Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 32(9): 1265-79, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23572076

RESUMEN

Glycerol-3-phosphate acyltransferase (GPAT) is involved in the first step in glycerolipid synthesis and is localized in both the endoplasmic reticulum (ER) and mitochondria. To clarify the functional differences between ER-GPAT and mitochondrial (Mt)-GPAT, we generated both GPAT mutants in C. elegans and demonstrated that Mt-GPAT is essential for mitochondrial fusion. Mutation of Mt-GPAT caused excessive mitochondrial fragmentation. The defect was rescued by injection of lysophosphatidic acid (LPA), a direct product of GPAT, and by inhibition of LPA acyltransferase, both of which lead to accumulation of LPA in the cells. Mitochondrial fragmentation in Mt-GPAT mutants was also rescued by inhibition of mitochondrial fission protein DRP-1 and by overexpression of mitochondrial fusion protein FZO-1/mitofusin, suggesting that the fusion/fission balance is affected by Mt-GPAT depletion. Mitochondrial fragmentation was also observed in Mt-GPAT-depleted HeLa cells. A mitochondrial fusion assay using HeLa cells revealed that Mt-GPAT depletion impaired mitochondrial fusion process. We postulate from these results that LPA produced by Mt-GPAT functions not only as a precursor for glycerolipid synthesis but also as an essential factor of mitochondrial fusion.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Mitocondrias/enzimología , Dinámicas Mitocondriales , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Femenino , Eliminación de Gen , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/fisiología , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Microsomas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Tamaño Mitocondrial/efectos de los fármacos , Tamaño Mitocondrial/genética , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Oogénesis/genética
2.
EMBO J ; 32(9): 1280-92, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23584531

RESUMEN

Dynamin 1-like protein (DNM1L) mediates fission of mitochondria and peroxisomes, and dysfunction of DNM1L has been implicated in several neurological disorders. To study the molecular basis of mitochondrial remodelling, we determined the crystal structure of DNM1L that is comprised of a G domain, a bundle signalling element and a stalk. DNM1L assembled via a central stalk interface, and mutations in this interface disrupted dimerization and interfered with membrane binding and mitochondrial targeting. Two sequence stretches at the tip of the stalk were shown to be required for ordered assembly of DNM1L on membranes and its function in mitochondrial fission. In the crystals, DNM1L dimers further assembled via a second, previously undescribed, stalk interface to form a linear filament. Mutations in this interface interfered with liposome tubulation and mitochondrial remodelling. Based on these results and electron microscopy reconstructions, we propose an oligomerization mode for DNM1L which differs from that of dynamin and might be adapted to the remodelling of mitochondria.


Asunto(s)
GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Multimerización de Proteína/fisiología , Animales , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Dinaminas , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Tamaño Mitocondrial/efectos de los fármacos , Tamaño Mitocondrial/genética , Modelos Biológicos , Modelos Moleculares , Mutación Missense/fisiología , Pliegue de Proteína , Estructura Cuaternaria de Proteína/fisiología , Estructura Secundaria de Proteína , ARN Interferente Pequeño/farmacología
3.
J Cell Sci ; 126(Pt 10): 2187-97, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23525002

RESUMEN

Mitochondrial fusion-fission dynamics play a crucial role in many important cell processes. These dynamics control mitochondrial morphology, which in turn influences several important mitochondrial properties including mitochondrial bioenergetics and quality control, and they appear to be affected in several neurodegenerative diseases. However, an integrated and quantitative understanding of how fusion-fission dynamics control mitochondrial morphology has not yet been described. Here, we took advantage of modern visualisation techniques to provide a clear explanation of how fusion and fission correlate with mitochondrial length and motility in neurons. Our main findings demonstrate that: (1) the probability of a single mitochondrion splitting is determined by its length; (2) the probability of a single mitochondrion fusing is determined primarily by its motility; (3) the fusion and fission cycle is driven by changes in mitochondrial length and deviations from this cycle serves as a corrective mechanism to avoid extreme mitochondrial length; (4) impaired mitochondrial motility in neurons overexpressing 120Q Htt or Tau suppresses mitochondrial fusion and leads to mitochondrial shortening whereas stimulation of mitochondrial motility by overexpressing Miro-1 restores mitochondrial fusion rates and sizes. Taken together, our results provide a novel insight into the complex crosstalk between different processes involved in mitochondrial dynamics. This knowledge will increase understanding of the dynamic mitochondrial functions in cells and in particular, the pathogenesis of mitochondrial-related neurodegenerative diseases.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/ultraestructura , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos , Proteína Huntingtina , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Tamaño Mitocondrial/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células PC12 , Ratas , Ratas Wistar , Transgenes/genética , Proteínas de Unión al GTP rho/genética , Proteínas tau/genética , Proteínas tau/metabolismo
4.
J Cell Sci ; 126(Pt 3): 814-24, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23264743

RESUMEN

Cristae are mitochondrial inner-membrane structures that concentrate respiratory chain complexes and hence regulate ATP production. Mechanisms controlling crista morphogenesis are poorly understood and few crista determinants have been identified. Among them are the Mitofilins that are required to establish crista junctions and ATP-synthase subunits that bend the membrane at the tips of the cristae. We report here the phenotypic consequences associated with the in vivo inactivation of the inner-membrane protein Pantagruelian Mitochondrion I (PMI) both at the scale of the whole organism, and at the level of mitochondrial ultrastructure and function. We show that flies in which PMI is genetically inactivated experience synaptic defects and have a reduced life span. Electron microscopy analysis of the inner-membrane morphology demonstrates that loss of PMI function increases the average length of mitochondrial cristae in embryonic cells. This phenotype is exacerbated in adult neurons in which cristae form a dense tangle of elongated membranes. Conversely, we show that PMI overexpression is sufficient to reduce crista length in vivo. Finally, these crista defects are associated with impaired respiratory chain activity and increases in the level of reactive oxygen species. Since PMI and its human orthologue TMEM11 are regulators of mitochondrial morphology, our data suggest that, by controlling crista length, PMI influences mitochondrial diameter and tubular shape.


Asunto(s)
Estructuras de la Membrana Celular/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/ultraestructura , Neuronas/ultraestructura , Animales , Estructuras de la Membrana Celular/genética , Respiración de la Célula/genética , Células Cultivadas , Proteínas de Drosophila/genética , Técnicas de Inactivación de Genes , Humanos , Proteínas de la Membrana/genética , Microscopía Electrónica , Mitocondrias/genética , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Tamaño Mitocondrial/genética , Forma de los Orgánulos/genética , Organismos Modificados Genéticamente , Transmisión Sináptica/genética , Transgenes/genética
5.
Mol Autism ; 11(1): 47, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32517751

RESUMEN

BACKGROUND: In fast firing, parvalbumin (PV)-expressing (Pvalb) interneurons, PV acts as an intracellular Ca2+ signal modulator with slow-onset kinetics. In Purkinje cells of PV-/- mice, adaptive/homeostatic mechanisms lead to an increase in mitochondria, organelles equally capable of delayed Ca2+ sequestering/buffering. An inverse regulation of PV and mitochondria likewise operates in cell model systems in vitro including myotubes, epithelial cells, and oligodendrocyte-like cells overexpressing PV. Whether such opposite regulation pertains to all Pvalb neurons is currently unknown. In oligodendrocyte-like cells, PV additionally decreases growth and branching of processes in a cell-autonomous manner. METHODS: The in vivo effects of absence of PV were investigated in inhibitory Pvalb neurons expressing EGFP, present in the somatosensory and medial prefrontal cortex, striatum, thalamic reticular nucleus, hippocampal regions DG, CA3, and CA1 and cerebellum of mice either wild-type or knockout (PV-/-) for the Pvalb gene. Changes in Pvalb neuron morphology and PV concentrations were determined using immunofluorescence, followed by 3D-reconstruction and quantitative image analyses. RESULTS: PV deficiency led to an increase in mitochondria volume and density in the soma; the magnitude of the effect was positively correlated with the estimated PV concentrations in the various Pvalb neuron subpopulations in wild-type neurons. The increase in dendrite length and branching, as well as thickness of proximal dendrites of selected PV-/- Pvalb neurons is likely the result of the observed increased density and length of mitochondria in these PV-/- Pvalb neuron dendrites. The increased branching and soma size directly linked to the absence of PV is assumed to contribute to the increased volume of the neocortex present in juvenile PV-/- mice. The extended dendritic branching is in line with the hypothesis of local hyperconnectivity in autism spectrum disorder (ASD) and ASD mouse models including PV-/- mice, which display all ASD core symptoms and several comorbidities including cortical macrocephaly at juvenile age. CONCLUSION: PV is involved in most proposed mechanisms implicated in ASD etiology: alterations in Ca2+ signaling affecting E/I balance, changes in mitochondria structure/function, and increased dendritic length and branching, possibly resulting in local hyperconnectivity, all in a likely cell autonomous way.


Asunto(s)
Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/metabolismo , Dendritas/metabolismo , Susceptibilidad a Enfermedades , Tamaño Mitocondrial/genética , Neuronas/metabolismo , Parvalbúminas/deficiencia , Alelos , Animales , Biomarcadores , Dendritas/patología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Predisposición Genética a la Enfermedad , Inmunohistoquímica , Interneuronas/metabolismo , Espacio Intracelular , Ratones Noqueados , Fenotipo
6.
Curr Biol ; 28(2): 287-295.e6, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29307555

RESUMEN

The clearance of mitochondria by autophagy, mitophagy, is important for cell and organism health [1], and known to be regulated by ubiquitin. During Drosophila intestine development, cells undergo a dramatic reduction in cell size and clearance of mitochondria that depends on autophagy, the E1 ubiquitin-activating enzyme Uba1, and ubiquitin [2]. Here we screen a collection of putative ubiquitin-binding domain-encoding genes for cell size reduction and autophagy phenotypes. We identify the endosomal sorting complex required for transport (ESCRT) components TSG101 and Vps36, as well as the novel gene Vps13D. Vps13D is an essential gene that is necessary for autophagy, mitochondrial size, and mitochondrial clearance in Drosophila. Interestingly, a similar mitochondrial phenotype is observed in VPS13D mutant human cells. The ubiquitin-associated (UBA) domain of Vps13D binds K63 ubiquitin chains, and mutants lacking the UBA domain have defects in mitochondrial size and clearance and exhibit semi-lethality, highlighting the importance of Vps13D ubiquitin binding in both mitochondrial health and development. VPS13D mutant cells possess phosphorylated DRP1 and mitochondrial fission factor (MFF) as well as DRP1 association with mitochondria, suggesting that VPS13D functions downstream of these known regulators of mitochondrial fission. In addition, the large Vps13D mitochondrial and cell size phenotypes are suppressed by decreased mitochondrial fusion gene function. Thus, these results provide a previously unknown link between ubiquitin, mitochondrial size regulation, and autophagy.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Tamaño Mitocondrial/genética , Mitofagia/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/fisiología , Ubiquitina/metabolismo , Ubiquitinación
7.
FEBS Lett ; 589(20 Pt B): 3126-32, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26358295

RESUMEN

Mitochondria are dynamic organelles that alter their morphology in response to cellular signaling and differentiation through balanced fusion and fission. In this study, we found that the mitochondrial inner membrane ATPase ATAD3A interacted with ccdc56/MITRAC12/COA3, a subunit of the cytochrome oxidase (COX)-assembly complex. Overproduction of ccdc56 in HeLa cells resulted in fragmented mitochondrial morphology, while mitochondria were highly elongated in ccdc56-repressed cells by the defective recruitment of the fission factor Drp1. We also found that mild and chronic inhibition of COX led to mitochondrial elongation, as seen in ccdc56-repressed cells. These results indicate that ccdc56 positively regulates mitochondrial fission via regulation of COX activity and the mitochondrial recruitment of Drp1, and thus, suggest a novel relationship between COX assembly and mitochondrial morphology.


Asunto(s)
GTP Fosfohidrolasas/genética , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales/genética , Tamaño Mitocondrial/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Dinaminas , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Immunoblotting , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Proteína Fluorescente Roja
8.
Radiat Res ; 183(6): 594-609, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25973951

RESUMEN

Hypoxia is a major cause of radiation resistance, which may predispose to local recurrence after radiation therapy. While hypoxia increases tumor cell survival after radiation exposure because there is less oxygen to oxidize damaged DNA, it remains unclear whether signaling pathways triggered by hypoxia contribute to radiation resistance. For example, intratumoral hypoxia can increase hypoxia inducible factor 1 alpha (HIF-1α), which may regulate pathways that contribute to radiation sensitization or radiation resistance. To clarify the role of HIF-1α in regulating tumor response to radiation, we generated a novel genetically engineered mouse model of soft tissue sarcoma with an intact or deleted HIF-1α. Deletion of HIF-1α sensitized primary sarcomas to radiation exposure in vivo. Moreover, cell lines derived from primary sarcomas lacking HIF-1α, or in which HIF-1α was knocked down, had decreased clonogenic survival in vitro, demonstrating that HIF-1α can promote radiation resistance in a cell autonomous manner. In HIF-1α-intact and -deleted sarcoma cells, radiation-induced reactive oxygen species, DNA damage repair and activation of autophagy were similar. However, sarcoma cells lacking HIF-1α had impaired mitochondrial biogenesis and metabolic response after irradiation, which might contribute to radiation resistance. These results show that HIF-1α promotes radiation resistance in a cell autonomous manner.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sarcoma/metabolismo , Sarcoma/radioterapia , Animales , Línea Celular Tumoral , Quimioradioterapia , Técnicas de Silenciamiento del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Tamaño Mitocondrial/genética , Tamaño Mitocondrial/efectos de la radiación , Tolerancia a Radiación/genética , Tolerancia a Radiación/efectos de la radiación , Sarcoma/genética , Sarcoma/patología , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación
9.
PLoS One ; 3(10): e3613, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18974884

RESUMEN

BACKGROUND: There is no evidence to date on whether transcriptional regulators are able to shift the balance between mitochondrial fusion and fission events through selective control of gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate that reduced mitochondrial size observed in knock-out mice for the transcriptional regulator PGC-1beta is associated with a selective reduction in Mitofusin 2 (Mfn2) expression, a mitochondrial fusion protein. This decrease in Mfn2 is specific since expression of the remaining components of mitochondrial fusion and fission machinery were not affected. Furthermore, PGC-1beta increases mitochondrial fusion and elongates mitochondrial tubules. This PGC-1beta-induced elongation specifically requires Mfn2 as this process is absent in Mfn2-ablated cells. Finally, we show that PGC-1beta increases Mfn2 promoter activity and transcription by coactivating the nuclear receptor Estrogen Related Receptor alpha (ERRalpha). CONCLUSIONS/SIGNIFICANCE: Taken together, our data reveal a novel mechanism by which mammalian cells control mitochondrial fusion. In addition, we describe a novel role of PGC-1beta in mitochondrial physiology, namely the control of mitochondrial fusion mainly through Mfn2.


Asunto(s)
Mitocondrias/fisiología , Tamaño Mitocondrial/genética , Transactivadores/fisiología , Animales , Fusión Celular , Células Cultivadas , GTP Fosfohidrolasas/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Hígado/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/fisiología , Transactivadores/genética , Factores de Transcripción , Transcripción Genética , Receptor Relacionado con Estrógeno ERRalfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA