Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.483
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 4270-4280, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38316681

RESUMEN

Peptide therapeutics have experienced a rapid resurgence over the past three decades. While a few peptide drugs are biologically produced, most are manufactured via chemical synthesis. The cycle of prior protection of the amino group of an α-amino acid, activation of its carboxyl group, aminolysis with the free amino group of a growing peptide chain, and deprotection of the N-terminus constitutes the principle of conventional C → N peptide chemical synthesis. The mandatory use of the Nα-protecting group invokes two additional operations for incorporating each amino acid, resulting in poor step- and atom-economy. The burgeoning demand in the peptide therapeutic market necessitates cost-effective and environmentally friendly peptide manufacturing strategies. Inverse peptide chemical synthesis using unprotected amino acids has been proposed as an ideal and appealing strategy. However, it has remained unsuccessful for over 60 years due to severe racemization/epimerization during N → C peptide chain elongation. Herein, this challenge has been successfully addressed by ynamide coupling reagent employing a transient protection strategy. The activation, transient protection, aminolysis, and in situ deprotection were performed in one pot, thus offering a practical peptide chemical synthesis strategy formally using unprotected amino acids as the starting material. Its robustness was exemplified by syntheses of peptide active pharmaceutical ingredients. It is also amenable to fragment condensation and inverse solid-phase peptide synthesis. The compatibility to green solvents further enhances its application potential in large-scale peptide production. This study offered a cost-effective, operational convenient, and environmentally benign approach to peptides.


Asunto(s)
Aminoácidos , Péptidos , Aminoácidos/química , Péptidos/química , Técnicas de Química Sintética , Péptido C , Biosíntesis de Péptidos , Técnicas de Síntesis en Fase Sólida
2.
Chemistry ; 30(2): e202302937, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37939246

RESUMEN

This study presents an efficient method for on-resin dimer generation through self-condensation of 3,3-dimethoxypropionic acid-modified molecules, resulting in 2-pyridones. The approach demonstrated remarkable versatility by producing homodimers of peptides, peptoids, and non-peptidic ligands. Its ease of application, broad utility, and mild reaction conditions not only hold significance for peptide and peptoid research but also offer potential for the on-resin development of a wide range of bivalent ligands.


Asunto(s)
Peptoides , Técnicas de Síntesis en Fase Sólida , Técnicas de Síntesis en Fase Sólida/métodos , Péptidos/química , Peptoides/química , Piridonas , Ligandos
3.
Chemistry ; 30(35): e202401296, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641990

RESUMEN

To fill the need for environmentally sensitive fluorescent unnatural amino acids able to operate in the red region of the spectrum, we have designed and synthesized Alared, a red solvatochromic and fluorogenic amino acid derived from the Nile Red chromophore. The new unnatural amino acid can be easily integrated into bioactive peptides using classical solid-phase peptide synthesis. The fluorescence quantum yield and the emission maximum of Alared-labeled peptides vary in a broad range depending on the peptide's environment, making Alared a powerful reporter of biomolecular interactions. Due to its red-shifted absorption and emission spectra, Alared-labeled peptides could be followed in living cells with minimal interference from cellular autofluorescence. Using ratiometric fluorescence microscopy, we were able to track the fate of the Alared-labeled peptide agonists of the apelin G protein-coupled receptor upon receptor activation and internalization. Due to its color-shifting environmentally sensitive emission, Alared allowed for distinguishing the fractions of peptides that are specifically bound to the receptor or unspecifically bound to different cellular membranes.


Asunto(s)
Aminoácidos , Colorantes Fluorescentes , Microscopía Fluorescente , Péptidos , Colorantes Fluorescentes/química , Péptidos/química , Aminoácidos/química , Humanos , Microscopía Fluorescente/métodos , Oxazinas/química , Técnicas de Síntesis en Fase Sólida , Espectrometría de Fluorescencia
4.
Protein Expr Purif ; 219: 106477, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38527576

RESUMEN

Semaglutide is currently the most promising antidiabetic drug, especially for the treatment of type 2 diabetes mellitus, due to its excellent efficacy in glycemic control and weight loss. However, the production of semaglutide remains high cost, and high yield, low cost, and high purity still remains a challenge. Herein, we reported a convenient and high-yield strategy for the preparation of semaglutide through fragmented condensation coupling, involving solid-phase peptide synthesis of tetrapeptide and on-column refolding and on-column enzyme cleavage based inclusion body expression of Lys26Arg34GLP-1 (11-37) with fused protein tags in an X-Y-D4K-G pattern. The optimized N-terminal protein tag significantly boosts inclusion body expression level, while on-column refolding and on-column enzyme cleavage avoid precipitation, enhancing efficiency and yield together with one-step purification. The successful preparation of semaglutide is expected to achieve large-scale industrial production with low cost, high yield and high purity.


Asunto(s)
Péptidos Similares al Glucagón , Cuerpos de Inclusión , Técnicas de Síntesis en Fase Sólida , Péptidos Similares al Glucagón/química , Técnicas de Síntesis en Fase Sólida/métodos , Cuerpos de Inclusión/química , Escherichia coli/genética , Escherichia coli/metabolismo , Hipoglucemiantes/química , Humanos
5.
J Org Chem ; 89(7): 4261-4282, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508870

RESUMEN

Small molecule therapeutics represent the majority of the FDA-approved drugs. Yet, many attractive targets are poorly tractable by small molecules, generating a need for new therapeutic modalities. Due to their biocompatibility profile and structural versatility, peptide-based therapeutics are a possible solution. Additionally, in the past two decades, advances in peptide design, delivery, formulation, and devices have occurred, making therapeutic peptides an attractive modality. However, peptide manufacturing is often limited to solid-phase peptide synthesis (SPPS), liquid phase peptide synthesis (LPPS), and to a lesser extent hybrid SPPS/LPPS, with SPPS emerging as a predominant platform technology for peptide synthesis. SPPS involves the use of excess solvents and reagents which negatively impact the environment, thus highlighting the need for newer technologies to reduce the environmental footprint. Herein, fourteen American Chemical Society Green Chemistry Institute Pharmaceutical Roundtable (ACS GCIPR) member companies with peptide-based therapeutics in their portfolio have compiled Process Mass Intensity (PMI) metrics to help inform the sustainability efforts in peptide synthesis. This includes PMI assessment on 40 synthetic peptide processes at various development stages in pharma, classified according to the development phase. This is the most comprehensive assessment of synthetic peptide environmental metrics to date. The synthetic peptide manufacturing process was divided into stages (synthesis, purification, isolation) to determine their respective PMI. On average, solid-phase peptide synthesis (SPPS) (PMI ≈ 13,000) does not compare favorably with other modalities such as small molecules (PMI median 168-308) and biopharmaceuticals (PMI ≈ 8300). Thus, the high PMI for peptide synthesis warrants more environmentally friendly processes in peptide manufacturing.


Asunto(s)
Péptidos , Técnicas de Síntesis en Fase Sólida , Péptidos/química , Técnicas de Química Sintética , Solventes
6.
J Org Chem ; 89(10): 6639-6650, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38651358

RESUMEN

We describe an optimization and scale-up of the 45-membered macrocyclic thioether peptide BMS-986189 utilizing solid-phase peptide synthesis (SPPS). Improvements to linear peptide isolation, macrocyclization, and peptide purification were demonstrated to increase the throughput and purification of material on scale and enabled the synthesis and purification of >60 g of target peptide. Taken together, not only these improvements resulted in a 28-fold yield increase from the original SPPS approach, but also the generality of this newly developed SPPS purification sequence has found application in the synthesis and purification of other macrocyclic thioether peptides.


Asunto(s)
Compuestos Macrocíclicos , Péptidos , Técnicas de Síntesis en Fase Sólida , Sulfuros , Sulfuros/química , Sulfuros/síntesis química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/síntesis química , Péptidos/química , Péptidos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Estructura Molecular , Ciclización
7.
J Org Chem ; 89(10): 6651-6663, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38663026

RESUMEN

This article outlines the process development leading to the manufacture of 800 g of BMS-986189, a macrocyclic peptide active pharmaceutical ingredient. Multiple N-methylated unnatural amino acids posed challenges to manufacturing due to the lability of the peptide to cleavage during global side chain deprotection and precipitation steps. These issues were exacerbated upon scale-up, resulting in severe yield loss and necessitating careful impurity identification, understanding the root cause of impurity formation, and process optimization to deliver a scalable synthesis. A systematic study of macrocyclization with its dependence on concentration and pH is presented. In addition, a side chain protected peptide synthesis is discussed where the macrocyclic protected peptide is extremely labile to hydrolysis. A computational study explains the root cause of the increased lability of macrocyclic peptide over linear peptide to hydrolysis. A process solution involving the use of labile protecting groups is discussed. Overall, the article highlights the advancements achieved to enable scalable synthesis of an unusually labile macrocyclic peptide by solid-phase peptide synthesis. The sustainability metric indicates the final preparative chromatography drives a significant fraction of a high process mass intensity (PMI).


Asunto(s)
Compuestos Macrocíclicos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/química , Péptidos/química , Péptidos/síntesis química , Técnicas de Síntesis en Fase Sólida , Estructura Molecular
8.
Bioorg Med Chem Lett ; 109: 129819, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810710

RESUMEN

Oligonucleotides carrying 3'-terminal phosphates and conjugates are important tools in molecular biology and diagnostic purposes. We described the preparation of solid supports carrying the base labile linker 4-((2-hydroxyethyl)sulfonyl)benzamide for the solid-phase synthesis of 3'-phosphorylated oligonucleotides. These supports are fully compatible with the phosphoramidite chemistry yielding the desired 3'-phosphate oligonucleotides in excellent yields. The use of mild deprotection conditions allows the generation of partially protected DNA fragments.


Asunto(s)
Oligonucleótidos , Técnicas de Síntesis en Fase Sólida , Oligonucleótidos/química , Oligonucleótidos/síntesis química , Fosfatos/química , Benzamidas/química , Benzamidas/síntesis química , Compuestos Organofosforados/química , Compuestos Organofosforados/síntesis química , Fosforilación , Estructura Molecular
9.
Org Biomol Chem ; 22(18): 3584-3588, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38623862

RESUMEN

Asp-based lactam cyclic peptides are considered promising drug candidates. However, using Fmoc solid-phase peptide synthesis (Fmoc-SPPS) for these peptides also causes aspartimide formation, resulting in low yields or even failure to obtain the target peptides. Here, we developed a diaminodiacid containing an amide bond as a ß-carboxyl-protecting group for Asp to avoid aspartimide formation. The practicality of this diaminodiacid has been illustrated by the synthesis of lactam cyclic peptide cyclo[Lys9,Asp13] KIIIA7-14 and 1Y.


Asunto(s)
Amidas , Ácido Aspártico , Lactamas , Péptidos Cíclicos , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Lactamas/química , Lactamas/síntesis química , Amidas/química , Amidas/síntesis química , Ácido Aspártico/química , Ácido Aspártico/síntesis química , Ácido Aspártico/análogos & derivados , Técnicas de Síntesis en Fase Sólida , Estructura Molecular
10.
J Pept Sci ; 30(2): e3538, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37609959

RESUMEN

Morpholine, which scores 7.5 in terms of greenness and is not a regulated substance, could be considered a strong contender for Fmoc removal in solid-phase peptide synthesis (SPPS). Morpholine in dimethylformamide (DMF) (50%-60%) efficiently removes Fmoc in SPPS, minimizes the formation of diketopiperazine, and almost avoids the aspartimide formation. As a proof of concept, somatostatin has been synthesized using 50% morpholine in DMF with the same purity as when using 20% piperidine-DMF.


Asunto(s)
Fluorenos , Técnicas de Síntesis en Fase Sólida , Fluorenos/química , Morfolinas
11.
J Pept Sci ; 30(3): e3546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37704427

RESUMEN

N/C-terminal protected amyloidogenic peptides are valuable biomaterials. Optimization of the protective structures at both termini is, however, synthetically laborious because a linear sequence of solid-phase peptide synthesis protocol (on-resin peptide assembly/peptide removal from resin/high-performance liquid chromatography purification) is required for the peptides each time the protective group is modified. In this study, we demonstrate a modular synthetic strategy for the purpose of rapidly deriving the N/C-terminal structures of amyloidogenic peptides. The precursor sequences that can be easily synthesized due to a non-amyloidogenic property were stocked as the synthetic intermediates. Condensation of the intermediates with N/C-terminal units in a liquid phase followed by high-performance liquid chromatography purification gave the desired peptides P1-P8. The amyloidogenic peptides that have various N/C-terminal protective structures were therefore synthesized in a labor-effective manner. This method is suggested to be useful for synthesizing amyloidogenic peptides possessing divergent protective structures at the N/C-terminus.


Asunto(s)
Materiales Biocompatibles , Péptidos , Péptidos/química , Cromatografía Líquida de Alta Presión , Técnicas de Síntesis en Fase Sólida
12.
J Pept Sci ; 30(4): e3555, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38220145

RESUMEN

Newer solid-phase peptide synthesis and release strategies enable the production of short peptides with high purity, allowing direct screening for desired bioactivity without prior chromatographic purification. However, the maximum number of peptides that can currently be synthesized per microplate reactor is 96, allowing the parallel synthesis of 384 peptides in modern devices that have space for 4 microplate reactors. To synthesize larger numbers of peptides, we modified a commercially available peptide synthesizer to enable the production of peptides in 384-well plates, which allows the synthesis of 1,536 peptides in one run (4 × 384 peptides). We report new hardware components and customized software that allowed for the synthesis of 1,536 short peptides in good quantity (average > 0.5 µmol), at high concentration (average > 10 mM), and decent purity without purification (average > 80%). The high-throughput peptide synthesis, which we developed with peptide drug development in mind, may be widely used for peptide library synthesis and screening, antibody epitope scanning, epitope mimetic development, or protease/kinase substrate screening.


Asunto(s)
Técnicas Químicas Combinatorias , Técnicas de Síntesis en Fase Sólida , Técnicas Químicas Combinatorias/métodos , Biblioteca de Péptidos , Péptidos/química , Epítopos
13.
J Pept Sci ; 30(6): e3560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38262069

RESUMEN

The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.


Asunto(s)
Aminoácidos , Péptidos Antimicrobianos , Aminoácidos/química , Aminoácidos/metabolismo , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Técnicas de Síntesis en Fase Sólida/métodos , Pruebas de Sensibilidad Microbiana
14.
Nucleic Acids Res ; 50(13): 7235-7246, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35801866

RESUMEN

Labelling of oligonucleotides with dyes, targeting ligands, and other moieties has become ever more essential in life-sciences. Conventionally, modifications are introduced to oligonucleotides during solid phase synthesis by special phosphoramidites functionalised with a chemical handle or the desired functional group. In this work, we present a facile and inexpensive method to introduce modifications to oligonucleotides without the need for special phosphoramidites. Sulfonyl azides are applied to react with one or more selected phosphite intermediates during solid phase synthesis. We have prepared 11 sulfonyl azides with different chemical handles such as amine, azide, alkyne, and thiol, and we have further introduced functionalities such as pyrene, other dyes, photo-switchable azobenzenes, and a steroid. The method is compatible with current phosphoramidite-based automated oligonucleotide synthesis and serves as a simple alternative to the unstable and expensive special phosphoramidites currently used for conjugation to oligonucleotides.


Asunto(s)
Azidas , Técnicas de Síntesis en Fase Sólida , Colorantes , ADN , Oligonucleótidos
15.
Int J Mol Sci ; 25(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791542

RESUMEN

Molecularly imprinted polymers (MIPs) are established artificial molecular recognition platforms with tailored selectivity towards a target molecule, whose synthesis and functionality are highly influenced by the nature of the solvent employed in their synthesis. Steps towards the "greenification" of molecular imprinting technology (MIT) has already been initiated by the elaboration of green MIT principles; developing MIPs in a solvent-free environment may not only offer an eco-friendly alternative, but could also significantly influence the affinity and expected selectivity of the resulting binding sites. In the current study the first solvent-free mechanochemical synthesis of MIPs via liquid-assisted grinding (LAG) is reported. The successful synthesis of the imprinted polymer was functionally demonstrated by measuring its template rebinding capacity and the selectivity of the molecular recognition process in comparison with the ones obtained by the conventional, non-covalent molecular imprinting process in liquid media. The results demonstrated similar binding capacities towards the template molecule and superior chemoselectivity compared to the solution-based MIP synthesis method. The adoption of green chemistry principles with all their inherent advantages in the synthesis of MIPs may not only be able to alleviate the potential environmental and health concerns associated with their analytical (e.g., selective adsorbents) and biomedical (e.g., drug carriers or reservoirs) applications, but might also offer a conceptual change in molecular imprinting technology.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Polímeros Impresos Molecularmente/química , Polímeros Impresos Molecularmente/síntesis química , Impresión Molecular/métodos , Técnicas de Síntesis en Fase Sólida/métodos , Polímeros/química , Polímeros/síntesis química , Solventes/química
16.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611709

RESUMEN

Solid-phase peptide synthesis (SPPS) is the preferred strategy for synthesizing most peptides for research purposes and on a multi-kilogram scale. One key to the success of SPPS is the continual evolution and improvement of the original method proposed by Merrifield. Over the years, this approach has been enhanced with the introduction of new solid supports, protecting groups for amino acids, coupling reagents, and other tools. One of these improvements is the use of the so-called "safety-catch" linkers/resins. The linker is understood as the moiety that links the peptide to the solid support and protects the C-terminal carboxylic group. The "safety-catch" concept relies on linkers that are totally stable under the conditions needed for both α-amino and side-chain deprotection that, at the end of synthesis, can be made labile to one of those conditions by a simple chemical reaction (e.g., an alkylation). This unique characteristic enables the simultaneous use of two primary protecting strategies: tert-butoxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc). Ultimately, at the end of synthesis, either acids (which are incompatible with Boc) or bases (which are incompatible with Fmoc) can be employed to cleave the peptide from the resin. This review focuses on the most significant "safety-catch" linkers.


Asunto(s)
Antifibrinolíticos , Técnicas de Síntesis en Fase Sólida , Alquilación , Aminoácidos , Resinas de Plantas , Péptidos
17.
Molecules ; 29(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930912

RESUMEN

The escalating resistance of agricultural pests to chemical insecticides necessitates the development of novel, efficient, and safe biological insecticides. Conus quercinus, a vermivorous cone snail, yields a crude venom rich in peptides for marine worm predation. This study screened six α-conotoxins with insecticidal potential from a previously constructed transcriptome database of C. quercinus, characterized by two disulfide bonds. These conotoxins were derived via solid-phase peptide synthesis (SPPS) and folded using two-step iodine oxidation for further insecticidal activity validation, such as CCK-8 assay and insect bioassay. The final results confirmed the insecticidal activities of the six α-conotoxins, with Qc1.15 and Qc1.18 exhibiting high insecticidal activity. In addition, structural analysis via homology modeling and functional insights from molecular docking offer a preliminary look into their potential insecticidal mechanisms. In summary, this study provides essential references and foundations for developing novel insecticides.


Asunto(s)
Conotoxinas , Caracol Conus , Insecticidas , Simulación del Acoplamiento Molecular , Conotoxinas/química , Conotoxinas/farmacología , Conotoxinas/síntesis química , Insecticidas/química , Insecticidas/síntesis química , Insecticidas/farmacología , Animales , Caracol Conus/química , Secuencia de Aminoácidos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos
18.
Angew Chem Int Ed Engl ; 63(22): e202403063, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38529723

RESUMEN

Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.


Asunto(s)
ARN , ARN/química , ARN/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos
19.
Angew Chem Int Ed Engl ; 63(4): e202313317, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37903139

RESUMEN

The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed. Ribofuranosylated histidine building blocks were obtained via Mukaiyama-type glycosylation and the building blocks were integrated into an ADP-ribosylome derived peptide sequence using fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. On-resin installation of the ADP moiety was achieved using phosphoramidite chemistry, and global deprotection provided the desired ADP-ribosylated oligopeptides. The stability under various chemical conditions and resistance against (ADP-ribosyl) hydrolase-mediated degradation has been investigated to reveal that the constructs are stable under various chemical conditions and non-degradable by any of the known ADP-ribosylhydrolases.


Asunto(s)
Histidina , Técnicas de Síntesis en Fase Sólida , Histidina/metabolismo , Péptidos/química , ADP-Ribosilación , Adenosina Difosfato/metabolismo , Adenosina Difosfato Ribosa/química
20.
J Am Chem Soc ; 145(48): 26452-26462, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37976043

RESUMEN

Postsynthetic diversification of peptides through selective modification of endogenous amino acid side chains has enabled significant advances in peptide drug discovery while expanding the biological and medical chemistry space. However, current tools have been focused on the modification of reactive polar and ionizable side chains, whereas the decoration of aromatic systems (e.g., the N(in) of the tryptophan) has been a long-standing challenge. Here, we introduce metallaphotocatalysis in solid-phase peptide synthesis for the on-resin orthogonal N-arylation of relevant tryptophan-containing peptides. The protocol allows the chemoselective introduction of a new C(sp2)-N bond at the N(in) of tryptophan in biologically active protected peptide sequences in the presence of native redox-sensitive side chains. The fusion of metallaphotocatalysis with solid-phase peptide synthesis opens new perspectives in diversifying native amino acid side chains.


Asunto(s)
Péptidos , Triptófano , Triptófano/química , Péptidos/química , Aminoácidos/química , Oxidación-Reducción , Técnicas de Síntesis en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA