Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Immunol ; 25(5): 847-859, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658806

RESUMEN

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Asunto(s)
Homeostasis , Quinasas Janus , Macrófagos , Ratones Noqueados , Factores de Transcripción STAT , Transducción de Señal , Animales , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Ratones Endogámicos C57BL , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , TYK2 Quinasa/metabolismo , TYK2 Quinasa/genética , Regulación de la Expresión Génica
2.
Cell Mol Life Sci ; 81(1): 199, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683377

RESUMEN

Tyrosine kinase 2 (TYK2) is involved in type I interferon (IFN-I) signaling through IFN receptor 1 (IFNAR1). This signaling pathway is crucial in the early antiviral response and remains incompletely understood on B cells. Therefore, to understand the role of TYK2 in B cells, we studied these cells under homeostatic conditions and following in vitro activation using Tyk2-deficient (Tyk2-/-) mice. Splenic B cell subpopulations were altered in Tyk2-/- compared to wild type (WT) mice. Marginal zone (MZ) cells were decreased and aged B cells (ABC) were increased, whereas follicular (FO) cells remained unchanged. Likewise, there was an imbalance in transitional B cells in juvenile Tyk2-/- mice. RNA sequencing analysis of adult MZ and FO cells isolated from Tyk2-/- and WT mice in homeostasis revealed altered expression of IFN-I and Toll-like receptor 7 (TLR7) signaling pathway genes. Flow cytometry assays corroborated a lower expression of TLR7 in MZ B cells from Tyk2-/- mice. Splenic B cell cultures showed reduced proliferation and differentiation responses after activation with TLR7 ligands in Tyk2-/- compared to WT mice, with a similar response to lipopolysaccharide (LPS) or anti-CD40 + IL-4. IgM, IgG, IL-10 and IL-6 secretion was also decreased in Tyk2-/- B cell cultures. This reduced response of the TLR7 pathway in Tyk2-/- mice was partially restored by IFNα addition. In conclusion, there is a crosstalk between TYK2 and TLR7 mediated by an IFN-I feedback loop, which contributes to the establishment of MZ B cells and to B cell proliferation and differentiation.


Asunto(s)
Linfocitos B , Interferón Tipo I , Transducción de Señal , Bazo , TYK2 Quinasa , Receptor Toll-Like 7 , Animales , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Interferón Tipo I/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/citología , Bazo/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , TYK2 Quinasa/metabolismo , TYK2 Quinasa/genética
3.
Bioorg Chem ; 148: 107430, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38728909

RESUMEN

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway mediates many cytokine and growth factor signals. Tyrosine kinase 2 (TYK2), one of the members of this pathway and the first described member of the JAK family. TYK2 associates with inflammatory and autoimmune diseases, cancer and diabetes. Here, we present novel compounds as selective inhibitors of the canonical kinase domain of TYK2 enzyme. These compounds were rationally designed and synthesized with appropriate reactions. Molecular modeling techniques were used to design and optimize the candidates for TYK2 inhibition and to determine the estimated binding orientations of them inside JAKs. Designed compounds potently inhibited TYK2 with good selectivity against other JAKs as determined by in vitro assays. In order to verify its selectivity properties, compound A8 was tested against 58 human kinases (KinaseProfiler™ assay). The effects of the selected seven compounds on the protein levels of members of the JAK/STAT family were also detected in THP-1 monocytes although the basal level of these proteins is poorly detectable. Therefore, their expression was induced by lipopolysaccharide treatment and compounds A8, A15, A18, and A19 were found to be potent inhibitors of the TYK2 enzyme, (9.7 nM, 6.0 nM, 5.0 nM and 10.3 nM, respectively), and have high selectivity index for the JAK1, JAK2, and JAK3 enzymes. These findings suggest that triazolo[1,5-a]pyrimidinone derivatives may be lead compounds for developing potent TYK2-selective inhibitors targeting enzymes' active site.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas , TYK2 Quinasa , Humanos , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinonas/farmacología , Pirimidinonas/síntesis química , Pirimidinonas/química , Relación Estructura-Actividad , Triazoles/farmacología , Triazoles/química , Triazoles/síntesis química , TYK2 Quinasa/antagonistas & inhibidores , TYK2 Quinasa/metabolismo , Quinasas Janus/química , Quinasas Janus/metabolismo
4.
J Drugs Dermatol ; 23(8): 645-652, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39093663

RESUMEN

Members of the Janus kinase (JAK) superfamily, comprising tyrosine kinase 2 (TYK2) and JAK1, JAK2, and JAK3, mediate signaling by cytokines (eg, interleukin [IL]-23) involved in psoriasis pathogenesis. Binding of IL-23 to its receptor activates TYK2 and JAK2, which trigger signal transducer and activator of transcription (STAT) translocation to the nucleus to regulate target gene transcription, including genes of proinflammatory mediators such as IL-17. Physiologically, TYK2 solely mediates immune function, whereas JAK1,2,3 mediate broad systemic and immune functions. Inhibition of individual JAK family members is being evaluated in many dermatologic indications, including psoriasis. Selective TYK2 inhibition is therefore expected to be associated with few adverse effects in patients with psoriasis. People with genetic mutations leading to loss of function of TYK2 are protected from the development of psoriasis without an increased risk of infections or malignancies. In contrast, treatments with JAK1,2,3 inhibitors are associated with various systemic effects. We review the unique allosteric mechanism of action of the selective TYK2 inhibitor, deucravacitinib, which binds to the TYK2 regulatory (pseudokinase) domain, and the mechanisms of action of JAK1,2,3 inhibitors, which bind to the adenosine 5'-triphosphate-binding active (catalytic) site in the kinase domains of JAK1,2,3. Deucravacitinib, which is approved for the treatment of moderate to severe plaque psoriasis in adults in the United States and several other countries, represents a novel, targeted systemic treatment approach with a favorable safety profile. J Drugs Dermatol. 2024;23(8):645-652.  doi:10.36849/JDD.8293.


Asunto(s)
Psoriasis , TYK2 Quinasa , Humanos , Psoriasis/tratamiento farmacológico , TYK2 Quinasa/antagonistas & inhibidores , TYK2 Quinasa/metabolismo , TYK2 Quinasa/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/efectos adversos , Transducción de Señal/efectos de los fármacos , Compuestos Heterocíclicos
5.
Nat Rev Rheumatol ; 20(4): 232-240, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467779

RESUMEN

Tyrosine kinase 2 (TYK2) is a member of the JAK kinase family of intracellular signalling molecules. By participating in signalling pathways downstream of type I interferons, IL-12, IL-23 and IL-10, TYK2 elicits a distinct set of immune events to JAK1, JAK2 and JAK3. TYK2 polymorphisms have been associated with susceptibility to various rheumatic diseases including systemic lupus erythematosus and dermatomyositis. In vitro and animal studies substantiate these findings, highlighting a role for TYK2 in diseases currently managed by antagonists of cytokines that signal through TYK2. Various inhibitors of TYK2 have now been studied in human disease, and one of these inhibitors, deucravacitinib, has now been approved for the treatment of psoriasis. Phase II trials of deucravacitinib have also reported positive results in the treatment of psoriatic arthritis and systemic lupus erythematosus, with a preliminary safety profile that seems to differ from that of the JAK1, JAK2 and JAK3 inhibitors. Two other inhibitors of TYK2, brepocitinib and ropsacitinib, are also in earlier stages of clinical trials. Overall, TYK2 inhibitors hold promise for the treatment of a distinct spectrum of autoimmune diseases and could potentially have a safety profile that differs from other JAK inhibitors.


Asunto(s)
Inhibidores de las Cinasas Janus , Lupus Eritematoso Sistémico , Psoriasis , Enfermedades Reumáticas , TYK2 Quinasa , Animales , Humanos , Inhibidores de las Cinasas Janus/uso terapéutico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Psoriasis/tratamiento farmacológico , Enfermedades Reumáticas/tratamiento farmacológico , TYK2 Quinasa/antagonistas & inhibidores , TYK2 Quinasa/metabolismo
6.
Curr Med Chem ; 31(20): 2900-2920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904160

RESUMEN

TYK2 (tyrosine-protein kinase 2) is a non-receptor protein kinase belonging to the JAK family and is closely associated with various diseases, such as psoriasis, inflammatory bowel disease, systemic lupus erythematosus. TYK2 activates the downstream proteins STAT1-5 by participating in the signal transduction of immune factors such as IL-12, IL-23, and IL-10, resulting in immune expression. The activity of the inhibitor TYK2 can effectively block the transduction of excessive immune signals and treat diseases. TYK2 inhibitors are divided into two types of inhibitors according to the different binding sites. One is a TYK2 inhibitor that binds to JH2 and inhibits its activity through an allosteric mechanism. The representative inhibitor is BMS-986165, developed by Bristol-Myers Squibb. The other class binds to the JH1 adenosine triphosphate (ATP) site and prevents the catalytic activity of the kinase by blocking ATP and downstream phosphorylation. This paper mainly introduces the protein structure, signaling pathway, synthesis, structure-activity relationship and clinical research of TYK2 inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas , TYK2 Quinasa , TYK2 Quinasa/antagonistas & inhibidores , TYK2 Quinasa/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Transducción de Señal/efectos de los fármacos , Animales , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo
7.
Nat Commun ; 15(1): 4484, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802340

RESUMEN

Deciphering the intricate dynamic events governing type I interferon (IFN) signaling is critical to unravel key regulatory mechanisms in host antiviral defense. Here, we leverage TurboID-based proximity labeling coupled with affinity purification-mass spectrometry to comprehensively map the proximal human proteomes of all seven canonical type I IFN signaling cascade members under basal and IFN-stimulated conditions. This uncovers a network of 103 high-confidence proteins in close proximity to the core members IFNAR1, IFNAR2, JAK1, TYK2, STAT1, STAT2, and IRF9, and validates several known constitutive protein assemblies, while also revealing novel stimulus-dependent and -independent associations between key signaling molecules. Functional screening further identifies PJA2 as a negative regulator of IFN signaling via its E3 ubiquitin ligase activity. Mechanistically, PJA2 interacts with TYK2 and JAK1, promotes their non-degradative ubiquitination, and limits the activating phosphorylation of TYK2 thereby restraining downstream STAT signaling. Our high-resolution proximal protein landscapes provide global insights into the type I IFN signaling network, and serve as a valuable resource for future exploration of its functional complexities.


Asunto(s)
Interferón Tipo I , Janus Quinasa 1 , Receptor de Interferón alfa y beta , Factor de Transcripción STAT2 , Transducción de Señal , TYK2 Quinasa , Ubiquitinación , Humanos , Células HEK293 , Interferón Tipo I/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Janus Quinasa 1/metabolismo , Fosforilación , Proteoma/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/metabolismo , TYK2 Quinasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
8.
Front Cell Infect Microbiol ; 14: 1356542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741892

RESUMEN

Background and objectives: This study aimed to investigate the possible prognostic significance of interferon alpha-beta receptor subunit 2 (IFNAR2) and tyrosine kinase 2 (TYK2) expressions. Methods: We conducted a retrospective study including COVID-19 adult patients. All blood samples were collected before any interventions. The expressions of IFNAR2 and TYK2 were assessed using real-time PCR in venous blood samples of 54 cases and 56 controls. The transcript quantities of IFNAR2 and TYK2 genes were assessed using a Delta-Ct method. Results: Our findings show no significant differences in gene expression levels for IFNAR2 and TYK2 between patients who required oxygen (O2) therapy and those who did not (p-value = 0.732 and p-value = 0.629, respectively). Likewise, there were no significant differences in IFNAR2 and TYK2 expressions between patients hospitalized for less than 7 days and those hospitalized for 7 days or more (p-value = 0.455 and p-value = 0.626, respectively). We also observed a weak correlation between IFNAR2 expression and CRP (p-value = 0.045, r = 0.192). There was a negative correlation between the expression levels of IFNAR2 and TYK2 transcripts in COVID-19 patients (p-value = 0.044; partial correlation coefficient = -0.283). Additionally, IFNAR2 and TYK2 were significantly downregulated in the COVID-19 group compared to healthy subjects (p-value = 0.002 and p-value = 0.028, respectively). However, neither IFNAR2 nor TYK2 expression was significantly different between the case subgroups based on COVID-19 severity. The IFNAR2 ΔΔCt (B = -0.184, 95% CI: -0.524-0.157, p-value = 0.275) and the TYK2 ΔΔCt (B = 0.114, 95% CI: -0.268-0.496, p-value = 0.543) were not found to be significant predictors of hospitalization duration. The area under the curve (AUC) for IFNAR2 expression is 0.655 (p-value = 0.005, 95% CI: 0.554-0.757), suggesting its poor discriminative value. Conclusion: We were unable to comment definitively on the prognostic power of IFNAR2 and TYK2 expressions in COVID-19 patients, and larger-scale studies are needed. The principal limitations of this study included the lack of longitudinal analysis and limited sample size.


Asunto(s)
COVID-19 , Receptor de Interferón alfa y beta , TYK2 Quinasa , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , COVID-19/genética , Pronóstico , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Estudios Retrospectivos , SARS-CoV-2 , TYK2 Quinasa/genética , TYK2 Quinasa/metabolismo
9.
J Med Chem ; 67(11): 8545-8568, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38805213

RESUMEN

Tyrosine kinase 2 (TYK2) mediates cytokine signaling through type 1 interferon, interleukin (IL)-12/IL-23, and the IL-10 family. There appears to be an association between TYK2 genetic variants and inflammatory conditions, and clinical evidence suggests that selective inhibition of TYK2 could produce a unique therapeutic profile. Here, we describe the discovery of compound 9 (GLPG3667), a reversible and selective TYK2 adenosine triphosphate competitive inhibitor in development for the treatment of inflammatory and autoimmune diseases. The preclinical pharmacokinetic profile was favorable, and TYK2 selectivity was confirmed in peripheral blood mononuclear cells and whole blood assays. Dermal ear inflammation was reduced in an IL-23-induced in vivo mouse model of psoriasis. GLPG3667 also completed a phase 1b study (NCT04594928) in patients with moderate-to-severe psoriasis where clinical effect was shown within the 4 weeks of treatment and it is now in phase 2 trials for the treatment of dermatomyositis (NCT05695950) and systemic lupus erythematosus (NCT05856448).


Asunto(s)
Adenosina Trifosfato , Enfermedades Autoinmunes , Inhibidores de Proteínas Quinasas , Psoriasis , TYK2 Quinasa , Humanos , Animales , TYK2 Quinasa/antagonistas & inhibidores , TYK2 Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/química , Ratones , Enfermedades Autoinmunes/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Psoriasis/tratamiento farmacológico , Femenino , Descubrimiento de Drogas , Masculino , Lupus Eritematoso Sistémico/tratamiento farmacológico , Relación Estructura-Actividad , Adulto
10.
RMD Open ; 10(2)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871479

RESUMEN

OBJECTIVES: The tuning effects of JAK/TYK2 inhibitors on the imbalance between T follicular helper (Tfh) and T regulatory (Treg) cells, related to systemic lupus erythematosus (SLE) pathogenesis, were investigated using human peripheral blood samples. METHODS: Peripheral blood mononuclear cells from untreated patients with SLE and healthy controls were analysed. Tfh1 cells were identified in nephritis tissue, and the effect of Tfh1 cells on B-cell differentiation was examined by coculturing naïve B cells with Tfh1 cells. RESULTS: Tfh1 cell numbers were increased in the peripheral blood of patients, and activated Treg cell counts were decreased relative to Tfh1 cell counts. This imbalance in the Tfh to Treg ratio was remarkably pronounced in cases of lupus nephritis, especially in types III and IV active nephritis. Immunohistochemistry revealed Tfh1 cell infiltration in lupus nephritis tissues. Co-culture of Tfh1 cells (isolated from healthy individuals) with naïve B cells elicited greater induction of T-bet+ B cells than controls. In JAK/TYK2-dependent STAT phosphorylation assays using memory CD4+ T cells, IL-12-induced STAT1/4 phosphorylation and Tfh1 cell differentiation were inhibited by both JAK and TYK2 inhibitors. However, phosphorylation of STAT5 by IL-2 and induction of Treg cell differentiation by IL-2+TGFß were inhibited by JAK inhibitors but not by TYK2 inhibitors, suggesting that TYK2 does not mediate the IL-2 signalling pathway. CONCLUSIONS: Tfh1 cells can induce T-bet+ B cell production and may contribute to SLE pathogenesis-associated processes. TYK2 inhibitor may fine-tune the immune imbalance by suppressing Tfh1 differentiation and maintaining Treg cell differentiation, thereby preserving IL-2 signalling, unlike other JAK inhibitors.


Asunto(s)
Diferenciación Celular , Lupus Eritematoso Sistémico , Linfocitos T Reguladores , TYK2 Quinasa , Humanos , TYK2 Quinasa/antagonistas & inhibidores , TYK2 Quinasa/metabolismo , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/inmunología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Femenino , Diferenciación Celular/efectos de los fármacos , Adulto , Masculino , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/efectos de los fármacos , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/inmunología , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Persona de Mediana Edad , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Transducción de Señal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Estudios de Casos y Controles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA