Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.189
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 168(1-2): 200-209.e12, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086091

RESUMEN

Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PAPERCLIP.


Asunto(s)
Bacillus subtilis/fisiología , Biopelículas , Fenómenos Electrofisiológicos , Pseudomonas aeruginosa/fisiología , Biopelículas/clasificación , Potenciales de la Membrana , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Potasio/metabolismo
2.
Cell ; 164(6): 1105-1109, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26967278

RESUMEN

While studies of cultured cells have led to new insights into biological control, greater understanding of human pathophysiology requires the development of experimental systems that permit analysis of intercellular communications and tissue-tissue interactions in a more relevant organ context. Human organs-on-chips offer a potentially powerful new approach to confront this long-standing problem.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Técnicas de Cultivo de Órganos , Ingeniería de Tejidos/métodos , Barrera Hematoencefálica , Humanos , Neoplasias/fisiopatología
3.
Cell ; 161(5): 1202-1214, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000488

RESUMEN

Cells, the basic units of biological structure and function, vary broadly in type and state. Single-cell genomics can characterize cell identity and function, but limitations of ease and scale have prevented its broad application. Here we describe Drop-seq, a strategy for quickly profiling thousands of individual cells by separating them into nanoliter-sized aqueous droplets, associating a different barcode with each cell's RNAs, and sequencing them all together. Drop-seq analyzes mRNA transcripts from thousands of individual cells simultaneously while remembering transcripts' cell of origin. We analyzed transcriptomes from 44,808 mouse retinal cells and identified 39 transcriptionally distinct cell populations, creating a molecular atlas of gene expression for known retinal cell classes and novel candidate cell subtypes. Drop-seq will accelerate biological discovery by enabling routine transcriptional profiling at single-cell resolution. VIDEO ABSTRACT.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo , Técnicas Analíticas Microfluídicas , Retina/citología , Análisis de la Célula Individual , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Análisis de Secuencia de ARN
4.
Cell ; 161(5): 1187-1201, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000487

RESUMEN

It has long been the dream of biologists to map gene expression at the single-cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single-cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The reproducibility of these high-throughput single-cell data allowed us to deconstruct cell populations and infer gene expression relationships. VIDEO ABSTRACT.


Asunto(s)
Células Madre Embrionarias/citología , Perfilación de la Expresión Génica/métodos , Técnicas Analíticas Microfluídicas , Análisis de la Célula Individual/métodos , Animales , Células Madre Embrionarias/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Análisis de Secuencia de ARN/métodos
5.
Cell ; 160(3): 381-92, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635454

RESUMEN

Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments.


Asunto(s)
Redes Reguladoras de Genes , Transcripción Genética , Células 3T3 , Animales , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Ratones , Técnicas Analíticas Microfluídicas , FN-kappa B/metabolismo , Análisis de la Célula Individual , Procesos Estocásticos , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Nature ; 618(7967): 1057-1064, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37344592

RESUMEN

Translation regulation is critical for early mammalian embryonic development1. However, previous studies had been restricted to bulk measurements2, precluding precise determination of translation regulation including allele-specific analyses. Here, to address this challenge, we developed a novel microfluidic isotachophoresis (ITP) approach, named RIBOsome profiling via ITP (Ribo-ITP), and characterized translation in single oocytes and embryos during early mouse development. We identified differential translation efficiency as a key mechanism regulating genes involved in centrosome organization and N6-methyladenosine modification of RNAs. Our high-coverage measurements enabled, to our knowledge, the first analysis of allele-specific ribosome engagement in early development. These led to the discovery of stage-specific differential engagement of zygotic RNAs with ribosomes and reduced translation efficiency of transcripts exhibiting allele-biased expression. By integrating our measurements with proteomics data, we discovered that ribosome occupancy in germinal vesicle-stage oocytes is the predominant determinant of protein abundance in the zygote. The Ribo-ITP approach will enable numerous applications by providing high-coverage and high-resolution ribosome occupancy measurements from ultra-low input samples including single cells.


Asunto(s)
Desarrollo Embrionario , Isotacoforesis , Técnicas Analíticas Microfluídicas , Biosíntesis de Proteínas , Perfilado de Ribosomas , Ribosomas , Análisis de la Célula Individual , Animales , Ratones , Proteómica , Ribosomas/metabolismo , ARN Mensajero/genética , Análisis de la Célula Individual/métodos , Alelos , Técnicas Analíticas Microfluídicas/métodos , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Isotacoforesis/métodos , Perfilado de Ribosomas/métodos , Centrosoma , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo
7.
Nature ; 605(7910): 464-469, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35585345

RESUMEN

Chain reactions, characterized by initiation, propagation and termination, are stochastic at microscopic scales and underlie vital chemical (for example, combustion engines), nuclear and biotechnological (for example, polymerase chain reaction) applications1-5. At macroscopic scales, chain reactions are deterministic and limited to applications for entertainment and art such as falling dominoes and Rube Goldberg machines. On the other hand, the microfluidic lab-on-a-chip (also called a micro-total analysis system)6,7 was visualized as an integrated chip, akin to microelectronic integrated circuits, yet in practice remains dependent on cumbersome peripherals, connections and a computer for automation8-11. Capillary microfluidics integrate energy supply and flow control onto a single chip by using capillary phenomena, but programmability remains rudimentary with at most a handful (eight) operations possible12-19. Here we introduce the microfluidic chain reaction (MCR) as the conditional, structurally programmed propagation of capillary flow events. Monolithic chips integrating a MCR are three-dimensionally printed, and powered by the free energy of a paper pump, autonomously execute liquid handling algorithms step-by-step. With MCR, we automated (1) the sequential release of 300 aliquots across chained, interconnected chips, (2) a protocol for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) antibodies detection in saliva and (3) a thrombin generation assay by continuous subsampling and analysis of coagulation-activated plasma with parallel operations including timers, iterative cycles of synchronous flow and stop-flow operations. MCRs are untethered from and unencumbered by peripherals, encode programs structurally in situ and can form a frugal, versatile, bona fide lab-on-a-chip with wide-ranging applications in liquid handling and point-of-care diagnostics.


Asunto(s)
COVID-19 , Técnicas Analíticas Microfluídicas , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética
8.
Nat Rev Mol Cell Biol ; 16(9): 554-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26296163

RESUMEN

The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica/instrumentación , Animales , Bioensayo , Perfilación de la Expresión Génica , Genómica , Humanos , Modelos Biológicos , Análisis de la Célula Individual
9.
Cell ; 150(2): 402-12, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22817899

RESUMEN

Meiotic recombination and de novo mutation are the two main contributions toward gamete genome diversity, and many questions remain about how an individual human's genome is edited by these two processes. Here, we describe a high-throughput method for single-cell whole-genome analysis that was used to measure the genomic diversity in one individual's gamete genomes. A microfluidic system was used for highly parallel sample processing and to minimize nonspecific amplification. High-density genotyping results from 91 single cells were used to create a personal recombination map, which was consistent with population-wide data at low resolution but revealed significant differences from pedigree data at higher resolution. We used the data to test for meiotic drive and found evidence for gene conversion. High-throughput sequencing on 31 single cells was used to measure the frequency of large-scale genome instability, and deeper sequencing of eight single cells revealed de novo mutation rates with distinct characteristics.


Asunto(s)
Tasa de Mutación , Análisis de la Célula Individual , Espermatozoides/metabolismo , Adulto , Conversión Génica , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Humanos , Masculino , Meiosis , Técnicas Analíticas Microfluídicas , Recombinación Genética , Espermatozoides/citología
10.
Cell ; 150(6): 1209-22, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980981

RESUMEN

During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene expression technologies to profile 48 genes in single cells at various stages during the reprogramming process. Analysis of early stages revealed considerable variation in gene expression between cells in contrast to late stages. Expression of Esrrb, Utf1, Lin28, and Dppa2 is a better predictor for cells to progress into iPSCs than expression of the previously suggested reprogramming markers Fbxo15, Fgf4, and Oct4. Stochastic gene expression early in reprogramming is followed by a late hierarchical phase with Sox2 being the upstream factor in a gene expression hierarchy. Finally, downstream factors derived from the late phase, which do not include Oct4, Sox2, Klf4, c-Myc, and Nanog, can activate the pluripotency circuitry.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Análisis de la Célula Individual , Transcriptoma , Animales , Línea Celular , Embrión de Mamíferos/citología , Células Madre Embrionarias , Fibroblastos/citología , Fibroblastos/metabolismo , Marcadores Genéticos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Ratones , Técnicas Analíticas Microfluídicas , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo
11.
Mol Cell ; 73(1): 130-142.e5, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472192

RESUMEN

Since its establishment in 2009, single-cell RNA sequencing (RNA-seq) has been a major driver behind progress in biomedical research. In developmental biology and stem cell studies, the ability to profile single cells confers particular benefits. Although most studies still focus on individual tissues or organs, the recent development of ultra-high-throughput single-cell RNA-seq has demonstrated potential power in characterizing more complex systems or even the entire body. However, although multiple ultra-high-throughput single-cell RNA-seq systems have attracted attention, no systematic comparison of these systems has been performed. Here, with the same cell line and bioinformatics pipeline, we developed directly comparable datasets for each of three widely used droplet-based ultra-high-throughput single-cell RNA-seq systems, inDrop, Drop-seq, and 10X Genomics Chromium. Although each system is capable of profiling single-cell transcriptomes, their detailed comparison revealed the distinguishing features and suitable applications for each system.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas Analíticas Microfluídicas , ARN/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma , Automatización de Laboratorios , Secuencia de Bases , Línea Celular , Biología Computacional , Análisis Costo-Beneficio , Código de Barras del ADN Taxonómico , Perfilación de la Expresión Génica/economía , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Técnicas Analíticas Microfluídicas/economía , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/economía , Análisis de la Célula Individual/economía , Flujo de Trabajo
12.
Proc Natl Acad Sci U S A ; 121(19): e2315168121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683997

RESUMEN

Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Microfluídica/métodos , Análisis de la Célula Individual/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Fenotipo , Línea Celular Tumoral , Inmunoterapia/métodos , Perfilación de la Expresión Génica/métodos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación
13.
Nature ; 582(7811): 277-282, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32349121

RESUMEN

The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas Analíticas Microfluídicas/métodos , Virosis/diagnóstico , Virosis/virología , Animales , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Farmacorresistencia Viral/genética , Genoma Viral/genética , VIH/clasificación , VIH/genética , VIH/aislamiento & purificación , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Técnicas Analíticas Microfluídicas/instrumentación , ARN Guía de Kinetoplastida/genética , SARS-CoV-2 , Sensibilidad y Especificidad
14.
Annu Rev Cell Dev Biol ; 28: 385-410, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23057744

RESUMEN

Efforts in the interdisciplinary field of bioengineering have led to innovative methods for investigating the complexities of cell responses in vitro. These approaches have emphasized the reduction of complex multicomponent cellular microenvironments into distinct individual signals as a means to both (a) better construct mimics of in vivo microenvironments and (b) better deconstruct microenvironments to study them. Microtechnology tools, together with advances in biomaterials, have been fundamental to this progress by enabling the tightly controlled presentation of environmental cues and the improved systematic analysis of cellular perturbations. In this review, we describe bioengineering approaches for controlling and measuring cell-environmental interactions in vitro, including strategies for high-throughput analysis. We also describe the mechanistic insights gained by the use of these novel tools, with associated applications ranging from fundamental biological studies, in vitro modeling of in vivo processes, and cell-based therapies.


Asunto(s)
Técnicas de Cultivo de Célula , Ingeniería Celular/métodos , Fenómenos Biomecánicos , Materiales Biomiméticos , Reactores Biológicos , Adhesión Celular , Humanos , Técnicas Analíticas Microfluídicas , Análisis de Matrices Tisulares/métodos
15.
Genes Dev ; 32(23-24): 1499-1513, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30463903

RESUMEN

In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence.


Asunto(s)
Adaptación Fisiológica/genética , Puntos de Control del Ciclo Celular/genética , Daño del ADN/genética , Inestabilidad Genómica/genética , Saccharomyces cerevisiae/genética , Reparación del ADN , Genoma Fúngico/genética , Técnicas Analíticas Microfluídicas , Mutación , Imagen Óptica , Saccharomyces cerevisiae/enzimología , Telomerasa/genética
16.
Chem Rev ; 123(9): 5571-5611, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37126602

RESUMEN

Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Bioensayo , Emulsiones , Agua , Cinética , Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas Analíticas Microfluídicas/métodos
17.
Mol Cell ; 68(5): 1006-1015.e7, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220646

RESUMEN

Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues such as adult mammalian brains is challenging. Here, we integrate sucrose-gradient-assisted purification of nuclei with droplet microfluidics to develop a highly scalable single-nucleus RNA-seq approach (sNucDrop-seq), which is free of enzymatic dissociation and nucleus sorting. By profiling ∼18,000 nuclei isolated from cortical tissues of adult mice, we demonstrate that sNucDrop-seq not only accurately reveals neuronal and non-neuronal subtype composition with high sensitivity but also enables in-depth analysis of transient transcriptional states driven by neuronal activity, at single-cell resolution, in vivo.


Asunto(s)
Núcleo Celular/metabolismo , Corteza Cerebral/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Neuronas/metabolismo , ARN/genética , Convulsiones/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcripción Genética , Animales , Núcleo Celular/patología , Centrifugación por Gradiente de Densidad , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Células Madre Embrionarias Humanas/metabolismo , Humanos , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas Analíticas Microfluídicas , Células 3T3 NIH , Inhibición Neural , Neuronas/patología , Pentilenotetrazol , ARN/metabolismo , Convulsiones/metabolismo , Convulsiones/patología , Convulsiones/fisiopatología , Transmisión Sináptica , Transfección
18.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074872

RESUMEN

Cell-cell interactions are important to numerous biological systems, including tissue microenvironments, the immune system, and cancer. However, current methods for studying cell combinations and interactions are limited in scalability, allowing just hundreds to thousands of multicell assays per experiment; this limited throughput makes it difficult to characterize interactions at biologically relevant scales. Here, we describe a paradigm in cell interaction profiling that allows accurate grouping of cells and characterization of their interactions for tens to hundreds of thousands of combinations. Our approach leverages high-throughput droplet microfluidics to construct multicellular combinations in a deterministic process that allows inclusion of programmed reagent mixtures and beads. The combination droplets are compatible with common manipulation and measurement techniques, including imaging, barcode-based genomics, and sorting. We demonstrate the approach by using it to enrich for chimeric antigen receptor (CAR)-T cells that activate upon incubation with target cells, a bottleneck in the therapeutic T cell engineering pipeline. The speed and control of our approach should enable valuable cell interaction studies.


Asunto(s)
Bioensayo/métodos , Comunicación Celular/fisiología , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Animales , Comunicación Celular/genética , Genómica/métodos , Humanos
19.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046027

RESUMEN

Production of high-energy lipids by microalgae may provide a sustainable energy source that can help tackle climate change. However, microalgae engineered to produce more lipids usually grow slowly, leading to reduced overall yields. Unfortunately, culture vessels used to select cells based on growth while maintaining high biomass production, such as well plates, water-in-oil droplet emulsions, and nanowell arrays, do not provide production-relevant environments that cells experience in scaled-up cultures (e.g., bioreactors or outdoor cultivation farms). As a result, strains that are developed in the laboratory may not exhibit the same beneficial phenotypic behavior when transferred to industrial production. Here, we introduce PicoShells, picoliter-scale porous hydrogel compartments, that enable >100,000 individual cells to be compartmentalized, cultured in production-relevant environments, and selected based on growth and bioproduct accumulation traits using standard flow cytometers. PicoShells consist of a hollow inner cavity where cells are encapsulated and a porous outer shell that allows for continuous solution exchange with the external environment. PicoShells allow for cell growth directly in culture environments, such as shaking flasks and bioreactors. We experimentally demonstrate that Chlorella sp., Saccharomyces cerevisiae, and Chinese hamster ovary cells, used for bioproduction, grow to significantly larger colony sizes in PicoShells than in water-in-oil droplet emulsions (P < 0.05). We also demonstrate that PicoShells containing faster dividing and growing Chlorella clonal colonies can be selected using a fluorescence-activated cell sorter and regrown. Using the PicoShell process, we select a Chlorella population that accumulates chlorophyll 8% faster than does an unselected population after a single selection cycle.


Asunto(s)
Técnicas de Cultivo de Célula , Ensayos Analíticos de Alto Rendimiento/métodos , Nanopartículas , Nanotecnología , Animales , Biocombustibles , Células CHO , Cricetulus , Citometría de Flujo , Microalgas/metabolismo , Técnicas Analíticas Microfluídicas
20.
Nano Lett ; 24(17): 5132-5138, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588326

RESUMEN

Nanoparticle synthesis on microfluidic platforms provides excellent reproducibility and control over bulk synthesis. While there have been plenty of platforms for producing nanoparticles (NPs) with controlled physicochemical properties, such platforms often operate in a narrow range of predefined flow rates. The flow rate limitation restricts either up-scalability for industrial production or down-scalability for exploratory research use. Here, we present a universal flow rate platform that operates over a wide range of flow rates (0.1-75 mL/min) for small-scale exploratory research and industrial-level synthesis of NPs without compromising the mixing capabilities. The wide range of flow rate is obtained by using a coaxial flow with a triangular microstructure to create a vortex regardless of the flow regime (Reynolds number). The chip synthesizes several types of NPs for gene and protein delivery, including polyplex, lipid NPs, and solid polymer NPs via self-assembly and precipitation, and successfully expresses GFP plasmid DNA in human T cells.


Asunto(s)
Nanopartículas , Nanopartículas/química , Humanos , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Linfocitos T/citología , Polímeros/química , ADN/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA