Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMC Genomics ; 21(1): 145, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041545

RESUMEN

BACKGROUND: The glyoxalase pathway is evolutionarily conserved and involved in the glutathione-dependent detoxification of methylglyoxal (MG), a cytotoxic by-product of glycolysis. It acts via two metallo-enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), to convert MG into D-lactate, which is further metabolized to pyruvate by D-lactate dehydrogenases (D-LDH). Since D-lactate formation occurs solely by the action of glyoxalase enzymes, its metabolism may be considered as the ultimate step of MG detoxification. By maintaining steady state levels of MG and other reactive dicarbonyl compounds, the glyoxalase pathway serves as an important line of defence against glycation and oxidative stress in living organisms. Therefore, considering the general role of glyoxalases in stress adaptation and the ability of Sorghum bicolor to withstand prolonged drought, the sorghum glyoxalase pathway warrants an in-depth investigation with regard to the presence, regulation and distribution of glyoxalase and D-LDH genes. RESULT: Through this study, we have identified 15 GLYI and 6 GLYII genes in sorghum. In addition, 4 D-LDH genes were also identified, forming the first ever report on genome-wide identification of any plant D-LDH family. Our in silico analysis indicates homology of putatively active SbGLYI, SbGLYII and SbDLDH proteins to several functionally characterised glyoxalases and D-LDHs from Arabidopsis and rice. Further, these three gene families exhibit development and tissue-specific variations in their expression patterns. Importantly, we could predict the distribution of putatively active SbGLYI, SbGLYII and SbDLDH proteins in at least four different sub-cellular compartments namely, cytoplasm, chloroplast, nucleus and mitochondria. Most of the members of the sorghum glyoxalase and D-LDH gene families are indeed found to be highly stress responsive. CONCLUSION: This study emphasizes the role of glyoxalases as well as that of D-LDH in the complete detoxification of MG in sorghum. In particular, we propose that D-LDH which metabolizes the specific end product of glyoxalases pathway is essential for complete MG detoxification. By proposing a cellular model for detoxification of MG via glyoxalase pathway in sorghum, we suggest that different sub-cellular organelles are actively involved in MG metabolism in plants.


Asunto(s)
Lactato Deshidrogenasas/genética , Lactoilglutatión Liasa/genética , Proteínas de Plantas/genética , Piruvaldehído/metabolismo , Ácido Pirúvico/metabolismo , Sorghum/enzimología , Tioléster Hidrolasas/genética , Estudio de Asociación del Genoma Completo , Lactato Deshidrogenasas/clasificación , Lactoilglutatión Liasa/clasificación , Filogenia , Proteínas de Plantas/clasificación , Sorghum/genética , Estrés Fisiológico/genética , Tioléster Hidrolasas/clasificación
2.
Appl Microbiol Biotechnol ; 104(10): 4397-4406, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32193574

RESUMEN

With increasing interest in the diverse properties of organic acids and their application in synthetic pathways, developing biological tools for producing known and novel organic acids would be very valuable. In such a system, organic acids may be activated as coenzyme A (CoA) esters, then modified by CoA-dependent enzymes, followed by CoA liberation by a broad-acting thioesterase. This study has focused on the identification of suitable thioesterases (TE) for utilisation in such a pathway. Four recombinant hotdog-fold TEs were screened with a range of CoA esters in order to identify a highly active, broad spectrum TE. The TesB-like TE, RpaL, from Rhodopseudomonas palustris was found to be able to use aromatic, alicyclic and both long and short aliphatic CoA esters. Size exclusion chromatography, revealed RpaL to be a monomer of fused hotdog domains, in contrast to the complex quaternary structures found with similar TesB-like TEs. Nonetheless, sequence alignments showed a conserved catalytic triad despite the variation in quaternary arrangement. Kinetic analysis revealed a preference towards short-branched chain CoA esters with the highest specificity towards DL-ß-hydroxybutyryl CoA (1.6 × 104 M-1 s-1), which was found to decrease as the acyl chain became longer and more functionalised. Substrate inhibition was observed with the fatty acyl n-heptadecanoyl CoA at concentrations exceeding 0.3 mM; however, this was attributed to its micellar aggregation properties. As a result of the broad activity observed with RpaL, it is a strong candidate for implementation in CoA ester pathways to generate modified or novel organic acids.


Asunto(s)
Rhodopseudomonas/enzimología , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Secuencia de Aminoácidos , Coenzima A/metabolismo , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Pseudomonas aeruginosa/genética , Especificidad por Sustrato , Tioléster Hidrolasas/clasificación
3.
Biotechnol Lett ; 41(4-5): 591-604, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30895484

RESUMEN

OBJECTIVE: We aimed to characterize a novel SGNH (Ser-Gly-Asn-His) family hydrolase from the annotated genome of marine bacteria with new features. RESULTS: A novel esterase Ali5 from Altererythrobacter ishigakiensis has been identified and classified into SGNH family. Ali5 presented a novel GNSL (Gly-Asn-Ser-Leu(X)) motif that differs from the classic GDSL (Gly-Asp-Ser-Leu(X)) motif of SGNH family. The enzyme has esterase and thioesterase activity and exhibited apparent temperature and pH optima of 40 °C and pH 7.5 (in phosphate buffer), respectively. Ali5 was found to be halotolerant and thermostable, and exhibited strong resistance to several organic solvents and metal ions. The residue Tyr196 has a great influence on the catalytic activity, which was proved by site-directed mutagenesis and subsequent kinetic characterization. CONCLUSION: The esterase Ali5 with esterase and thioesterase activities, salt and metal ions resistance and unique structural features was identified, which holds promise for research on the SGNH family of hydrolases.


Asunto(s)
Alphaproteobacteria/enzimología , Secuencias de Aminoácidos , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Alphaproteobacteria/genética , Cationes/metabolismo , Biología Computacional , Análisis Mutacional de ADN , Inhibidores Enzimáticos/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Metales/metabolismo , Mutagénesis Sitio-Dirigida , Solventes/metabolismo , Temperatura , Tioléster Hidrolasas/química , Tioléster Hidrolasas/clasificación
4.
Biosci Biotechnol Biochem ; 82(12): 2072-2083, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30122118

RESUMEN

Sugar metabolism pathways such as photosynthesis produce dicarbonyls, e.g. methylglyoxal (MG), which can cause cellular damage. The glyoxalase (GLX) system comprises two enzymes GLX1 and GLX2, and detoxifies MG; however, this system is poorly understood in the chloroplast, compared with the cytosol. In the present study, we determined GLX1 and GLX2 activities in spinach chloroplasts, which constituted 40% and 10%, respectively, of the total leaf glyoxalase activity. In Arabidopsis thaliana, five GFP-fusion GLXs were present in the chloroplasts. Under high CO2 concentrations, where increased photosynthesis promotes the MG production, GLX1 and GLX2 activities in A. thaliana increased and the expression of AtGLX1-2 and AtGLX2-5 was enhanced. On the basis of these findings and the phylogeny of GLX in oxygenic phototrophs, we propose that the GLX system scavenges MG produced in chloroplasts during photosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/farmacología , Cloroplastos/efectos de los fármacos , Cloroplastos/enzimología , Lactoilglutatión Liasa/metabolismo , Tioléster Hidrolasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Lactoilglutatión Liasa/clasificación , Fotosíntesis , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Spinacia oleracea/metabolismo , Fracciones Subcelulares/enzimología , Tioléster Hidrolasas/clasificación
5.
BMC Plant Biol ; 16: 87, 2016 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-27083416

RESUMEN

BACKGROUND: Glyoxalase pathway consists of two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII) which detoxifies a highly cytotoxic metabolite methylglyoxal (MG) to its non-toxic form. MG may form advanced glycation end products with various cellular macro-molecules such as proteins, DNA and RNA; that ultimately lead to their inactivation. Role of glyoxalase enzymes has been extensively investigated in various plant species which showed their crucial role in salinity, drought and heavy metal stress tolerance. Previously genome-wide analysis of glyoxalase genes has been conducted in model plants Arabidopsis and rice, but no such study was performed in any legume species. RESULTS: In the present study, a comprehensive genome database analysis of soybean was performed and identified a total of putative 41 GLYI and 23 GLYII proteins encoded by 24 and 12 genes, respectively. Detailed analysis of these identified members was conducted including their nomenclature and classification, chromosomal distribution and duplication, exon-intron organization, and protein domain(s) and motifs identification. Expression profiling of these genes has been performed in different tissues and developmental stages as well as under salinity and drought stresses using publicly available RNAseq and microarray data. The study revealed that GmGLYI-7 and GmGLYII-8 have been expressed intensively in all the developmental stages and tissues; while GmGLYI-6, GmGLYI-9, GmGLYI-20, GmGLYII-5 and GmGLYII-10 were highly abiotic stress responsive members. CONCLUSIONS: The present study identifies the largest family of glyoxalase proteins to date with 41 GmGLYI and 23 GmGLYII members in soybean. Detailed analysis of GmGLYI and GmGLYII genes strongly indicates the genome-wide segmental and tandem duplication of the glyoxalase members. Moreover, this study provides a strong basis about the biological role and function of GmGLYI and GmGLYII members in soybean growth, development and stress physiology.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genoma de Planta/genética , Glycine max/genética , Lactoilglutatión Liasa/genética , Proteínas de Plantas/genética , Tioléster Hidrolasas/genética , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Secuencia de Aminoácidos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Sequías , Exones , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Intrones , Lactoilglutatión Liasa/química , Lactoilglutatión Liasa/clasificación , Modelos Moleculares , Familia de Multigenes , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Dominios Proteicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salinidad , Homología de Secuencia de Aminoácido , Glycine max/enzimología , Glycine max/crecimiento & desarrollo , Estrés Fisiológico , Tioléster Hidrolasas/química , Tioléster Hidrolasas/clasificación
6.
Nucleic Acids Res ; 41(Database issue): D423-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193256

RESUMEN

The ESTHER database, which is freely available via a web server (http://bioweb.ensam.inra.fr/esther) and is widely used, is dedicated to proteins with an α/ß-hydrolase fold, and it currently contains >30 000 manually curated proteins. Herein, we report those substantial changes towards improvement that we have made to improve ESTHER during the past 8 years since our 2004 update. In particular, we generated 87 new families and increased the coverage of the UniProt Knowledgebase (UniProtKB). We also renewed the ESTHER website and added new visualization tools, such as the Overall Table and the Family Tree. We also address two topics of particular interest to the ESTHER users. First, we explain how the different enzyme classifications (bacterial lipases, peptidases, carboxylesterases) used by different communities of users are combined in ESTHER. Second, we discuss how variations of core architecture or in predicted active site residues result in a more precise clustering of families, and whether this strategy provides trustable hints to identify enzyme-like proteins with no catalytic activity.


Asunto(s)
Bases de Datos de Proteínas , Hidrolasas/química , Hidrolasas/clasificación , Bacterias/enzimología , Dominio Catalítico , Esterasas/química , Esterasas/clasificación , Internet , Lipasa/química , Lipasa/clasificación , Pliegue de Proteína , Serina Endopeptidasas/química , Serina Endopeptidasas/clasificación , Programas Informáticos , Tioléster Hidrolasas/química , Tioléster Hidrolasas/clasificación
7.
Nucleic Acids Res ; 39(Database issue): D342-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21045059

RESUMEN

The ThYme (Thioester-active enzYme; http://www.enzyme.cbirc.iastate.edu) database has been constructed to bring together amino acid sequences and 3D (tertiary) structures of all the enzymes constituting the fatty acid synthesis and polyketide synthesis cycles. These enzymes are active on thioester-containing substrates, specifically those that are parts of the acyl-CoA synthase, acyl-CoA carboxylase, acyl transferase, ketoacyl synthase, ketoacyl reductase, hydroxyacyl dehydratase, enoyl reductase and thioesterase enzyme groups. These groups have been classified into families, members of which are similar in sequences, tertiary structures and catalytic mechanisms, implying common protein ancestry. ThYme is continually updated as sequences and tertiary structures become available.


Asunto(s)
Bases de Datos de Proteínas , Ácidos Grasos/biosíntesis , Macrólidos/metabolismo , Aciltransferasas/química , Aciltransferasas/clasificación , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , Ligasas de Carbono-Carbono/química , Ligasas de Carbono-Carbono/clasificación , Ligasas de Carbono-Carbono/metabolismo , Dominio Catalítico , Hidroliasas/química , Hidroliasas/clasificación , Hidroliasas/metabolismo , Ligasas/química , Ligasas/clasificación , Ligasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/clasificación , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína , Tioléster Hidrolasas/química , Tioléster Hidrolasas/clasificación , Tioléster Hidrolasas/metabolismo
8.
BMC Biochem ; 12: 44, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21831316

RESUMEN

BACKGROUND: Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid compositions of storage lipids. RESULTS: To explore acyl-ACP TE diversity and to identify novel acyl ACP-TEs, 31 acyl-ACP TEs from wide-ranging phylogenetic sources were characterized to ascertain their in vivo activities and substrate specificities. These acyl-ACP TEs were chosen by two different approaches: 1) 24 TEs were selected from public databases on the basis of phylogenetic analysis and fatty acid profile knowledge of their source organisms; and 2) seven TEs were molecularly cloned from oil palm (Elaeis guineensis), coconut (Cocos nucifera) and Cuphea viscosissima, organisms that produce medium-chain and short-chain fatty acids in their seeds. The in vivo substrate specificities of the acyl-ACP TEs were determined in E. coli. Based on their specificities, these enzymes were clustered into three classes: 1) Class I acyl-ACP TEs act primarily on 14- and 16-carbon acyl-ACP substrates; 2) Class II acyl-ACP TEs have broad substrate specificities, with major activities toward 8- and 14-carbon acyl-ACP substrates; and 3) Class III acyl-ACP TEs act predominantly on 8-carbon acyl-ACPs. Several novel acyl-ACP TEs act on short-chain and unsaturated acyl-ACP or 3-ketoacyl-ACP substrates, indicating the diversity of enzymatic specificity in this enzyme family. CONCLUSION: These acyl-ACP TEs can potentially be used to diversify the fatty acid biosynthesis pathway to produce novel fatty acids.


Asunto(s)
Filogenia , Tioléster Hidrolasas/clasificación , Tioléster Hidrolasas/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Análisis por Conglomerados , Bases de Datos de Proteínas , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Volátiles/biosíntesis , Modelos Moleculares , Datos de Secuencia Molecular , Plantas/enzimología , Conformación Proteica , Análisis de Secuencia de ADN , Especificidad por Sustrato , Tioléster Hidrolasas/química
9.
Plant Biol (Stuttg) ; 11(4): 574-81, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19538395

RESUMEN

The specific set of reactions that lead to the synthesis of benzoic acid in plants is still unclear, and even the subcellular compartment in which these reactions occur is unknown. Biosynthesis of both vegetative tissues and seeds of Arabidopsis thaliana contain a class of defense compounds termed glucosinolates, but only the seeds synthesize and store high levels of two glucosinolate compounds that contain a benzoic acid moiety. To identify genes involved in the synthesis of benzoic acid (directly or via benzaldehyde) in Arabidopsis, we analysed the levels of benzoylated glucosinolates in several lines that carry mutations in genes with homology to Pseudomonas fluorescens feruloyl-CoA hydratase, an enzyme that converts feruloyl-CoA to vanillin and acetyl-CoA, a reaction analogous to the conversion of cinnamoyl-CoA to benzaldehyde. We show here that mutations in the gene At5g65940, previously shown to encode a peroxisomal protein with beta-hydroxyisobutyryl-CoA hydrolase activity and designated as Chy1, lead to a deficiency of benzoic acid-containing glucosinolates in the seeds. Furthermore, Chy1 exhibits cinnamoyl-CoA hydrolase activity with a K(m) of 2.9 mum. Our findings suggest that at least a part of benzoic acid biosynthesis occurs in the peroxisomes, although the specific pathway that leads to benzoic acid and the specific biochemical role of Chy1 remain unclear.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Ácido Benzoico/química , Glucosinolatos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Tioléster Hidrolasas/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glucosinolatos/química , Modelos Biológicos , Mutación , Filogenia , Plantas Modificadas Genéticamente/genética , Semillas/genética , Tioléster Hidrolasas/clasificación , Tioléster Hidrolasas/genética
10.
Tree Physiol ; 29(10): 1299-305, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19671567

RESUMEN

A full-length cDNA of an acyl-acyl carrier protein (ACP) thioesterase (TE) (EC 3.1.2.14), named JcFATB1, was isolated from the woody oil plant Jatropha curcas L. The deduced amino acid sequence of the cDNA shares about 78% identity with FATB TEs, but only about 33% identity with FATA TEs from other plants. The deduced sequence also contains two essential residues (H(317) and C(352)) for TE catalytic activity and a putative chloroplast transit peptide at the N-terminal. Southern blot analysis revealed that a single copy of JcFATB1 is present in the J. curcas genome, and semi-quantitative PCR analysis showed that JcFATB1 was expressed in all tissues that were examined, most strongly in seeds, in which its expression peaked in late developmental stages. Seed-specific overexpression of the JcFATB1 cDNA in Arabidopsis resulted in increased levels of saturated fatty acids, especially palmitate, and in reduced levels of unsaturated fatty acids. The findings suggest that JcFATB1 from this woody oil plant can function as a saturated acyl-ACP TE and could potentially modify the seed oil of J. curcas to increase its levels of palmitate.


Asunto(s)
Jatropha/enzimología , Tioléster Hidrolasas/metabolismo , Tioléster Hidrolasas/fisiología , Secuencia de Aminoácidos , Jatropha/genética , Jatropha/metabolismo , Datos de Secuencia Molecular , Filogenia , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/enzimología , Semillas/genética , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Tioléster Hidrolasas/clasificación , Tioléster Hidrolasas/genética
11.
Structure ; 8(11): 1137-46, 2000 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-11080636

RESUMEN

BACKGROUND: Many proteins undergo posttranslational modifications involving covalent attachment of lipid groups. Among them is palmitoylation, a dynamic, reversible process that affects trimeric G proteins and Ras and constitutes a regulatory mechanism for signal transduction pathways. Recently, an acylhydrolase previously identified as lysophospholipase has been shown to function as an acyl protein thioesterase, which catalyzes depalmitoylation of Galpha proteins as well as Ras. Its amino acid sequence suggested that the protein is evolutionarily related to neutral lipases and other thioesterases, but direct structural information was not available. RESULTS: We have solved the crystal structure of the human putative Galpha-regulatory protein acyl thioesterase (hAPT1) with a single data set collected from a crystal containing the wild-type protein. The phases were calculated to 1.8 A resolution based on anomalous scattering from Br(-) ions introduced in the cryoprotectant solution in which the crystal was soaked for 20 s. The model was refined against data extending to a resolution of 1.5 A to an R factor of 18.6%. The enzyme is a member of the ubiquitous alpha/beta hydrolase family, which includes other acylhydrolases such as the palmitoyl protein thioesterase (PPT1). CONCLUSIONS: The human APT1 is closely related to a previously described carboxylesterase from Pseudomonas fluorescens. The active site contains a catalytic triad of Ser-114, His-203, and Asp-169. Like carboxylesterase, hAPT1 appears to be dimeric, although the mutual disposition of molecules in the two dimers differs. Unlike carboxylesterase, the substrate binding pocket and the active site of hAPT1 are occluded by the dimer interface, suggesting that the enzyme must dissociate upon interaction with substrate.


Asunto(s)
Tioléster Hidrolasas/química , Acilación , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Dimerización , Evolución Molecular , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hidrolasas/clasificación , Modelos Moleculares , Datos de Secuencia Molecular , Ácido Palmítico/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Relación Estructura-Actividad , Tioléster Hidrolasas/clasificación
12.
FEBS Lett ; 509(3): 345-9, 2001 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-11749953

RESUMEN

CoA-transferases are found in organisms from all lines of descent. Most of these enzymes belong to two well-known enzyme families, but recent work on unusual biochemical pathways of anaerobic bacteria has revealed the existence of a third family of CoA-transferases. The members of this enzyme family differ in sequence and reaction mechanism from CoA-transferases of the other families. Currently known enzymes of the new family are a formyl-CoA: oxalate CoA-transferase, a succinyl-CoA: (R)-benzylsuccinate CoA-transferase, an (E)-cinnamoyl-CoA: (R)-phenyllactate CoA-transferase, and a butyrobetainyl-CoA: (R)-carnitine CoA-transferase. In addition, a large number of proteins of unknown or differently annotated function from Bacteria, Archaea and Eukarya apparently belong to this enzyme family. Properties and reaction mechanisms of the CoA-transferases of family III are described and compared to those of the previously known CoA-transferases.


Asunto(s)
Bacterias Anaerobias/enzimología , Coenzima A Transferasas/clasificación , Coenzima A Transferasas/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Unión Competitiva , Coenzima A Transferasas/química , Cinética , Especificidad por Sustrato , Tioléster Hidrolasas/clasificación , Tioléster Hidrolasas/metabolismo
13.
Gene ; 542(1): 16-22, 2014 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-24631366

RESUMEN

Acyl-acyl carrier protein (ACP) thioesterases (TE EC 3.1.2.14) are fatty acid biosynthesis key enzymes that determine fatty acid carbon chain length in most plant tissues. A full-length cDNA corresponding to one of the fatty acyl-ACP thioesterase (Fat) genes, designated LcFatB, was isolated from developing Lindera communis seeds using PCR and RACE with degenerate primers based on conserved sequences of multiple TE gene sequences obtained from GenBank. The 1788 bp cDNA had an open reading frame (ORF) of 1260 bp encoding a protein of 419 amino acids. The deduced amino acid sequence showed 61-73% identity to proteins in the FatB class of plant thioesterases. Real-time quantitative PCR analysis revealed that LcFatB was expressed in all tissues of L. communis, with the highest expression in the developing seeds 75days after flowering. Recombinant pET-MLcFatB was constructed using the pET-30 a vector and transformed into Escherichia coli BL21(DE3)△FadE, a strain that deleted the acyl-CoA dehydrogenase (FadE). SDS-PAGE analysis of proteins isolated from pET-MLcFatB E. coli cells after induction with IPTG revealed a protein band at ~40.5kDa, corresponding to the predicted size of LcFatB mature protein. The decanoic acid and lauric acid contents of the pET-MLcFatB transformant were increased significantly. These findings suggest that an LcFatB gene from a non-traditional oil-seed tree could be used to function as a saturated acyl-ACP thioesterase and could potentially be used to modify the fatty acid composition of seed oil from L. communis or other species through transgenic approaches.


Asunto(s)
Lindera/enzimología , Tioléster Hidrolasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Ácidos Decanoicos/metabolismo , Perfilación de la Expresión Génica , Ácidos Láuricos/metabolismo , Datos de Secuencia Molecular , Filogenia , Semillas/enzimología , Alineación de Secuencia , Análisis de Secuencia de ADN , Tioléster Hidrolasas/biosíntesis , Tioléster Hidrolasas/clasificación , Tioléster Hidrolasas/metabolismo
14.
Phytochemistry ; 107: 7-15, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25212866

RESUMEN

Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results.


Asunto(s)
Brassicaceae/enzimología , Ácidos Grasos/análisis , Aceites de Plantas/metabolismo , Semillas/química , Tioléster Hidrolasas , Proteína Transportadora de Acilo/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Escherichia coli/genética , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Especificidad por Sustrato , Tioléster Hidrolasas/clasificación , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/aislamiento & purificación , Tioléster Hidrolasas/metabolismo
15.
Curr Drug Targets ; 9(11): 957-65, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18991608

RESUMEN

Trypanosomatids are pathogenic protozoa of the order Kinetoplastida. A unique feature of these parasitic protozoa is the presence of a unique dithiol trypanothione (N(1), N(8) -bis(glutathionyl)spermidine) and the flavoenzyme trypanothione reductase. This is in contrast to human and other eukaryotes, which contain ubiquitous glutathione/glutathione reductase system. An important function of thiols is to protect cells from toxic metabolic by-products such as methylglyoxal, a reactive 2-oxoaldehyde. Methylglyoxal is a mutagenic and a cytotoxic compound. The glyoxalase system is involved in the detoxification of methylglyoxal. The exceptionality of the glyoxalase enzyme in the parasitic protozoa is the dependence on the dithiol -trypanothione for detoxifying the toxic methylglyoxal. The detoxification process by the glyoxalase enzyme in eukaryotes and most other organisms is dependent on the tripeptide glutathione. The glyoxalase enzyme of trypanosomatids are also exceptional in a way that they use the divalent cation nickel as a cofactor like the glyoxalase enzyme of E. coli, whereas in eukaryotes the cofactor is zinc. This reflects that both the substrate as well as the cofactor of the kinetoplastids glyoxalase enzyme is distinct from that of the glyoxalase enzyme of eukaryotes. These differences reveal that the active site of the glyoxalase enzyme of the parasite and its mammalian counterpart are significantly different thereby proposing that the glyoxalase enzyme of the protozoan parasite can be a potential chemotherapeutic target.


Asunto(s)
Lactoilglutatión Liasa/metabolismo , Piruvaldehído/metabolismo , Tioléster Hidrolasas/metabolismo , Trypanosomatina/enzimología , Animales , Inhibidores Enzimáticos/uso terapéutico , Humanos , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/clasificación , Estructura Molecular , Filogenia , Infecciones por Protozoos/tratamiento farmacológico , Infecciones por Protozoos/parasitología , Piruvaldehído/química , Tioléster Hidrolasas/antagonistas & inhibidores , Tioléster Hidrolasas/clasificación , Trypanosomatina/efectos de los fármacos , Trypanosomatina/metabolismo
16.
Plant Cell ; 19(2): 688-705, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17293566

RESUMEN

AvrBsT is a type III effector from Xanthomonas campestris pv vesicatoria that is translocated into plant cells during infection. AvrBsT is predicted to encode a Cys protease that targets intracellular host proteins. To dissect AvrBsT function and recognition in Arabidopsis thaliana, 71 ecotypes were screened to identify lines that elicit an AvrBsT-dependent hypersensitive response (HR) after Xanthomonas campestris pv campestris (Xcc) infection. The HR was observed only in the Pi-0 ecotype infected with Xcc strain 8004 expressing AvrBsT. To create a robust pathosystem to study AvrBsT immunity in Arabidopsis, the foliar pathogen Pseudomonas syringae pv tomato (Pst) strain DC3000 was engineered to translocate AvrBsT into Arabidopsis by the Pseudomonas type III secretion (T3S) system. Pi-0 leaves infected with Pst DC3000 expressing a Pst T3S signal fused to AvrBsT-HA (AvrBsTHYB-HA) elicited HR and limited pathogen growth, confirming that the HR leads to defense. Resistance in Pi-0 is caused by a recessive mutation predicted to inactivate a carboxylesterase known to hydrolyze lysophospholipids and acylated proteins in eukaryotes. Transgenic Pi-0 plants expressing the wild-type Columbia allele are susceptible to Pst DC3000 AvrBsTHYB-HA infection. Furthermore, wild-type recombinant protein cleaves synthetic p-nitrophenyl ester substrates in vitro. These data indicate that the carboxylesterase inhibits AvrBsT-triggered phenotypes in Arabidopsis. Here, we present the cloning and characterization of the SUPPRESSOR OF AVRBST-ELICITED RESISTANCE1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Carboxilesterasa/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Inmunidad Innata/genética , Xanthomonas campestris/patogenicidad , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxilesterasa/química , Carboxilesterasa/clasificación , Carboxilesterasa/genética , Hidrolasas de Éster Carboxílico/genética , Clonación Molecular , Humanos , Lisofosfolipasa/química , Lisofosfolipasa/clasificación , Lisofosfolipasa/genética , Lisofosfolipasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Fenotipo , Filogenia , Hojas de la Planta/metabolismo , Conformación Proteica , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Tioléster Hidrolasas/química , Tioléster Hidrolasas/clasificación , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Xanthomonas campestris/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA