Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
Más filtros

Colección OPSURU
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(6): 100775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663568

RESUMEN

Chagas disease is transmitted to humans by obligatory hematophagous insects of Triatominae subfamily, which feeds on various hosts to acquire their nutritional sustenance derived from blood proteins. Hemoglobin (Hb) digestion is a pivotal metabolic feature of triatomines, representing a key juncture in their competence toward Trypanosoma cruzi; however, it remains poorly understood. To explore the Hb digestion pathway in Rhodnius prolixus, a major Chagas disease vector, we employed an array of approaches for activity profiling of various midgut-associated peptidases using specific substrates and inhibitors. Dissecting the individual contribution of each peptidase family in Hb digestion has unveiled a predominant role played by aspartic proteases and cathepsin B-like peptidases. Determination of peptidase-specific cleavage sites of these key hemoglobinases, in conjunction with mass spectrometry-based identification of in vivo Hb-derived fragments, has revealed the intricate network of peptidases involved in the Hb digestion pathway. This network is initiated by aspartic proteases and subsequently sustained by cysteine proteases belonging to the C1 family. The process is continued simultaneously by amino and carboxypeptidases. The comprehensive profiling of midgut-associated aspartic proteases by quantitative proteomics has enabled the accurate revision of gene annotations within the A1 family of the R. prolixus genome. Significantly, this study also serves to illuminate a potentially important role of the anterior midgut in blood digestion. The expanded repertoire of midgut-associated proteases presented in this study holds promise for the identification of novel targets aimed at controlling the transmission of Chagas disease.


Asunto(s)
Hemoglobinas , Péptido Hidrolasas , Rhodnius , Rhodnius/metabolismo , Animales , Hemoglobinas/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteómica/métodos , Trypanosoma cruzi/metabolismo
2.
FASEB J ; 38(10): e23691, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38780525

RESUMEN

Heme is a prosthetic group of proteins involved in vital physiological processes. It participates, for example, in redox reactions crucial for cell metabolism due to the variable oxidation state of its central iron atom. However, excessive heme can be cytotoxic due to its prooxidant properties. Therefore, the control of intracellular heme levels ensures the survival of organisms, especially those that deal with high concentrations of heme during their lives, such as hematophagous insects. The export of heme initially attributed to the feline leukemia virus C receptor (FLVCR) has recently been called into question, following the discovery of choline uptake by the same receptor in mammals. Here, we found that RpFLVCR is a heme exporter in the midgut of the hematophagous insect Rhodnius prolixus, a vector for Chagas disease. Silencing RpFLVCR decreased hemolymphatic heme levels and increased the levels of intracellular dicysteinyl-biliverdin, indicating heme retention inside midgut cells. FLVCR silencing led to increased expression of heme oxygenase (HO), ferritin, and mitoferrin mRNAs while downregulating the iron importers Malvolio 1 and 2. In contrast, HO gene silencing increased FLVCR and Malvolio expression and downregulated ferritin, revealing crosstalk between heme degradation/export and iron transport/storage pathways. Furthermore, RpFLVCR silencing strongly increased oxidant production and lipid peroxidation, reduced cytochrome c oxidase activity, and activated mitochondrial biogenesis, effects not observed in RpHO-silenced insects. These data support FLVCR function as a heme exporter, playing a pivotal role in heme/iron metabolism and maintenance of redox balance, especially in an organism adapted to face extremely high concentrations of heme.


Asunto(s)
Hemo , Mitocondrias , Oxidación-Reducción , Rhodnius , Animales , Hemo/metabolismo , Rhodnius/metabolismo , Mitocondrias/metabolismo , Receptores Virales/metabolismo , Receptores Virales/genética , Virus de la Leucemia Felina/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
3.
J Exp Biol ; 227(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38989599

RESUMEN

Chagas disease vectors can ingest several times their own volume in blood with each meal. This ad libitum feeding causes an intense process of diuresis, inducing the insect to eliminate a large quantity of urine and faeces. To ensure diuresis, the speed of circulation of the haemolymph is increased. The Triatominae circulatory system is quite simple, including the dorsal vessel, which pumps haemolymph in an anterograde direction. The return is caused by peristaltic contractions of the anterior midgut. Triatominae insects can spend several weeks without feeding, meaning that most of the time, the insect is in a resting condition. Although the mechanisms controlling the circulation of the haemolymph during post-prandial diuresis have been largely analysed, the mechanisms controlling it during resting conditions are poorly understood. In this study, we analysed several canonical pathways (i.e. L-type VGCC, GPCR, RyR, IP3R) and a novel system represented by the recently characterized Piezo proteins. Our results show that during the resting condition, haemolymph circulation depends on a cross-talk between myogenic activity, inhibitory and stimulatory cellular messengers, and Piezo proteins. This report also unveils for the first time the existence of a putative Piezo protein in Hemiptera.


Asunto(s)
Hemolinfa , Rhodnius , Animales , Rhodnius/fisiología , Proteínas de Insectos/metabolismo , Insectos Vectores/fisiología , Enfermedad de Chagas/transmisión , Descanso/fisiología
4.
Arch Insect Biochem Physiol ; 115(4): e22106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597092

RESUMEN

Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.


Asunto(s)
Neuropéptidos , Rhodnius , Triatoma , Animales , Rhodnius/genética , Rhodnius/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transcriptoma , Muda
5.
Artículo en Inglés | MEDLINE | ID: mdl-38242349

RESUMEN

We analyse the developmental and circadian profiles of expression of the genes responsible for ecdysteroidogenesis (Halloween genes) in the PGs of Rhodnius prolixus throughout larval-adult development. Extensive use of in vitro techniques enabled multiple different parameters to be measured in individual PGs. Expression of disembodied and spook closely paralleled the ecdysteroid synthesis of the same PGs, and the ecdysteroid titre in vivo, but with functionally significant exceptions. Various tissues other than PGs expressed one, both or neither genes. Both gonads express both genes in pharate adults (larvae close to ecdysis). Both genes were expressed at low, but significant, levels in UF Rhodnius, raising questions concerning how developmental arrest is maintained in UF animals. IHC confirmed the subcellular localisation of the coded proteins. Gene knockdown suppressed transcription of both genes and ecdysteroid synthesis, with spook apparently regulating the downstream gene disembodied. Transcription of both genes occurred with a daily rhythm (with peaks at night) that was confirmed to be under circadian control using aperiodic conditions. The complex behaviour of the rhythm in LL implied two anatomically distinct oscillators regulate this transcription rhythm. First, the circadian clock in the PGs and second, the circadian rhythm of of Rhodnius PTTH which is released rhythmically from the brain under control of the circadian clock therein, both of which were described previously. We conclude ecdysteroidogenesis in Rhodnius PGs employs a similar pathway as other insects, but its control is complex, involving mechanisms both within and outside the PGs.


Asunto(s)
Hormonas de Insectos , Rhodnius , Animales , Ecdisteroides/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Ritmo Circadiano/fisiología , Larva/metabolismo
6.
CRISPR J ; 7(2): 88-99, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38564197

RESUMEN

Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Animales , Femenino , Edición Génica/métodos , Rhodnius/genética , Rhodnius/parasitología , Sistemas CRISPR-Cas , Insectos Vectores/parasitología , Enfermedad de Chagas/genética , Enfermedad de Chagas/parasitología
7.
Parasitol Int ; 101: 102894, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38604471

RESUMEN

Rhodnius species are potential vectors of the etiological agent of Chagas disease (CD), the protozoan Trypanosoma cruzi. CD impacts around seven million people in Latin America, resulting in approximately fourteen thousand deaths per year. Several species of Rhodnius are notable not only for their epidemiological relevance, but also for the challenging distinction between their species. Rhodnius has twenty species, each with its specific epidemiological importance. Rhodnius neglectus and Rhodnius prolixus are found with colonies in domiciliary environments. The observation of eggs in human dwellings signals the colonization process of these insects, increasing the risk of contamination of the population, since correct identification of eggs is necessary to help more effective vector control programs. Here we highlight diagnostic characters of eggs for these three species.


Asunto(s)
Enfermedad de Chagas , Insectos Vectores , Óvulo , Rhodnius , Animales , Rhodnius/parasitología , Rhodnius/fisiología , Insectos Vectores/parasitología , Insectos Vectores/fisiología , Enfermedad de Chagas/transmisión , Enfermedad de Chagas/parasitología , Trypanosoma cruzi/fisiología , Especificidad de la Especie , Humanos
8.
Insect Biochem Mol Biol ; 172: 104154, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972513

RESUMEN

Chagas disease affects around 8 million people globally, with Latin America bearing approximately 10,000 deaths each year. Combatting the disease relies heavily on vector control methods, necessitating the identification of new targets. Within insect genomes, genes harboring small open reading frames (smORFs - < 100 amino acids) present numerous potential candidates. In our investigation, we elucidate the pivotal role of the archetypal smORF-containing gene, mille-pattes/polished-rice/tarsalless (mlpt/pri/tal), in the post-embryonic development of the kissing bug Rhodnius prolixus. Injection of double-stranded RNA targeting mlpt (dsmlpt) during nymphal stages yields a spectrum of phenotypes hindering post-embryonic growth. Notably, fourth or fifth stage nymphs subjected to dsmlpt do not undergo molting. These dsmlpt nymphs display heightened mRNA levels of JHAMT-like and EPOX-like, enzymes putatively involved in the juvenile hormone (JH) pathway, alongside increased expression of the transcription factor Kr-h1, indicating changes in the hormonal control. Histological examination reveals structural alterations in the hindgut and external cuticle of dsmlpt nymphs compared to control (dsGFP) counterparts. Furthermore, significant changes in the vector's digestive physiology were observed, with elevated hemozoin and glucose levels in the posterior midgut of dsmlpt nymphs. Importantly, dsmlpt nymphs exhibit impaired metacyclogenesis of Trypanosoma cruzi, the causative agent of Chagas disease, underscoring the crucial role of proper gut organization in parasite differentiation. Thus, our findings constitute the first evidence of a smORF-containing gene's regulatory influence on vector physiology, parasitic cycle, and disease transmission.


Asunto(s)
Proteínas de Insectos , Muda , Ninfa , Rhodnius , Animales , Rhodnius/genética , Rhodnius/fisiología , Rhodnius/crecimiento & desarrollo , Ninfa/crecimiento & desarrollo , Ninfa/genética , Ninfa/fisiología , Muda/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Sistemas de Lectura Abierta , Digestión
9.
PLoS Negl Trop Dis ; 18(2): e0011937, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306403

RESUMEN

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi transmitted by blood-sucking insects of the subfamily Triatominae, is a major neglected tropical disease affecting 6 to 7 million of people worldwide. Rhodnius prolixus, one of the most important vectors of Chagas disease in Latin America, is known to be highly sensitive to environmental factors, including temperature. This study aimed to investigate the effects of different temperatures on R. prolixus development and life-cycle, its relationship with T. cruzi, and to gather information about the nutritional habits and energy consumption of R. prolixus. We exposed uninfected and infected R. prolixus to four different temperatures ranging from 24°C to 30°C, and monitored their survival, developmental rate, body and blood meal masses, urine production, and the temporal dynamics of parasite concentration in the excreted urine of the triatomines over the course of their development. Our results demonstrate that temperature significantly impacts R. prolixus development, life-cycle and their relationship with T. cruzi, as R. prolixus exposed to higher temperatures had a shorter developmental time and a higher mortality rate compared to those exposed to lower temperatures, as well as a lower ability to retain weight between blood meals. Infection also decreased the capacity of the triatomines to retain weight gained by blood-feeding to the next developmental stage, and this effect was proportional to parasite concentration in excreted urine. We also showed that T. cruzi multiplication varied depending on temperature, with the lowest temperature having the lowest parasite load. Our findings provide important insights into the potential impact of climate change on the epidemiology of Chagas disease, and can contribute to efforts to model the future distribution of this disease. Our study also raises new questions, highlighting the need for further research in order to understand the complex interactions between temperature, vector biology, and parasite transmission.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Trypanosoma cruzi , Humanos , Animales , Rhodnius/parasitología , Temperatura , Insectos Vectores/parasitología , Enfermedad de Chagas/parasitología , Estadios del Ciclo de Vida , Carga de Parásitos
10.
Peptides ; 172: 171135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103839

RESUMEN

The causative agent for Chagas disease, Trypanosoma cruzi, is transmitted to a human host in the urine/feces of the kissing bug, Rhodnius prolixus, following blood feeding. Kinins are important chemical messengers in the overall control of blood feeding physiology in R. prolixus, including hindgut contractions and excretion. Thus, disruption in kinin signaling would have damaging consequences to the insect but also interfere with the transmission of Chagas Disease. Here, a heterologous functional receptor assay was used to confirm the validity of the previously cloned putative kinin G-protein-coupled receptor, RhoprKR, in Rhodnius prolixus. Three native R. prolixus kinins were chosen for analysis; two possessing the typical kinin WGamide C-terminal motif and one that possesses an atypical C-terminal WAamide. All three are potent (EC50 values in the nM range), with high efficacy, on CHO-K1-aeq cells expressing the RhoprKR, thereby confirming ligand binding. Members of three other R. prolixus peptide families, which are also myotropins (tachykinins, pyrokinins and sulfakinins) elicited little or no response. In addition, this heterologous receptor assay was used to test characteristics of kinin mimetics previously tested on tick and mosquito kinin receptors. Five α-aminoisobutyric acid (Aib) containing analogs were tested, and four found to have considerably higher potencies than the native kinins, with EC50 values in the pM range. Interestingly, adding Aib to the atypical WAamide kinin improves its EC50 value from 2 nM to 39 pM. Biostable kinin analogs may prove useful leads for novel pest control strategies. Since T. cruzi is transmitted to a human host in the urine/feces after blood feeding, disruption in kinin signaling would also interfere with the transmission of Chagas Disease.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Cricetinae , Animales , Humanos , Cininas/metabolismo , Rhodnius/metabolismo , Mosquitos Vectores , Cricetulus , Vectores de Enfermedades
11.
Insect Biochem Mol Biol ; 165: 104059, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101706

RESUMEN

Blood feeding is a secondary adaptation in hematophagous bugs. Many proteins are secreted in the saliva that are devoted to coping with the host's defense and to process the blood meal. Digestive enzymes that are no longer required for a blood meal would be expected to be eventually lost. Yet, in many strictly hematophagous arthropods, α-amylase genes, which encode the enzymes that digest starch from plants, are still present and transcribed, including in the kissing bug Rhodnius prolixus (Hemiptera, Reduviidae) and its related species, which transmit the Chagas disease. We hypothesized that retaining α-amylase could be advantageous if the bugs occasionally consume plant tissues. We first checked that the α-amylase protein of Rhodnius robustus retains normal amylolytic activity. Then we surveyed hundreds of gut DNA extracts from the sylvatic R. robustus to detect traces of plants. We found plant DNA in 8% of the samples, mainly identified as Attalea palm trees, where R. robustus are usually found. We suggest that although of secondary importance in the blood-sucking bugs, α-amylase may be needed during occasional plant feeding and thus has been retained.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Triatoma , Animales , Rhodnius/genética , ADN , Triatoma/genética , alfa-Amilasas/genética
12.
Acta Trop ; 257: 107281, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852917

RESUMEN

Phospholipases A2 (PLA2) comprise a superfamily of enzymes that specifically catalyze hydrolysis of the ester bond at the sn-2 position of glycerophospholipids, generating lysophospholipids and fatty acids. In Rhodnius prolixus, one of the main vectors of the Chagas's disease etiologic agent Trypanosoma cruzi, it was previously shown that lysophosphatidylcholine, a bioactive lipid, found in the insect's saliva, contributes to the inhibition of platelet aggregation, and increases the production of nitric oxide, an important vasodilator. Due to its role in potentially generating LPC, here we studied the PLA2 present in the salivary glands of R. prolixus. PLA2 activity is approximately 100 times greater in the epithelium than in the contents of salivary glands. Our study reveals the role of the RpPLA2XIIA gene in the insect feeding performance and in the fatty acids composition of phospholipids extracted from the salivary glands. Knockdown of RpPLA2XIIA significantly altered the relative amounts of palmitic, palmitoleic, oleic and linoleic acids. A short-term decrease in the expression of RpPLA2III and RpPLA2XIIA in the salivary glands of R. prolixus was evident on the third day after infection by T. cruzi. Taken together, our results contribute to the understanding of the role of PLA2 in the salivary glands of hematophagous insects and show that the parasite is capable of modulating even tissues that are not colonized by it.


Asunto(s)
Fosfolipasas A2 , Rhodnius , Glándulas Salivales , Trypanosoma cruzi , Animales , Rhodnius/parasitología , Rhodnius/enzimología , Rhodnius/genética , Glándulas Salivales/parasitología , Glándulas Salivales/enzimología , Glándulas Salivales/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/enzimología , Fosfolipasas A2/metabolismo , Fosfolipasas A2/genética , Ácidos Grasos/metabolismo , Enfermedad de Chagas/parasitología , Insectos Vectores/parasitología , Insectos Vectores/enzimología
13.
PLoS One ; 19(7): e0306611, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995904

RESUMEN

In insects, biogenic amines function as neurotransmitters, neuromodulators, and neurohormones, influencing various behaviors, including those related to reproduction such as response to sex pheromones, oogenesis, oviposition, courtship, and mating. Octopamine (OA), an analog of the vertebrate norepinephrine, is synthesized from the biogenic amine tyramine by the enzyme tyramine ß-hydroxylase (TßH). Here, we investigate the mechanisms and target genes underlying the role of OA in successful reproduction in females of Rhodnius prolixus, a vector of Chagas disease, by downregulating TßH mRNA expression (thereby reducing OA content) using RNA interference (RNAi), and in vivo and ex vivo application of OA. Injection of females with dsTßH impairs successful reproduction at least in part, by decreasing the transcript expression of enzymes involved in juvenile hormone biosynthesis, the primary hormone for oogenesis in R. prolixus, thereby interfering with oogenesis, ovulation and oviposition. This study offers valuable insights into the involvement of OA for successful reproduction in R. prolixus females. Understanding the reproductive biology of R. prolixus is crucial in a medical context for controlling the spread of the disease.


Asunto(s)
Octopamina , Oogénesis , Oviposición , Reproducción , Rhodnius , Animales , Rhodnius/genética , Rhodnius/fisiología , Rhodnius/metabolismo , Octopamina/metabolismo , Femenino , Interferencia de ARN , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Hormonas Juveniles/metabolismo , Ovulación , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
14.
PLoS Negl Trop Dis ; 18(4): e0011452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568999

RESUMEN

BACKGROUND: Immune response of triatomines plays an important role in the success or failure of transmission of T. cruzi. Studies on parasite-vector interaction have shown the presence of trypanolytic factors and have been observed to be differentially expressed among triatomines, which affects the transmission of some T. cruzi strains or DTUs (Discrete Typing Units). METHODOLOGY/PRINCIPAL FINDINGS: Trypanolytic factors were detected in the hemolymph and saliva of R. prolixus against epimastigotes and trypomastigotes of the Y strain (T. cruzi II). To identify the components of the immune response that could be involved in this lytic activity, a comparative proteomic analysis was carried out, detecting 120 proteins in the hemolymph of R. prolixus and 107 in R. colombiensis. In salivary glands, 1103 proteins were detected in R. prolixus and 853 in R. colombiensis. A higher relative abundance of lysozyme, prolixin, nitrophorins, and serpin as immune response proteins was detected in the hemolymph of R. prolixus. Among the R. prolixus salivary proteins, a higher relative abundance of nitrophorins, lipocalins, and triabins was detected. The higher relative abundance of these immune factors in R. prolixus supports their participation in the lytic activity on Y strain (T. cruzi II), but not on Dm28c (T. cruzi I), which is resistant to lysis by hemolymph and salivary proteins of R. prolixus due to mechanisms of evading oxidative stress caused by immune factors. CONCLUSIONS/SIGNIFICANCE: The lysis resistance observed in the Dm28c strain would be occurring at the DTU I level. T. cruzi I is the DTU with the greatest geographic distribution, from the south of the United States to central Chile and Argentina, a distribution that could be related to resistance to oxidative stress from vectors. Likewise, we can say that lysis against strain Y could occur at the level of DTU II and could be a determinant of the vector inability of these species to transmit T. cruzi II. Future proteomic and transcriptomic studies on vectors and the interactions of the intestinal microbiota with parasites will help to confirm the determinants of successful or failed vector transmission of T. cruzi DTUs in different parts of the Western Hemisphere.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Trypanosoma cruzi , Animales , Trypanosoma cruzi/genética , Rhodnius/parasitología , Hemolinfa , Proteómica , Glándulas Salivales , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo , Factores Inmunológicos/metabolismo
15.
PLoS Negl Trop Dis ; 18(2): e0011981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377140

RESUMEN

BACKGROUND: Chagas disease, affecting approximately eight million individuals in tropical regions, is primarily transmitted by vectors. Rhodnius prolixus, a triatomine vector, commonly inhabits in ecotopes with diverse palm tree species, creating optimal conditions for vector proliferation. This study aims to explore the transmission ecology of Trypanosoma cruzi, the causative parasite of Chagas disease, by investigating the feeding patterns and natural infection rates of R. prolixus specimens collected from various wild palm species in the Colombian Orinoco region. MATERIALS AND METHODS: To achieve this objective, we sampled 35 individuals from three palm species (Attalea butyracea, Acrocomia aculeata, and Mauritia flexuosa) in a riparian forest in the Casanare department of eastern Colombia, totaling 105 sampled palm trees. DNA was extracted and analyzed from 115 R. prolixus specimens at different developmental stages using quantitative PCR (qPCR) for T. cruzi detection and identification of discrete typing units. Feeding preferences were determined by sequencing the 12S rRNA gene amplicon through next-generation sequencing. RESULTS: A total of 676 R. prolixus specimens were collected from the sampled palms. The study revealed variation in population densities and developmental stages of R. prolixus among palm tree species, with higher densities observed in A. butyracea and lower densities in M. flexuosa. TcI was the exclusive T. cruzi discrete typing unit (DTU) found, with infection frequency positively correlated with R. prolixus abundance. Insects captured in A. butyracea exhibited higher abundance and infection rates than those from other palm species. The feeding sources comprised 13 mammal species, showing no significant differences between palm species in terms of blood sources. However, Didelphis marsupialis and Homo sapiens were present in all examined R. prolixus, and Dasypus novemcinctus was found in 89.47% of the insects. CONCLUSION: This study highlights the significance of wild palms, particularly A. butyracea, as a substantial risk factor for T. cruzi transmission to humans in these environments. High population densities and infection rates of R. prolixus were observed in each examined palm tree species.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Triatominae , Trypanosoma cruzi , Animales , Humanos , Árboles , Trypanosoma cruzi/genética , Colombia/epidemiología , Enfermedad de Chagas/epidemiología , Armadillos
16.
Vector Borne Zoonotic Dis ; 24(2): 95-103, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165392

RESUMEN

Background: In the Amazon region, several species of triatomines occur in the natural environments. Among them, species of the genus Rhodnius are a risk to human populations due to their high rates of infection with Trypanosoma cruzi. The aim of this study was to identify the T. cruzi genotypes in Rhodnius specimens and their relationship with sylvatic hosts from different environments in the Brazilian Amazon. Methods: A total of 492 triatomines were collected from the municipalities of Monte Negro, Rondônia state, and Humaitá, Amazonas state, 382 of them being nymphs and 110 adults. Genotyping of T. cruzi in six discrete typing units (DTUs) was performed using conventional multilocus PCR. The triatomines that were positive for T. cruzi and engorged with blood were also targeted for amplification of the cytochrome B (cytB) gene to identify bloodmeal sources. Results: Of the 162 positive samples, the identified DTUs were TcI (87.65%) and TcIV (12.35%). It was observed that 102 specimens were engorged with a variety of bloodmeals. Triatomines infected with TcI were associated with DNA of all identified vertebrates, except Plecturocebus brunneus. TcIV was detected in triatomines that fed on Coendou prehensilis, Didelphis marsupialis, Mabuya nigropunctata, P. brunneus, Pithecia irrorata, Sapajus apella, and Tamandua tetradactyla. Conclusion: Results highlight the need to understand the patterns of T. cruzi genotypes in Rhodnius spp. and their association with sylvatic hosts to better elucidate their role in the transmission of Chagas disease in the Amazon region.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Trypanosoma cruzi , Adulto , Animales , Humanos , Trypanosoma cruzi/genética , Genotipo , Brasil/epidemiología , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/veterinaria
17.
PLoS One ; 18(12): e0296463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38157386

RESUMEN

The control of reproductive processes in Rhodnius prolixus involves a variety of neuroactive chemicals. Among these, several studies have suggested that the biogenic amine octopamine (OA), might play an active role in these processes. Here, we investigate the molecular profile of the R. prolixus α adrenergic-like OA receptor 1 (RpOAα1-R) and its role in egg production. Comparative molecular analyses confirm that the RpOAα1-R gene codes for a true OAα1 receptor. The RpOAα1-R transcript is highly expressed in tissues associated with egg production, and after a blood meal, which is the stimulus for full egg production in R. prolixus, the RpOAα1-R transcript is upregulated in the ovaries and spermatheca. After RNAi-mediated RpOAα1-R knockdown, an ovarian phenotype characterized by slow egg development is observed. Furthermore, an altered egg phenotype has been characterized with eggs that are deformed. Interestingly, there is no evidence of disruption in vitellogenin (Vg) synthesis by the fat body or uptake by the oocytes. On the other hand, RpOAα1-R downregulation is correlated with defective choriogenesis in the eggs. These results provide critical information concerning the role of OAα1-R in oogenesis in R. prolixus.


Asunto(s)
Rhodnius , Animales , Rhodnius/genética , Oogénesis/genética , Oocitos , Reproducción/genética
18.
Rev. Soc. Bras. Med. Trop ; 54: e20200296, 2021. tab, graf
Artículo en Inglés | SES-SP, Coleciona SUS (Brasil), LILACS | ID: biblio-1136922

RESUMEN

Abstract INTRODUCTION: Triatomines are hematophagous insects that are important to public health since they are the vectors of American Trypanosomiasis. The objective of this study was to describe the occurrence of triatomines in homes in Cruzeiro do Sul, Acre, Brazil. METHODS The specimens were collected by an active search inside homes and also by a passive search by the residents. RESULTS: A total of 55 triatomines were captured comprising of 5 species each of the genera Rhodnius, Eratyrus, and Panstrongylus. No colonies were detected, ruling out the possibility of domiciliation. CONCLUSIONS: Information on regional epidemiological dynamics contributes to the prevention and control of disease.


Asunto(s)
Animales , Panstrongylus , Rhodnius , Triatominae , Enfermedad de Chagas , Brasil , Insectos Vectores
19.
Rev. Soc. Bras. Med. Trop ; 54: e0590-2020, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1155528

RESUMEN

Abstract INTRODUCTION: Triatomines are insect vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. METHODS: Triatomines were collected from households and by dissecting palm trees in the peri-urban areas of Cruzeiro do Sul (Acre); they were identified using a specific key and via genital analyses. Trypanosomatid infection was determined through microscopy and polymerase chain reaction. RESULTS: In total, 116 triatomines of the species Eratyrus mucronatus, Rhodnius pictipes, R. stali, and R. montenegrensis were collected, of which 13.8% were positive for T. cruzi. CONCLUSIONS: Four species of triatomines presented an infection rate above 13% in the Boca do Moa community.


Asunto(s)
Animales , Rhodnius , Trypanosoma cruzi , Triatominae , Enfermedad de Chagas , Brasil
20.
Rev. Soc. Bras. Med. Trop ; 54: e03232020, 2021. graf
Artículo en Inglés | SES-SP, Coleciona SUS (Brasil), LILACS | ID: biblio-1143880

RESUMEN

Abstract INTRODUCTION: Rhodnius domesticus Neiva & Pinto, 1923 is a rare sylvatic triatomine endemic to the Atlantic Forest, with one known record for Espírito Santo (ES), Brazil from 1969. We present here its rediscovery in ES, 42 years after its first record. METHODS: In January 2011, a triatomine specimen was collected from a rural area of the municipality of Santa Teresa, ES. RESULTS: We confirmed this as a new record of R. domesticus in the Baixo Caldeirão locality. CONCLUSIONS: This finding supports the possibility of a wild population of R. domesticus in the mountainous region of the Atlantic forest of ES.


Asunto(s)
Animales , Rhodnius , Triatominae , Brasil , Bosques
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA