin resistance is prevalent. METHODS AND FINDINGS: After establishing vector control and community-based case management and following intensive community engagement, we used restricted randomisation within village pairs to select 8 villages to receive early DP MDA and 8 villages as controls for 12 months, after which the control villages received deferred DP MDA. The MDA comprised 3 monthly rounds of 3 daily doses of DP and, except in Cambodia, a single low dose of primaquine. We conducted exhaustive cross-sectional surveys of the entire population of each village at quarterly intervals using ultrasensitive quantitative PCR to detect Plasmodium infections. The study was conducted between May 2013 and July 2017. The investigators randomised 16 villages that had a total of 8,445 residents at the start of the study. Of these 8,445 residents, 4,135 (49%) residents living in 8 villages, plus an additional 288 newcomers to the villages, were randomised to receive early MDA; 3,790 out of the 4,423 (86%) participated in at least 1 MDA round, and 2,520 out of the 4,423 (57%) participated in all 3 rounds. The primary outcome, P. falciparum prevalence by month 3 (M3), fell by 92% (from 5.1% [171/3,340] to 0.4% [12/2,828]) in early MDA villages and by 29% (from 7.2% [246/3,405] to 5.1% [155/3,057]) in control villages. Over the following 9 months, the P. falciparum prevalence increased to 3.3% (96/2,881) in early MDA villages and to 6.1% (128/2,101) in control villages (adjusted incidence rate ratio 0.41 [95% CI 0.20 to 0.84]; p = 0.015). Individual protection was proportional to the number of completed MDA rounds. Of 221 participants with subclinical P. falciparum infections who participated in MDA and could be followed up, 207 (94%) cleared their infections, including 9 of 10 with artemisinin- and piperaquine-resistant infections. The DP MDAs were well tolerated; 6 severe adverse events were detected during the follow-up period, but none was attributable to the intervention. CONCLUSIONS: Added to community-based basic malaria control measures, 3 monthly rounds of DP MDA reduced the incidence and prevalence of falciparum malaria over a 1-year period in areas affected by artemisinin resistance. P. falciparum infections returned during the follow-up period as the remaining infections spread and malaria was reintroduced from surrounding areas. Limitations of this study include a relatively small sample of villages, heterogeneity between villages, and mobility of villagers that may have limited the impact of the intervention. These results suggest that, if used as part of a comprehensive, well-organised, and well-resourced elimination programme, DP MDA can be a useful additional tool to accelerate malaria elimination. TRIAL REGISTRATION: ClinicalTrials.gov NCT01872702.


Asunto(s)
Antimaláricos/administración & dosificación , Erradicación de la Enfermedad/métodos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Administración Masiva de Medicamentos/métodos , Adolescente , Adulto , Asia Sudoriental/epidemiología , Niño , Análisis por Conglomerados , Estudios Cruzados , Resistencia a Múltiples Medicamentos/fisiología , Femenino , Humanos , Malaria Falciparum/diagnóstico , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA