Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 238(7): 1558-1566, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183313

RESUMEN

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, participates as a cofactor to one carbon (1C) pathway that produces precursors for DNA metabolism. The concerted action of PLP-dependent serine hydroxymethyltransferase (SHMT) and thymidylate synthase (TS) leads to the biosynthesis of thymidylate (dTMP), which plays an essential function in DNA synthesis and repair. PLP deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, rising the hypothesis that an altered 1C metabolism may be involved. To test this hypothesis, we used Drosophila as a model system and found, firstly, that in PLP deficient larvae SHMT activity is reduced by 40%. Second, we found that RNAi-induced SHMT depletion causes chromosome damage rescued by PLP supplementation and strongly exacerbated by PLP depletion. RNAi-induced TS depletion causes severe chromosome damage, but this is only slightly enhanced by PLP depletion. dTMP supplementation rescues CABs in both PLP-deficient and PLP-proficient SHMTRNAi . Altogether these data suggest that a reduction of SHMT activity caused by PLP deficiency contributes to chromosome damage by reducing dTMP biosynthesis. In addition, our work brings to light a gene-nutrient interaction between SHMT decreased activity and PLP deficiency impacting on genome stability that may be translated to humans.


Asunto(s)
Aberraciones Cromosómicas , Glicina Hidroximetiltransferasa , Vitamina B 6 , Animales , Humanos , ADN , Drosophila/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Fosfato de Piridoxal , Timidina Monofosfato/biosíntesis , Vitamina B 6/farmacología
2.
Proc Natl Acad Sci U S A ; 114(20): E4095-E4102, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28461497

RESUMEN

Clinical vitamin B12 deficiency can result in megaloblastic anemia, which results from the inhibition of DNA synthesis by trapping folate cofactors in the form of 5-methyltetrahydrofolate (5-methylTHF) and subsequent inhibition of de novo thymidylate (dTMP) biosynthesis. In the cytosol, vitamin B12 functions in the remethylation of homocysteine to methionine, which regenerates THF from 5-methylTHF. In the nucleus, THF is required for de novo dTMP biosynthesis, but it is not understood how 5-methylTHF accumulation in the cytosol impairs nuclear dTMP biosynthesis. The impact of vitamin B12 depletion on nuclear de novo dTMP biosynthesis was investigated in methionine synthase-null human fibroblast and nitrous oxide-treated HeLa cell models. The nucleus was the most sensitive cellular compartment to 5-methylTHF accumulation, with levels increasing greater than fourfold. Vitamin B12 depletion decreased de novo dTMP biosynthesis capacity by 5-35%, whereas de novo purine synthesis, which occurs in the cytosol, was not affected. Phosphorylated histone H2AX (γH2AX), a marker of DNA double-strand breaks, was increased in vitamin B12 depletion, and this effect was exacerbated by folate depletion. These studies also revealed that 5-formylTHF, a slow, tight-binding inhibitor of serine hydroxymethyltransferase (SHMT), was enriched in nuclei, accounting for 35% of folate cofactors, explaining previous observations that nuclear SHMT is not a robust source of one-carbons for de novo dTMP biosynthesis. These findings indicate that a nuclear 5-methylTHF trap occurs in vitamin B12 depletion, which suppresses de novo dTMP biosynthesis and causes DNA damage, accounting for the pathophysiology of megaloblastic anemia observed in vitamin B12 and folate deficiency.


Asunto(s)
Inestabilidad Genómica , Glicina Hidroximetiltransferasa/metabolismo , Tetrahidrofolatos/metabolismo , Timidina Monofosfato/biosíntesis , Deficiencia de Vitamina B 12/metabolismo , Daño del ADN , Femenino , Fibroblastos/metabolismo , Células HeLa , Humanos , Lactante , Deficiencia de Vitamina B 12/genética
3.
Proc Natl Acad Sci U S A ; 114(12): E2319-E2326, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28265077

RESUMEN

Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As2O3 exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As2O3 inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As2O3-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.


Asunto(s)
Aminohidrolasas/antagonistas & inhibidores , Núcleo Celular/metabolismo , Formiato-Tetrahidrofolato Ligasa/antagonistas & inhibidores , Metilenotetrahidrofolato Deshidrogenasa (NADP)/antagonistas & inhibidores , Complejos Multienzimáticos/antagonistas & inhibidores , Óxidos/toxicidad , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/antagonistas & inhibidores , Timidina Monofosfato/biosíntesis , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Animales , Trióxido de Arsénico , Arsenicales , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Núcleo Celular/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/metabolismo , Formiato-Tetrahidrofolato Ligasa/genética , Formiato-Tetrahidrofolato Ligasa/metabolismo , Inestabilidad Genómica/efectos de los fármacos , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones , Ratones Noqueados , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Proteolisis , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Uracilo/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(2): 400-5, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548164

RESUMEN

An inborn error of metabolism associated with mutations in the human methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) gene has been identified. The proband presented with SCID, megaloblastic anemia, and neurologic abnormalities, but the causal metabolic impairment is unknown. SCID has been associated with impaired purine nucleotide metabolism, whereas megaloblastic anemia has been associated with impaired de novo thymidylate (dTMP) biosynthesis. MTHFD1 functions to condense formate with tetrahydrofolate and serves as the primary entry point of single carbons into folate-dependent one-carbon metabolism in the cytosol. In this study, we examined the impact of MTHFD1 loss of function on folate-dependent purine, dTMP, and methionine biosynthesis in fibroblasts from the proband with MTHFD1 deficiency. The flux of formate incorporation into methionine and dTMP was decreased by 90% and 50%, respectively, whereas formate flux through de novo purine biosynthesis was unaffected. Patient fibroblasts exhibited enriched MTHFD1 in the nucleus, elevated uracil in DNA, lower rates of de novo dTMP synthesis, and increased salvage pathway dTMP biosynthesis relative to control fibroblasts. These results provide evidence that impaired nuclear de novo dTMP biosynthesis can lead to both megaloblastic anemia and SCID in MTHFD1 deficiency.


Asunto(s)
Metilenotetrahidrofolato Deshidrogenasa (NADP)/deficiencia , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Timidina Monofosfato/biosíntesis , Sustitución de Aminoácidos , Anemia Megaloblástica/genética , Anemia Megaloblástica/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Codón sin Sentido , Daño del ADN , Fibroblastos/metabolismo , Humanos , Redes y Vías Metabólicas , Metilenotetrahidrofolato Deshidrogenasa (NADP)/química , Antígenos de Histocompatibilidad Menor , Proteínas Mutantes/química , Fenotipo , Mutación Puntual , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/metabolismo
5.
Annu Rev Nutr ; 36: 369-88, 2016 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-27431368

RESUMEN

Formate, the only non-tetrahydrofolate (THF)-linked intermediate in one-carbon metabolism, is produced in mammals from a variety of metabolic sources. It occurs in serum of adults at a concentration of approximately 30 µM. Its principal function lies as a source of one-carbon groups for the synthesis of 10-formyl-THF and other one-carbon intermediates; these are primarily used for purine synthesis, thymidylate synthesis, and the provision of methyl groups for synthetic, regulatory, and epigenetic methylation reactions. Although formate is largely produced in mitochondria, these functions mostly occur in the cytoplasm and nucleus. Formate plays a significant role in embryonic development, as evidenced by the effectiveness of formate in the pregnant dam's drinking water on the incidence of neural tube defects in some genetic models. High formate concentrations in fetal lambs may indicate a role in fetal development and suggest that extracellular formate may play a role in the interorgan distribution of one-carbon groups.


Asunto(s)
Desarrollo Fetal , Formiatos/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , NADP/metabolismo , Animales , Metilación de ADN , Suplementos Dietéticos , Epigénesis Genética , Femenino , Formiatos/sangre , Formiatos/uso terapéutico , Humanos , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Metilación , Mitocondrias/enzimología , Defectos del Tubo Neural/sangre , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/prevención & control , Vía de Pentosa Fosfato , Embarazo , Procesamiento Proteico-Postraduccional , Purinas/biosíntesis , Procesamiento Postranscripcional del ARN , Timidina Monofosfato/biosíntesis
6.
Arch Biochem Biophys ; 632: 11-19, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821425

RESUMEN

Thymidylate is synthesized de novo in all living organisms for replication of genomes. The chemical transformation is reductive methylation of deoxyuridylate at C5 to form deoxythymidylate. All eukaryotes including humans complete this well-understood transformation with thymidylate synthase utilizing 6R-N5-N10-methylene-5,6,7,8-tetrahydrofolate as both a source of methylene and a reducing hydride. In 2002, flavin-dependent thymidylate synthase was discovered as a new pathway for de novo thymidylate synthesis. The flavin-dependent catalytic mechanism is different than thymidylate synthase because it requires flavin as a reducing agent and methylene transporter. This catalytic mechanism is not well-understood, but since it is known to be very different from thymidylate synthase, there is potential for mechanism-based inhibitors that can selectively inhibit the flavin-dependent enzyme to target many human pathogens with low host toxicity.


Asunto(s)
Flavinas/química , Flavoproteínas/química , Tetrahidrofolatos/química , Timidilato Sintasa/química , Flavinas/metabolismo , Flavoproteínas/metabolismo , Metilación , Tetrahidrofolatos/metabolismo , Timidina Monofosfato/biosíntesis , Timidina Monofosfato/química , Timidilato Sintasa/metabolismo
7.
J Nutr ; 147(4): 499-505, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28228507

RESUMEN

Background: Formate provides one-carbon units for de novo purine and thymidylate (dTMP) synthesis and is produced via both folate-dependent and folate-independent pathways. Folate-independent pathways are mediated by cytosolic alcohol dehydrogenase 5 (ADH5) and mitochondrial aldehyde dehydrogenase 2 (ALDH2), which generate formate by oxidizing formaldehyde. Formate is a potential biomarker of B-vitamin-dependent one-carbon metabolism.Objective: This study investigated the contributions of ADH5 and ALDH2 to formate production and folate-dependent de novo purine and dTMP synthesis in HepG2 cells.Methods:ADH5 knockout and ALDH2 knockdown HepG2 cells were cultured in folate-deficient [0 nM (6S) 5-formyltetrahydrofolate] or folate-sufficient [25 nM (6S) 5-formyltetrahydrofolate] medium. Purine biosynthesis was quantified as the ratio of [14C]-formate to [3H]-hypoxanthine incorporated into genomic DNA, which indicates the contribution of the de novo purine synthesis pathway relative to salvage synthesis. dTMP synthesis was quantified as the ratio of [14C]-deoxyuridine to [3H]-thymidine incorporation into genomic DNA, which indicates the capacity of de novo dTMP synthesis relative to salvage synthesis.Results: The [14C]-formate-to-[3H]-hypoxanthine ratio was greater in ADH5 knockout than in wild-type HepG2 cells, under conditions of both folate deficiency (+30%; P < 0.001) and folate sufficiency (+22%; P = 0.02). These data indicate that ADH5 deficiency increases the use of exogenous formate for de novo purine biosynthesis. The [14C]-deoxyuridine-to-[3H]-thymidine ratio did not differ between ADH5 knockout and wild-type cells, indicating that ADH5 deficiency does not affect de novo dTMP synthesis capacity relative to salvage synthesis. Under folate deficiency, ALDH2 knockdown cells exhibited a 37% lower ratio of [14C]-formate to [3H]-hypoxanthine (P < 0.001) compared with wild-type HepG2 cells, indicating decreased use of exogenous formate, or increased endogenous formate synthesis, for de novo purine biosynthesis.Conclusions: In HepG2 cells, ADH5 is a source of formate for de novo purine biosynthesis, especially during folate deficiency when folate-dependent formate production is limited. Formate is also shown to be limiting in the growth of HepG2 cells.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Formiatos/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Purinas/biosíntesis , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Aldehído Oxidorreductasas/genética , Eliminación de Gen , Células Hep G2 , Humanos , Timidina Monofosfato/biosíntesis
8.
J Biol Chem ; 290(4): 2034-41, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25505243

RESUMEN

The primary pathway of TTP synthesis in the heart requires thymidine salvage by mitochondrial thymidine kinase 2 (TK2). However, the compartmentalization of this pathway and the transport of thymidine nucleotides are not well understood. We investigated the metabolism of [(3)H]thymidine or [(3)H]TMP as precursors of [(3)H]TTP in isolated intact or broken mitochondria from the rat heart. The results demonstrated that [(3)H]thymidine was readily metabolized by the mitochondrial salvage enzymes to TTP in intact mitochondria. The equivalent addition of [(3)H]TMP produced far less [(3)H]TTP than the amount observed with [(3)H]thymidine as the precursor. Using zidovudine to inhibit TK2, the synthesis of [(3)H]TTP from [(3)H]TMP was effectively blocked, demonstrating that synthesis of [(3)H]TTP from [(3)H]TMP arose solely from the dephosphorysynthase pathway that includes deoxyuridine triphosphatelation of [(3)H]TMP to [(3)H]thymidine. To determine the role of the membrane in TMP metabolism, mitochondrial membranes were disrupted by freezing and thawing. In broken mitochondria, [(3)H]thymidine was readily converted to [(3)H]TMP, but further phosphorylation was prevented even though the energy charge was well maintained by addition of oligomycin A, phosphocreatine, and creatine phosphokinase. The failure to synthesize TTP in broken mitochondria was not related to a loss of membrane potential or inhibition of the electron transport chain, as confirmed by addition of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone and potassium cyanide, respectively, in intact mitochondria. In summary, these data, taken together, suggest that the thymidine salvage pathway is compartmentalized so that TMP kinase prefers TMP synthesized by TK2 over medium TMP and that this is disrupted in broken mitochondria.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Timidina Quinasa/metabolismo , Timidina Monofosfato/biosíntesis , Nucleótidos de Timina/biosíntesis , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianuro m-Clorofenil Hidrazona/química , Creatina Quinasa/química , Citosol/metabolismo , Transporte de Electrón , Femenino , Potencial de la Membrana Mitocondrial , Oligomicinas/química , Fosfocreatina/química , Fosforilación , Cianuro de Potasio/química , Ratas , Ratas Sprague-Dawley , Timidina/metabolismo , Zidovudina/farmacología
9.
Molecules ; 21(5)2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27213314

RESUMEN

In humans de novo synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP), an essential building block of DNA, utilizes an enzymatic pathway requiring thymidylate synthase (TSase) and dihydrofolate reductase (DHFR). The enzyme flavin-dependent thymidylate synthase (FDTS) represents an alternative enzymatic pathway to synthesize dTMP, which is not present in human cells. A number of pathogenic bacteria, however, depend on this enzyme in lieu of or in conjunction with the analogous human pathway. Thus, inhibitors of this enzyme may serve as antibiotics. Here, we review the similarities and differences of FDTS vs. TSase including aspects of their structure and chemical mechanism. In addition, we review current progress in the search for inhibitors of flavin dependent thymidylate synthase as potential novel therapeutics.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/enzimología , Complejos Multienzimáticos/antagonistas & inhibidores , Timidilato Sintasa/antagonistas & inhibidores , Antibacterianos/química , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Flavinas/química , Flavinas/metabolismo , Humanos , Infecciones/tratamiento farmacológico , Infecciones/enzimología , Infecciones/microbiología , Cinética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidina Monofosfato/biosíntesis , Timidina Monofosfato/química , Timidilato Sintasa/química , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo
10.
Biochemistry ; 54(5): 1287-93, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25581782

RESUMEN

The development of cancer-specific probes for imaging by positron emission tomography (PET) is gaining impetus in cancer research and clinical oncology. One of the hallmarks of most cancer cells is incessant DNA replication, which requires the continuous synthesis of nucleotides. Thymidylate synthase (TSase) is unique in this context because it is the only enzyme in humans that is responsible for the de novo biosynthesis of the DNA building block 2'-deoxy-thymidylate (dTMP). TSase catalyzes the reductive methylation of 2'-deoxy-uridylate (dUMP) to dTMP using (R)-N(5),N(10)-methylene-5,6,7,8-tetrahydrofolate (MTHF) as a cofactor. Not surprisingly, several human cancers overexpress TSase, which makes it a common target for chemotherapy (e.g., 5-fluorouracil). We envisioned that [(11)C]-MTHF might be a PET probe that could specifically label cancerous cells. Using stable radiotracer [(14)C]-MTHF, we had initially found increased uptake by breast and colon cancer cell lines. In the current study, we examined the uptake of this radiotracer in human pancreatic cancer cell lines MIAPaCa-2 and PANC-1 and found predominant radiolabeling of cancerous versus normal pancreatic cells. Furthermore, uptake of the radiotracer is dependent on the intracellular level of the folate pool, cell cycle phase, expression of folate receptors on the cell membrane, and cotreatment with the common chemotherapeutic drug methotrexate (MTX, which blocks the biosynthesis of endogenous MTHF). These results point toward [(11)C]-MTHF being used as PET probe with broad specificity and being able to control its signal through MTX co-administration.


Asunto(s)
Neoplasias Pancreáticas , Tomografía de Emisión de Positrones/métodos , Trazadores Radiactivos , Timidina Monofosfato/biosíntesis , Timidilato Sintasa/biosíntesis , Isótopos de Carbono , Ácido Fólico/análogos & derivados , Ácido Fólico/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Marcaje Isotópico , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/metabolismo , Radiografía , Timidina Monofosfato/metabolismo , Uridina Monofosfato/metabolismo
11.
J Biol Chem ; 289(43): 29642-50, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25213861

RESUMEN

Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency.


Asunto(s)
Núcleo Celular/metabolismo , Coenzimas/metabolismo , Deficiencia de Ácido Fólico/enzimología , Ácido Fólico/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Timidina Monofosfato/biosíntesis , Animales , Puntos de Control del Ciclo Celular , Línea Celular , ADN/metabolismo , Dieta , Femenino , Deficiencia de Ácido Fólico/patología , Formiatos/sangre , Técnicas de Silenciamiento del Gen , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Hígado/enzimología , Masculino , Metionina/biosíntesis , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas , Purinas/biosíntesis , Fase S , Uracilo/metabolismo
12.
Nature ; 458(7240): 919-23, 2009 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19370033

RESUMEN

Biosynthesis of the DNA base thymine depends on activity of the enzyme thymidylate synthase to catalyse the methylation of the uracil moiety of 2'-deoxyuridine-5'-monophosphate. All known thymidylate synthases rely on an active site residue of the enzyme to activate 2'-deoxyuridine-5'-monophosphate. This functionality has been demonstrated for classical thymidylate synthases, including human thymidylate synthase, and is instrumental in mechanism-based inhibition of these enzymes. Here we report an example of thymidylate biosynthesis that occurs without an enzymatic nucleophile. This unusual biosynthetic pathway occurs in organisms containing the thyX gene, which codes for a flavin-dependent thymidylate synthase (FDTS), and is present in several human pathogens. Our findings indicate that the putative active site nucleophile is not required for FDTS catalysis, and no alternative nucleophilic residues capable of serving this function can be identified. Instead, our findings suggest that a hydride equivalent (that is, a proton and two electrons) is transferred from the reduced flavin cofactor directly to the uracil ring, followed by an isomerization of the intermediate to form the product, 2'-deoxythymidine-5'-monophosphate. These observations indicate a very different chemical cascade than that of classical thymidylate synthases or any other known biological methylation. The findings and chemical mechanism proposed here, together with available structural data, suggest that selective inhibition of FDTSs, with little effect on human thymine biosynthesis, should be feasible. Because several human pathogens depend on FDTS for DNA biosynthesis, its unique mechanism makes it an attractive target for antibiotic drugs.


Asunto(s)
Flavinas/metabolismo , Thermotoga maritima/enzimología , Thermotoga maritima/metabolismo , Timidina Monofosfato/biosíntesis , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Nucleótidos de Desoxiuracil/química , Nucleótidos de Desoxiuracil/metabolismo , Deuterio/metabolismo , Electrones , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/química , Helicobacter pylori/enzimología , Humanos , Espectroscopía de Resonancia Magnética , Metilación , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Protones , Timidina/análogos & derivados , Timidina/metabolismo , Timidilato Sintasa/antagonistas & inhibidores , Uracilo/metabolismo
13.
Proc Natl Acad Sci U S A ; 108(37): 15163-8, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21876188

RESUMEN

The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.


Asunto(s)
Vías Biosintéticas , Mamíferos/metabolismo , Mitocondrias/metabolismo , Nucleótidos de Timina/biosíntesis , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Cricetulus , ADN Mitocondrial/metabolismo , Regulación de la Expresión Génica , Glicina/metabolismo , Humanos , Mitocondrias/enzimología , Datos de Secuencia Molecular , Transporte de Proteínas , Alineación de Secuencia , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidina Monofosfato/biosíntesis , Timidilato Sintasa/metabolismo , Uracilo/metabolismo
14.
J Biol Chem ; 287(10): 7051-62, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22235121

RESUMEN

The de novo thymidylate biosynthetic pathway in mammalian cells translocates to the nucleus for DNA replication and repair and consists of the enzymes serine hydroxymethyltransferase 1 and 2α (SHMT1 and SHMT2α), thymidylate synthase, and dihydrofolate reductase. In this study, we demonstrate that this pathway forms a multienzyme complex that is associated with the nuclear lamina. SHMT1 or SHMT2α is required for co-localization of dihydrofolate reductase, SHMT, and thymidylate synthase to the nuclear lamina, indicating that SHMT serves as scaffold protein that is essential for complex formation. The metabolic complex is enriched at sites of DNA replication initiation and associated with proliferating cell nuclear antigen and other components of the DNA replication machinery. These data provide a mechanism for previous studies demonstrating that SHMT expression is rate-limiting for de novo thymidylate synthesis and indicate that de novo thymidylate biosynthesis occurs at replication forks.


Asunto(s)
Replicación del ADN/fisiología , ADN/biosíntesis , Glicina Hidroximetiltransferasa/metabolismo , Complejos Multienzimáticos/metabolismo , Lámina Nuclear/enzimología , Timidina Monofosfato/biosíntesis , ADN/genética , Reparación del ADN/fisiología , Glicina Hidroximetiltransferasa/genética , Células HeLa , Humanos , Complejos Multienzimáticos/genética , Lámina Nuclear/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidina Monofosfato/genética
15.
J Nutr ; 143(7): 1028-35, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23700346

RESUMEN

Impaired folate-mediated one-carbon metabolism (OCM) has emerged as a risk factor for several diseases associated with age-related cognitive decline, but the underlying mechanisms remain unknown and thus hinder the identification of subpopulations most vulnerable to OCM disruption. Here we investigated the role of serine hydroxymethyltransferase 1 (SHMT1), a folate-dependent enzyme regulating de novo thymidylate biosynthesis, in influencing neuronal and cognitive function in the adult mouse. We observed Shmt1 expression in the hippocampus, including the granule cell layer of the dentate gyrus (DG), and examined hippocampal neurogenesis and hippocampal-dependent fear conditioning in mice deficient for Shmt1. We used a 3 × 3 design in which adult male Shmt1(+/+), Shmt1(+/-), and Shmt1(-/-) mice were fed folic acid control (2 mg/kg), folic acid-deficient (0 mg/kg), or folic acid-supplemented (8 mg/kg) diets from weaning through the duration of the study. Proliferation within the DG was elevated by 70% in Shmt1(+/-) mice, yet the number of newborn mature neurons was reduced by 98% compared with that in Shmt1(+/+) mice. Concomitant with these alterations, Shmt1(+/-) mice showed a 45% reduction in mnemonic recall during trace fear conditioning. Dietary folate manipulations alone did not influence neural outcomes. Together, these data identify SHMT1 as one of the first enzymes within the OCM pathway to regulate neuronal and cognitive profiles and implicate impaired thymidylate biosynthesis in the etiology of folate-related neuropathogenesis.


Asunto(s)
Glicina Hidroximetiltransferasa/genética , Hipocampo/patología , Memoria/fisiología , Neurogénesis/genética , Animales , Proliferación Celular , Giro Dentado/metabolismo , Miedo/fisiología , Ácido Fólico/administración & dosificación , Ácido Fólico/sangre , Deficiencia de Ácido Fólico/patología , Regulación de la Expresión Génica , Glicina Hidroximetiltransferasa/metabolismo , Hipocampo/metabolismo , Homocisteína/metabolismo , Hibridación in Situ , Masculino , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Factores de Riesgo , Timidina Monofosfato/biosíntesis
16.
Br J Nutr ; 105(5): 688-93, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21251336

RESUMEN

High folate intake may increase the risk of cancer, especially in the elderly. The present study examined the effects of ageing and dietary folate on uracil misincorporation into DNA, which has a mutagenic effect, in the mouse colon and liver. Old (18 months; n 42) and young (4 months; n 42) male C57BL/6 mice were pair-fed with four different amino acid-defined diets for 20 weeks: folate deplete (0 mg/kg diet); folate replete (2 mg/kg diet); folate supplemented (8 mg/kg diet); folate deplete (0 mg/kg diet) with thymidine supplementation (1·8 g/kg diet). Thymidylate synthesis from uracil requires folate, but synthesis from thymidine is folate independent. Liver folate concentrations were determined by the Lactobacillus casei assay. Uracil misincorporation into DNA was measured by a GC/MS method. Liver folate concentrations demonstrated a stepwise increase across the spectrum of dietary folate levels in both old (P = 0·003) and young (P < 0·001) mice. Uracil content in colonic DNA was paradoxically increased in parallel with increasing dietary folate among the young mice (P trend = 0·033), but differences were not observed in the old mice. The mean values of uracil in liver DNA, in contrast, decreased with increasing dietary folate among the old mice, but it did not reach a statistically significant level (P < 0·1). Compared with the folate-deplete group, thymidine supplementation reduced uracil misincorporation into the liver DNA of aged mice (P = 0·026). The present study suggests that the effects of folate and thymidine supplementation on uracil misincorporation into DNA differ depending on age and tissue. Further studies are needed to clarify the significance of increased uracil misincorporation into colonic DNA of folate-supplemented young mice.


Asunto(s)
Colon/metabolismo , ADN/metabolismo , Ácido Fólico/farmacología , Hígado/metabolismo , Mutación/efectos de los fármacos , Uracilo/metabolismo , Complejo Vitamínico B/farmacología , Factores de Edad , Animales , Suplementos Dietéticos , Cromatografía de Gases y Espectrometría de Masas , Lacticaseibacillus casei , Masculino , Ratones , Ratones Endogámicos C57BL , Timidina/farmacología , Timidina Monofosfato/biosíntesis
17.
Birth Defects Res A Clin Mol Teratol ; 88(8): 612-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20589880

RESUMEN

BACKGROUND: Folate one-carbon metabolism has been implicated as a determinant of susceptibility to neural tube defects (NTDs), owing to the preventive effect of maternal folic acid supplementation and the higher risk associated with markers of diminished folate status. METHODS: Folate one-carbon metabolism was compared in curly tail (ct/ct) and genetically matched congenic (+(ct)/+(ct)) mouse strains using the deoxyuridine suppression test in embryonic fibroblast cells and by quantifying s-adenosylmethionine (SAM) and s-adenosylhomocysteine (SAH) in embryos using liquid chromatography tandem mass spectrometry. A possible genetic interaction between curly tail and a null allele of 5,10-methylenetetrahydrofolate reductase (MTHFR) was investigated by generation of compound mutant embryos. RESULTS: There was no deficit in thymidylate biosynthesis in ct/ct cells, but incorporation of exogenous thymidine was lower than in +(ct)/+(ct) cells. In +(ct)/+(ct) embryos the SAM/SAH ratio was diminished by dietary folate deficiency and normalized by folic acid or myo-inositol treatment, in association with prevention of NTDs. In contrast, folate deficiency caused a significant increase in the SAM/SAH ratio in ct/ct embryos. Loss of MTHFR function in curly tail embryos significantly reduced the SAM/SAH ratio but did not cause cranial NTDs or alter the frequency of caudal NTDs. CONCLUSIONS: Curly tail fibroblasts and embryos, in which Grhl3 expression is reduced, display alterations in one-carbon metabolism, particularly in the response to folate deficiency, compared to genetically matched congenic controls in which Grhl3 is unaffected. However, unlike folate deficiency, diminished methylation potential appears to be insufficient to cause cranial NTDs in the curly tail strain, nor does it increase the frequency of caudal NTDs.


Asunto(s)
Carbono/metabolismo , Deficiencia de Ácido Fólico/complicaciones , Ácido Fólico/metabolismo , Defectos del Tubo Neural/etiología , Animales , Proteínas de Unión al ADN/genética , Femenino , Fibroblastos/metabolismo , Deficiencia de Ácido Fólico/genética , Metilación , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Ratones , Ratones Mutantes , Defectos del Tubo Neural/metabolismo , Embarazo , S-Adenosilhomocisteína/análisis , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/análisis , S-Adenosilmetionina/metabolismo , Timidina Monofosfato/biosíntesis , Factores de Transcripción/genética
19.
BMC Mol Cell Biol ; 21(1): 33, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345222

RESUMEN

BACKGROUND: Deficiency in thymidine kinase 2 (TK2) or p53 inducible ribonucleotide reductase small subunit (p53R2) is associated with tissue specific mitochondrial DNA (mtDNA) depletion. To understand the mechanisms of the tissue specific mtDNA depletion we systematically studied key enzymes in dTMP synthesis in mitochondrial and cytosolic extracts prepared from adult rat tissues. RESULTS: In addition to mitochondrial TK2 a cytosolic isoform of TK2 was characterized, which showed similar substrate specificity to the mitochondrial TK2. Total TK activity was highest in spleen and lowest in skeletal muscle. Thymidylate synthase (TS) was detected in cytosols and its activity was high in spleen but low in other tissues. TS protein levels were high in heart, brain and skeletal muscle, which deviated from TS activity levels. The p53R2 proteins were at similar levels in all tissues except liver where it was ~ 6-fold lower. Our results strongly indicate that mitochondria in most tissues are capable of producing enough dTTP for mtDNA replication via mitochondrial TK2, but skeletal muscle mitochondria do not and are most likely dependent on both the salvage and de novo synthesis pathways. CONCLUSION: These results provide important information concerning mechanisms for the tissue dependent variation of dTTP synthesis and explained why deficiency in TK2 or p53R2 leads to skeletal muscle dysfunctions. Furthermore, the presence of a putative cytosolic TK2-like enzyme may provide basic knowledge for the understanding of deoxynucleoside-based therapy for mitochondrial disorders.


Asunto(s)
Citosol/enzimología , ADN Mitocondrial/genética , Mitocondrias/enzimología , Timidina Quinasa/metabolismo , Timidina Monofosfato/biosíntesis , Animales , Encéfalo/metabolismo , Corazón/fisiología , Hígado/metabolismo , Músculo Esquelético/metabolismo , Especificidad de Órganos , Ratas , Ratas Sprague-Dawley , Ribonucleótido Reductasas/metabolismo , Bazo/metabolismo , Timidina Quinasa/deficiencia , Timidilato Sintasa/metabolismo
20.
Ann Nutr Metab ; 54(1): 28-34, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19246892

RESUMEN

BACKGROUND: Recent studies in animal models have shown that high methionine intakes induce atherosclerotic changes that may be exacerbated when deficiencies of vitamins B(6), B(12) and folate are present. However, the mechanism underlying this possible atherogenic effect remains unknown. The aim of the present study was to evaluate the effects of methionine on the folate-dependent thymidylate-DNA synthesis, as a possible mechanism of atherogenicity, as well as the effect of high methionine/low folate on several key inflammation markers, such as vascular cell adhesion molecule-1 (VCAM-1), receptor for advanced glycation end products (RAGE) and matrix metalloproteinase-9 (MMP-9) in human aortic endothelial cells. METHODS: Deoxyuridine suppression test was performed in order to evaluate thymidylate synthesis. To examine the expression of inflammation markers, cells were exposed to high methionine/low folate media for 9 days. RESULTS: The assayed methionine levels (0.1, 0.5 and 5 mM) did not affect the de novo thymidylate-DNA synthesis. Consistent with this result, methionine (1 and 2.5 mM), alone or in combination with folate deficiency, increased homocysteine levels but did not induce the expression of the inflammation markers evaluated. CONCLUSION: Under the study conditions, methionine was not able to exert the atherogenic mechanism proposed and did not have the hypothesized inflammatory consequences in human aortic endothelial cells.


Asunto(s)
Células Endoteliales/metabolismo , Mediadores de Inflamación/metabolismo , Metionina/administración & dosificación , Timidina Monofosfato/biosíntesis , Aorta/citología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Deficiencia de Ácido Fólico/complicaciones , Productos Finales de Glicación Avanzada/metabolismo , Homocisteína/sangre , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA