Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.434
Filtrar
Más filtros

Colección OPSURU
Intervalo de año de publicación
1.
PLoS Med ; 21(6): e1004414, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38857311

RESUMEN

BACKGROUND: In many countries, infant vaccination with acellular pertussis (aP) vaccines has replaced use of more reactogenic whole-cell pertussis (wP) vaccines. Based on immunological and epidemiological evidence, we hypothesised that substituting the first aP dose in the routine vaccination schedule with wP vaccine might protect against IgE-mediated food allergy. We aimed to compare reactogenicity, immunogenicity, and IgE-mediated responses of a mixed wP/aP primary schedule versus the standard aP-only schedule. METHODS AND FINDINGS: OPTIMUM is a Bayesian, 2-stage, double-blind, randomised trial. In stage one, infants were assigned (1:1) to either a first dose of a pentavalent wP combination vaccine (DTwP-Hib-HepB, Pentabio PT Bio Farma, Indonesia) or a hexavalent aP vaccine (DTaP-Hib-HepB-IPV, Infanrix hexa, GlaxoSmithKline, Australia) at approximately 6 weeks old. Subsequently, all infants received the hexavalent aP vaccine at 4 and 6 months old as well as an aP vaccine at 18 months old (DTaP-IPV, Infanrix-IPV, GlaxoSmithKline, Australia). Stage two is ongoing and follows the above randomisation strategy and vaccination schedule. Ahead of ascertainment of the primary clinical outcome of allergist-confirmed IgE-mediated food allergy by 12 months old, here we present the results of secondary immunogenicity, reactogenicity, tetanus toxoid IgE-mediated immune responses, and parental acceptability endpoints. Serum IgG responses to diphtheria, tetanus, and pertussis antigens were measured using a multiplex fluorescent bead-based immunoassay; total and specific IgE were measured in plasma by means of the ImmunoCAP assay (Thermo Fisher Scientific). The immunogenicity of the mixed schedule was defined as being noninferior to that of the aP-only schedule using a noninferiority margin of 2/3 on the ratio of the geometric mean concentrations (GMR) of pertussis toxin (PT)-IgG 1 month after the 6-month aP. Solicited adverse reactions were summarised by study arm and included all children who received the first dose of either wP or aP. Parental acceptance was assessed using a 5-point Likert scale. The primary analyses were based on intention-to-treat (ITT); secondary per-protocol (PP) analyses were also performed. The trial is registered with ANZCTR (ACTRN12617000065392p). Between March 7, 2018 and January 13, 2020, 150 infants were randomised (75 per arm). PT-IgG responses of the mixed schedule were noninferior to the aP-only schedule at approximately 1 month after the 6-month aP dose [GMR = 0·98, 95% credible interval (0·77 to 1·26); probability (GMR > 2/3) > 0·99; ITT analysis]. At 7 months old, the posterior median probability of quantitation for tetanus toxoid IgE was 0·22 (95% credible interval 0·12 to 0·34) in both the mixed schedule group and in the aP-only group. Despite exclusions, the results were consistent in the PP analysis. At 6 weeks old, irritability was the most common systemic solicited reaction reported in wP (65 [88%] of 74) versus aP (59 [82%] of 72) vaccinees. At the same age, severe systemic reactions were reported among 14 (19%) of 74 infants after wP and 8 (11%) of 72 infants after aP. There were 7 SAEs among 5 participants within the first 6 months of follow-up; on blinded assessment, none were deemed to be related to the study vaccines. Parental acceptance of mixed and aP-only schedules was high (71 [97%] of 73 versus 69 [96%] of 72 would agree to have the same schedule again). CONCLUSIONS: Compared to the aP-only schedule, the mixed schedule evoked noninferior PT-IgG responses, was associated with more severe reactions, but was well accepted by parents. Tetanus toxoid IgE responses did not differ across the study groups. TRIAL REGISTRATION: Trial registered at the Australian and New Zealand Clinical 207 Trial Registry (ACTRN12617000065392p).


Asunto(s)
Vacuna contra Difteria, Tétanos y Tos Ferina , Esquemas de Inmunización , Inmunoglobulina E , Humanos , Lactante , Método Doble Ciego , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Femenino , Masculino , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Vacuna contra Difteria, Tétanos y Tos Ferina/administración & dosificación , Vacuna contra Difteria, Tétanos y Tos Ferina/efectos adversos , Australia , Vacunas Combinadas/inmunología , Vacunas Combinadas/efectos adversos , Vacunas Combinadas/administración & dosificación , Vacuna contra la Tos Ferina/inmunología , Vacuna contra la Tos Ferina/efectos adversos , Vacuna contra la Tos Ferina/administración & dosificación , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/prevención & control , Vacuna Antipolio de Virus Inactivados/inmunología , Vacuna Antipolio de Virus Inactivados/efectos adversos , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacunas contra Haemophilus/inmunología , Vacunas contra Haemophilus/efectos adversos , Vacunas contra Haemophilus/administración & dosificación , Tos Ferina/prevención & control , Tos Ferina/inmunología , Inmunogenicidad Vacunal , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología
2.
PLoS Pathog ; 17(9): e1009920, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34547035

RESUMEN

RTX leukotoxins are a diverse family of prokaryotic virulence factors that are secreted by the type 1 secretion system (T1SS) and target leukocytes to subvert host defenses. T1SS substrates all contain a C-terminal RTX domain that mediates recruitment to the T1SS and drives secretion via a Brownian ratchet mechanism. Neutralizing antibodies against the Bordetella pertussis adenylate cyclase toxin, an RTX leukotoxin essential for B. pertussis colonization, have been shown to target the RTX domain and prevent binding to the αMß2 integrin receptor. Knowledge of the mechanisms by which antibodies bind and neutralize RTX leukotoxins is required to inform structure-based design of bacterial vaccines, however, no structural data are available for antibody binding to any T1SS substrate. Here, we determine the crystal structure of an engineered RTX domain fragment containing the αMß2-binding site bound to two neutralizing antibodies. Notably, the receptor-blocking antibodies bind to the linker regions of RTX blocks I-III, suggesting they are key neutralization-sensitive sites within the RTX domain and are likely involved in binding the αMß2 receptor. As the engineered RTX fragment contained these key epitopes, we assessed its immunogenicity in mice and showed that it elicits similar neutralizing antibody titers to the full RTX domain. The results from these studies will support the development of bacterial vaccines targeting RTX leukotoxins, as well as next-generation B. pertussis vaccines.


Asunto(s)
Toxina de Adenilato Ciclasa/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antiprotozoarios/química , Vacuna contra la Tos Ferina , Factores de Virulencia de Bordetella/química , Toxina de Adenilato Ciclasa/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/química , Antígenos de Protozoos/inmunología , Bordetella pertussis , Ratones , Dominios Proteicos/inmunología , Factores de Virulencia de Bordetella/inmunología , Tos Ferina/inmunología , Tos Ferina/prevención & control
3.
Epidemiol Infect ; 150: e39, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35229710

RESUMEN

Diphtheria is a potentially devastating disease whose epidemiology remains poorly described in many settings, including Madagascar. Diphtheria vaccination is delivered in combination with pertussis and tetanus antigens and coverage of this vaccine is often used as a core measure of health system functioning. However, coverage is challenging to estimate due to the difficulty in translating numbers of doses delivered into numbers of children effectively immunised. Serology provides an alternative lens onto immunisation, but is complicated by challenges in discriminating between natural and vaccine-derived seropositivity. Here, we leverage known features of the serological profile of diphtheria to bound expectations for vaccine coverage for diphtheria, and further refine these using serology for pertussis. We measured diphtheria antibody titres in 185 children aged 6-11 months and 362 children aged 8-15 years and analysed them with pertussis antibody titres previously measured for each individual. Levels of diphtheria seronegativity varied among age groups (18.9% of children aged 6-11 months old and 11.3% of children aged 8-15 years old were seronegative) and also among the districts. We also find surprisingly elevated levels of individuals seropositive to diphtheria but not pertussis in the 6-11 month old age group suggesting that vaccination coverage or efficacy of the pertussis component of the DTP vaccine remains low or that natural infection of diphtheria may be playing a significant role in seropositivity in Madagascar.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Vacuna contra Difteria, Tétanos y Tos Ferina/uso terapéutico , Difteria/prevención & control , Programas de Inmunización , Inmunoglobulina G/inmunología , Tos Ferina/prevención & control , Adolescente , Bordetella pertussis/inmunología , Niño , Corynebacterium diphtheriae/inmunología , Difteria/epidemiología , Difteria/inmunología , Femenino , Humanos , Lactante , Madagascar/epidemiología , Masculino , Estudios Seroepidemiológicos , Cobertura de Vacunación , Tos Ferina/epidemiología , Tos Ferina/inmunología
4.
J Immunol ; 205(4): 877-882, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32769142

RESUMEN

Despite high vaccine coverage in many parts of the world, pertussis is resurging in a number of areas in which acellular vaccines are the primary vaccine administered to infants and young children. This is attributed in part to the suboptimal and short-lived immunity elicited by acellular pertussis vaccines and to their inability to prevent nasal colonization and transmission of the etiologic agent Bordetella pertussis In response to this escalating public health concern, the National Institute of Allergy and Infectious Diseases held the workshop "Overcoming Waning Immunity in Pertussis Vaccines" in September 2019 to identify issues and possible solutions for the defects in immunity stimulated by acellular pertussis vaccines. Discussions covered aspects of the current problem, gaps in knowledge and possible paths forward. This review summarizes presentations and discussions of some of the key points that were raised by the workshop.


Asunto(s)
Vacuna contra la Tos Ferina/inmunología , Tos Ferina/inmunología , Animales , Bordetella pertussis/inmunología , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Estados Unidos , Vacunas Acelulares/inmunología
5.
Infect Immun ; 89(3)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33318136

RESUMEN

Bordetella pertussis colonizes the respiratory mucosa of humans, inducing an immune response seeded in the respiratory tract. An individual, once convalescent, exhibits long-term immunity to the pathogen. Current acellular pertussis (aP) vaccines do not induce the long-term immune response observed after natural infection in humans. In this study, we evaluated the durability of protection from intranasal (i.n.) pertussis vaccines in mice. Mice that convalesced from B. pertussis infection served as a control group. Mice were immunized with a mock vaccine (phosphate-buffered saline [PBS]), aP only, or an aP base vaccine combined with one of the following adjuvants: alum, curdlan, or purified whole glucan particles (IRI-1501). We utilized two study designs: short term (challenged 35 days after priming vaccination) and long term (challenged 6 months after boost). The short-term study demonstrated that immunization with i.n. vaccine candidates decreased the bacterial burden in the respiratory tract, reduced markers of inflammation, and induced significant serum and lung antibody titers. In the long-term study, protection from bacterial challenge mirrored the results observed in the short-term challenge study. Immunization with pertussis antigens alone was surprisingly protective in both models; however, the alum and IRI-1501 adjuvants induced significant B. pertussis-specific IgG antibodies in both the serum and lung and increased numbers of anti-B. pertussis IgG-secreting plasma cells in the bone marrow. Our data indicate that humoral responses induced by the i.n. vaccines correlated with protection, suggesting that long-term antibody responses can be protective.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Bordetella pertussis/inmunología , Vacuna contra la Tos Ferina/administración & dosificación , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/inmunología , Tos Ferina/prevención & control , Adyuvantes Inmunológicos/administración & dosificación , Administración Intranasal , Animales , Modelos Animales de Enfermedad , Humanos , Inmunización , Ratones , Factores de Tiempo , Vacunación
6.
Infect Immun ; 89(12): e0034621, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34516235

RESUMEN

Pertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis. The transition from a whole-cell pertussis vaccine (wP and DTP) to an acellular pertussis vaccine (aP, DTaP, and Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis. Overall, our goal was to evaluate the route of vaccination in the coughing rat model of pertussis. Immunity induced by both oral gavage and intranasal vaccination of aP in B. pertussis challenged rats over a 9-day infection was compared to intramuscular wP (IM-wP)- and IM-aP-immunized rats that were used as positive controls. Our data demonstrate that mucosal immunization of aP resulted in the production of anti-B. pertussis IgG antibody titers similar to IM-wP- and IM-aP-vaccinated controls postchallenge. IN-aP also induced anti-B. pertussis IgA antibodies in the nasal cavity. Immunization with IM-wP, IM-aP, IN-aP, and OG-aP immunization protected against B. pertussis-induced cough, whereas OG-aP immunization did not protect against respiratory distress. Mucosal immunization by both intranasal and oral gavage administration protected against acute inflammation and decreased bacterial burden in the lung compared to mock-vaccinated challenge rats. The data presented in this study suggest that mucosal vaccination with aP can induce a mucosal immune response and provide protection against B. pertussis challenge. This study highlights the potential benefits and uses of the coughing rat model of pertussis; however, further questions regarding waning immunity still require additional investigation.


Asunto(s)
Bordetella pertussis/inmunología , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Inmunidad Mucosa , Tos Ferina/prevención & control , Animales , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/administración & dosificación , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno/inmunología , Inmunización , Ratas , Ratas Sprague-Dawley , Tos Ferina/inmunología
7.
Infect Immun ; 89(10): e0012621, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097504

RESUMEN

Whooping cough (pertussis) is a severe pulmonary infectious disease caused by the bacteria Bordetella pertussis. Pertussis infects an estimated 24 million people annually, resulting in >150,000 deaths. The NIH placed pertussis on the list of emerging pathogens in 2015. Antibiotics are ineffective unless administered before the onset of the disease characteristic cough. Therefore, there is an urgent need for novel pertussis therapeutics. We have shown that sphingosine-1-phosphate receptor (S1PR) agonists reduce pertussis inflammation without increasing bacterial burden. Transcriptomic studies were performed to identify this mechanism and allow for the development of pertussis therapeutics that specifically target problematic inflammation without sacrificing bacterial control. These data suggested a role for triggering receptor expressed on myeloid cells-1 (TREM-1). TREM-1 cell surface receptor functions as an amplifier of inflammatory responses. Expression of TREM-1 is increased in response to bacterial infection of mucosal surfaces. In mice, B. pertussis infection results in Toll-like receptor 9 (TLR9)-dependent increased expression of TREM-1 and its associated cytokines. Interestingly, S1PR agonists dampen pulmonary inflammation and TREM-1 expression. Mice challenged intranasally with B. pertussis and treated with ligand-dependent (LP17) and ligand-independent (GF9) TREM-1 inhibitors showed no differences in bacterial burden and significantly reduced tumor necrosis factor-α (TNF-α) and C-C motif chemokine ligand 2 (CCL-2) expression compared to controls. Mice receiving TREM-1 inhibitors showed reduced pulmonary inflammation compared to controls, indicating that TREM-1 promotes inflammatory pathology, but not bacterial control, during pertussis infection. This implicates TREM-1 as a potential therapeutic target for the treatment of pertussis.


Asunto(s)
Bordetella pertussis/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Células Mieloides/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Tos Ferina/inmunología , Tos Ferina/metabolismo , Tos Ferina/microbiología
8.
BMC Immunol ; 22(1): 68, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641798

RESUMEN

BACKGROUND: The necessity of the tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine in adolescence and adults has been emphasized since the resurgence of small-scale pertussis in Korea and worldwide due to the waning effect of the vaccine and variant pathogenic stains in the late 1990s. GreenCross Pharma (GC Pharma), a Korean company, developed the Tdap vaccine GC3111 in 2010. Recently, they enhanced the vaccine, GC3111, produced previously in 2010 to reinforce the antibody response against filamentous hemagglutinin (FHA). In this study, immunogenicity and efficacy of the enhanced Tdap vaccine compared and evaluated with two Tdap vaccines, GC3111 vaccine produced in 2010 previously and commercially available Tdap vaccine in a murine model. METHODS: Two tests groups and positive control group of Balb/c mice were primed with two doses of the diphtheria-tetanus-acellular pertussis (DTaP) vaccine followed by a single booster Tdap vaccine at 9 week using the commercially available Tdap vaccine or 2 Tdap vaccines from GC Pharma (GC3111, enhanced GC3111). Humoral response was assessed 1 week before and 2 and 4 weeks after Tdap booster vaccination. The enhanced GC3111 generated similar humoral response compare to the commercial vaccine for filamentous hemagglutinin (FHA). The interferon gamma (IFN-γ) (Th1), interleukin 5 (IL-5) (Th2) and interleukin 17 (IL-17) (Th17) cytokines were assessed 4 weeks after booster vaccination by stimulation with three simulators: heat inactivated Bordetella pertussis (hBp), vaccine antigens, and hBp mixed with antigens (hBp + antigen). A bacterial challenge test was performed 4 weeks after booster vaccination. RESULTS: Regarding cell-mediated immunity, cytokine secretion differed among the three simulators. However, no difference was found between two test groups and positive control group. All the vaccinated groups indicated a Th1 or Th1/Th2 response. On Day 5 post-bacterial challenge, B. pertussis colonies were absent in the lungs in two test groups and positive control group. CONCLUSIONS: Our results confirmed the immunogenicity of GC Pharma's Tdap vaccine; enhanced GC3111 was equivalent to the presently used commercial vaccine in terms of humoral response as well as cell-mediated cytokine expression.


Asunto(s)
Bordetella pertussis/fisiología , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Células TH1/inmunología , Tos Ferina/inmunología , Adhesinas Bacterianas/inmunología , Adolescente , Adulto , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunidad Humoral , Inmunización Secundaria , Inmunogenicidad Vacunal , Interferón gamma/metabolismo , Corea (Geográfico) , Ratones , Ratones Endogámicos BALB C , Factores de Virulencia de Bordetella/inmunología
9.
Cytokine ; 137: 155313, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002739

RESUMEN

Bordetella Pertussis (BP) vaccine-induced immunity is waning worldwide despite excellent vaccine coverage. Replacement of the whole-cell inactivated vaccine (wP) by an acellular subunit vaccine (aP) is thought to play a major role and to be associated with the recurrence of whooping cough. Previously, we detected that the polarization towards a Th2 and Th1/Th17 response in aP and wP vaccinees, respectively, persists upon aP boosting in adolescents and adults. Additionally, IL-9 and TGF-ß were found to be up-regulated in aP-primed donors and network analysis further identified IFN-ß as a potential upstream regulator of IL-17 and IL-9. Based on these findings, we hypothesized that IFN-ß produced following aP vaccination may lead to increased IL-9 and decreased IL-17 production. Also, due to the well characterized role of TGF-ß in both Th17 and Th9 differentiation, we put forth that TGF-ß addition to BP-stimulated CD4 + T cells might modulate IL-17 and IL-9 production. To test this hypothesis, we stimulated in vitro cultures of PBMC or isolated naive CD4 + T cells from aP vs wP donors with a pool of BP epitopes and assessed the effect of IFN-ß or TGF-ß in proliferative responses as well as in the cytokine secretion of IL-4, IL-9, IL-17, and IFN-γ. IFN-ß reduced BP-specific proliferation in PBMC as well as cytokine production but increased IL-9, IL-4, and IFN-γ cytokines in naïve CD4 + T cells. These effects were independent of the childhood vaccination received by the donors. Similarly, TGF-ß reduced BP-specific proliferation in PBMC but induced proliferation in naïve CD4 + T cells. However, stimulation was associated with a generalized inhibition of cytokine production regardless of the original aP or wP vaccination received by the donors. Our study suggests that key T cell functions such as cytokine secretion are under the control of antigen stimulation and environmental cues but molecular pathways different than the ones investigated here might underlie the long-lasting differential cytokine production associated with aP- vs wP-priming in childhood vaccination.


Asunto(s)
Bordetella pertussis/inmunología , Linfocitos T CD4-Positivos/inmunología , Interferón beta/farmacología , Activación de Linfocitos/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Tos Ferina/inmunología , Adulto , Bordetella pertussis/fisiología , Linfocitos T CD4-Positivos/microbiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Humanos , Activación de Linfocitos/inmunología , Masculino , Vacuna contra la Tos Ferina/inmunología , Vacunación , Vacunas Acelulares/inmunología , Tos Ferina/microbiología , Tos Ferina/prevención & control , Adulto Joven
10.
Pediatr Res ; 89(5): 1136-1143, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32599609

RESUMEN

BACKGROUND: The survival of antibody isotypes specific to pertussis toxin (PT) and filamentous hemagglutinin (FHA) from mother's own milk (MBM) and donor breast milk (DBM) during preterm infant digestion was investigated. METHODS: Feed, gastric, and stool samples were collected from 20 preterm mother-infant pairs at 8-9 days and 21-22 days postpartum. Samples were analyzed via ELISA for anti-FHA or anti-PT immunoglobulin A (IgA), IgM, and IgG. RESULTS: Anti-PT IgA, anti-FHA IgG, and anti-PT IgG were lower in MBM than DBM at 8-9 days postpartum, whereas anti-FHA IgM was higher in MBM than DBM. Anti-PT IgA, anti-PT IgG, and anti-FHA IgG in DBM decreased in gastric contents at both postpartum times but those antibodies in MBM were stable or increased during gastric digestion. Anti-FHA-specific IgA and IgM were higher in gastric contents from infants fed MBM than from infants fed DBM at 8-9 days. All pertussis antibodies were detected in infant stools at both postpartum times. CONCLUSIONS: Pertussis-specific antibodies from MBM were stable during infant digestion, whereas anti-pertussis IgA and IgG from DBM decreased in gastric contents. The constant region and variable region of antibodies and maternal immunization appear to be the critical factors for their stability to proteolytic digestion and pasteurization. IMPACT: Pertussis-specific antibodies from mother's breast milk were stable during infant digestion, whereas anti-pertussis IgA and IgG from donor breast milk decreased in gastric contents. The constant region and variable region of pertussis-specific antibodies and the maternal immunization (previous infections and vaccinations) appear to be the critical factors for their stability to proteolytic digestion and pasteurization. Pertussis-specific antibodies from either mother's breast milk or donor breast milk survived during preterm infant digestion and both types of milk will compensate for the lower IgG transplacental transfer in preterm infants compared with term infants.


Asunto(s)
Digestión , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Leche Humana/inmunología , Tos Ferina/inmunología , Ensayo de Inmunoadsorción Enzimática , Heces , Femenino , Contenido Digestivo , Humanos , Recién Nacido , Recien Nacido Prematuro
11.
RNA Biol ; 17(5): 731-742, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32070192

RESUMEN

Bordetella pertussis, a strictly human re-emerging pathogen and the causative agent of whooping cough, exploits a broad variety of virulence factors to establish efficient infection. Here, we used RNA sequencing to analyse the changes in gene expression profiles of human THP-1 macrophages resulting from B. pertussis infection. In parallel, we attempted to determine the changes in intracellular B. pertussis-specific transcriptomic profiles resulting from interaction with macrophages. Our analysis revealed that global gene expression profiles in THP-1 macrophages are extensively rewired 6 h post-infection. Among the highly expressed genes, we identified those encoding cytokines, chemokines, and transcription regulators involved in the induction of the M1 and M2 macrophage polarization programmes. Notably, several host genes involved in the control of apoptosis and inflammation which are known to be hijacked by intracellular bacterial pathogens were overexpressed upon infection. Furthermore, in silico analyses identified large temporal changes in expression of specific gene subsets involved in signalling and metabolic pathways. Despite limited numbers of the bacterial reads, we observed reduced expression of majority of virulence factors and upregulation of several transcriptional regulators during infection suggesting that intracellular B. pertussis cells switch from virulent to avirulent phase and actively adapt to intracellular environment, respectively.


Asunto(s)
Bordetella pertussis/fisiología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Macrófagos/metabolismo , Transcriptoma , Tos Ferina/genética , Tos Ferina/virología , Línea Celular , Células Cultivadas , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Tos Ferina/inmunología
12.
Methods ; 158: 33-43, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30690077

RESUMEN

We describe here a magnetic bead-based multiplex (pentaplex) immunoassay (MIA) platform developed as an alternative to enzyme-linked immunosorbent assays (ELISA) used in immunogenicity testing of DTaP/TdaP vaccine in animals. MIA simultaneously measures the concentration of serum (IgG) antibodies against B. Pertussis antigens; pertussis toxin, filamentous hemagglutinin (FHA), pertactin (PRN) and tetanus (T) and diphtheria (D) toxoid in the Tdap vaccine immunized animals. Assay validation experiments were done using a panel of serum samples. The results are expressed in IU/ml using WHO reference mice serum. The standard curve was linear with 4PL logistic fit over an eight 2-fold dilution range with LOQ of 0.003, 0.022, 0.005 IU/ml for PT, FHA and PRN and 0.016 U/ml for T and D antigens indicating sensitivity. No interference was observed in monoplex versus multiplex measurements. Specificity was demonstrated by ≥90% homologous and ≤15% heterologous inhibition for all the antigens. The assay was reproducible, with a mean coefficient of variation (CV) of ≤10% for intra-assay duplicates and ≤25% for interassays using different lots of beads and analyst. Accuracy was demonstrated wherein the ratio of observed vs. assigned unitages were within 80-120%. The study suggests that the Pentaplex (MIA) platform meets all the criteria for the serological assay combination vaccines with additional advantages of high throughput, reduced sample volumes, faster analysis with reduced manpower in contrast to conventional monoplex ELISA.


Asunto(s)
Anticuerpos Antibacterianos/aislamiento & purificación , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Pruebas Serológicas/métodos , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Difteria/sangre , Difteria/inmunología , Difteria/microbiología , Difteria/prevención & control , Ensayo de Inmunoadsorción Enzimática/instrumentación , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Fenómenos Magnéticos , Masculino , Ratones , Microesferas , Modelos Animales , Sensibilidad y Especificidad , Pruebas Serológicas/instrumentación , Tétanos/sangre , Tétanos/inmunología , Tétanos/microbiología , Tétanos/prevención & control , Vacunas Combinadas/inmunología , Tos Ferina/sangre , Tos Ferina/inmunología , Tos Ferina/microbiología , Tos Ferina/prevención & control
13.
J Infect Chemother ; 26(7): 651-659, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32307307

RESUMEN

BACKGROUND: Globally, the use of single DTaP-IPV/Hib vaccines that combine DTaP-IPV and Hib is widespread, but in Japan vaccination is usually concomitant at separate sites. The immunogenicity and safety of a primary vaccination series and booster of a combined pentavalent DTaP-IPV/Hib vaccine were evaluated and compared to separate administration of DTaP-IPV and Hib in Japanese infants. METHODS: Healthy Japanese infants were administered DTaP-IPV/Hib (Group A: N = 207) or DTaP-IPV + Hib (Group B: N = 207) by the subcutaneous (SC) or DTaP-IPV/Hib by the intramuscular (IM) route (Group C: N = 10). All subjects received a 3-dose primary vaccination series and a booster. Non-inferiority (Group A versus Group B) was tested post-primary series and subsequent post hoc analyses were performed for anti-Hib. Safety was assessed by parental reports. RESULTS: Non-inferiority for SC administration of Group A versus Group B for the primary series was demonstrated for antibody responses to all antigens except Hib using the threshold of 1.0 µg/mL. Post hoc analyses for anti-Hib demonstrated non-inferiority for the primary series response using 0.15 µg/mL, and for pre-booster antibody persistence and the booster response using 0.15 µg/mL and 1.0 µg/mL. The immune response was similar for each antigen following SC or IM administration. There were no safety concerns in any group, and a lower incidence of injection sites for the IM route was observed as expected. CONCLUSIONS: These data show the good immunogenicity and safety profile of the DTaP-IPV/Hib vaccine as a 3-dose infant primary series followed by a booster in the second year of life in Japan.


Asunto(s)
Cápsulas Bacterianas/inmunología , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Vacunas contra Haemophilus/inmunología , Inmunización Secundaria/métodos , Inmunogenicidad Vacunal , Vacuna Antipolio de Virus Inactivados/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Niño , Preescolar , Difteria/inmunología , Difteria/microbiología , Difteria/prevención & control , Vacuna contra Difteria, Tétanos y Tos Ferina/administración & dosificación , Vacuna contra Difteria, Tétanos y Tos Ferina/efectos adversos , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/administración & dosificación , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/efectos adversos , Femenino , Vacunas contra Haemophilus/administración & dosificación , Vacunas contra Haemophilus/efectos adversos , Haemophilus influenzae tipo b/inmunología , Voluntarios Sanos , Humanos , Esquemas de Inmunización , Incidencia , Lactante , Reacción en el Punto de Inyección/epidemiología , Reacción en el Punto de Inyección/inmunología , Inyecciones Intramusculares , Inyecciones Subcutáneas , Japón , Masculino , Meningitis por Haemophilus/inmunología , Meningitis por Haemophilus/microbiología , Meningitis por Haemophilus/prevención & control , Poliomielitis/inmunología , Poliomielitis/microbiología , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio de Virus Inactivados/efectos adversos , Tétanos/inmunología , Tétanos/microbiología , Tétanos/prevención & control , Vacunas Conjugadas/administración & dosificación , Vacunas Conjugadas/efectos adversos , Vacunas Conjugadas/inmunología , Tos Ferina/inmunología , Tos Ferina/microbiología , Tos Ferina/prevención & control
14.
Klin Lab Diagn ; 65(2): 90-94, 2020.
Artículo en Ruso | MEDLINE | ID: mdl-32159305

RESUMEN

A research objective - to study the possibility of using the ELISA Anti-K enzyme immunoassay system to evaluate anti-pertussis immunity. А comparative assessment of the content of co-crank antibodies in the blood serum of adults, pregnant women and children 6 years old in the agglutination test, in the test system "Anti-K ELISA" and test systems of foreign production was carried out. The "Anti-K" IFA test system makes it possible to detect the level of specific antibodies to both the whole cell and cell-free pertussis component of the vaccine at any stage of the vaccination cycle. This diagnostic test can be used to determine the tactics of immunization, and to assess population immunity.


Asunto(s)
Anticuerpos Antibacterianos/análisis , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente Indirecta , Tos Ferina/inmunología , Adulto , Pruebas de Aglutinación , Niño , Femenino , Humanos , Inmunidad , Vacuna contra la Tos Ferina , Embarazo , Vacunación
15.
Infect Immun ; 87(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510103

RESUMEN

Incidence of whooping cough (pertussis), a bacterial infection of the respiratory tract caused by the bacterium Bordetella pertussis, has reached levels not seen since the 1950s. Antibiotics fail to improve the course of disease unless administered early in infection. Therefore, there is an urgent need for the development of antipertussis therapeutics. Sphingosine-1-phosphate receptor (S1PR) agonists have been shown to reduce pulmonary inflammation during Bordetella pertussis infection in mouse models. However, the mechanisms by which S1PR agonists attenuate pertussis disease are unknown. We report the results of a transcriptome sequencing study examining pulmonary transcriptional responses in B. pertussis-infected mice treated with S1PR agonist AAL-R or vehicle control. This study identified peptidoglycan recognition protein 4 (PGLYRP4) as one of the most highly upregulated genes in the lungs of infected mice following S1PR agonism. PGLYRP4, a secreted, innate mediator of host defenses, was found to limit early inflammatory pathology in knockout mouse studies. Further, S1PR agonist AAL-R failed to attenuate pertussis disease in PGLYRP4 knockout (KO) mice. B. pertussis virulence factor tracheal cytotoxin (TCT), a secreted peptidoglycan breakdown product, induces host tissue damage. TCT-oversecreting strains were found to drive an early inflammatory response similar to that observed in PGLYRP4 KO mice. Further, TCT-oversecreting strains induced significantly greater pathology in PGLYRP4-deficient animals than their wild-type counterparts. Together, these data indicate that S1PR agonist-mediated protection against pertussis disease is PGLYRP4 dependent. Our data suggest PGLYRP4 functions, in part, by preventing TCT-induced airway damage.


Asunto(s)
Bordetella pertussis/inmunología , Proteínas Portadoras/metabolismo , Receptores de Lisoesfingolípidos/agonistas , Tos Ferina/inmunología , Animales , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Infect Immun ; 87(10)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31308086

RESUMEN

As important players in the host defense system, commensal microbes and the microbiota influence multiple aspects of host physiology. Bordetella pertussis infection is highly contagious among humans. However, the roles of the microbiota in B. pertussis pathogenesis are poorly understood. Here, we show that antibiotic-mediated depletion of the microbiota results in increased susceptibility to B. pertussis infection during the early stage. The increased susceptibility was associated with a marked impairment of the systemic IgG, IgG2a, and IgG1 antibody responses to B. pertussis infection after antibiotic treatment. Furthermore, the microbiota impacted the short-lived plasma cell responses as well as the recall responses of memory B cells to B. pertussis infection. Finally, we found that the dysbiosis caused by antibiotic treatment affects CD4+ T cell generation and PD-1 expression on CD4+ T cells and thereby perturbs plasma cell differentiation. Our results have revealed the importance of commensal microbes in modulating host immune responses to B. pertussis infection and support the possibility of controlling the severity of B. pertussis infection in humans by manipulating the microbiota.


Asunto(s)
Bordetella pertussis/inmunología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad Humoral , Simbiosis/inmunología , Tos Ferina/inmunología , Ampicilina/farmacología , Animales , Antibacterianos/farmacología , Anticuerpos Antibacterianos/biosíntesis , Anticuerpos Antibacterianos/clasificación , Bacteroidetes/clasificación , Bacteroidetes/efectos de los fármacos , Bacteroidetes/crecimiento & desarrollo , Bacteroidetes/inmunología , Bordetella pertussis/crecimiento & desarrollo , Bordetella pertussis/patogenicidad , Disbiosis/microbiología , Disbiosis/fisiopatología , Femenino , Firmicutes/clasificación , Firmicutes/efectos de los fármacos , Firmicutes/crecimiento & desarrollo , Firmicutes/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/clasificación , Metronidazol/farmacología , Ratones , Ratones Endogámicos BALB C , Neomicina/farmacología , Proteobacteria/clasificación , Proteobacteria/efectos de los fármacos , Proteobacteria/crecimiento & desarrollo , Proteobacteria/inmunología , Simbiosis/efectos de los fármacos , Vancomicina/farmacología , Tos Ferina/microbiología , Tos Ferina/fisiopatología
17.
PLoS Pathog ; 13(7): e1006531, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28742139

RESUMEN

Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.


Asunto(s)
Proteínas Bacterianas/inmunología , Bordetella pertussis/inmunología , Complemento C1/inmunología , Complemento C2/inmunología , Complemento C4/inmunología , Factores de Virulencia de Bordetella/inmunología , Tos Ferina/inmunología , Proteínas Bacterianas/genética , Bordetella pertussis/genética , Humanos , Virulencia , Factores de Virulencia de Bordetella/genética , Tos Ferina/microbiología
18.
Cell Immunol ; 337: 42-47, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30770093

RESUMEN

The resurgence of whooping cough reflects novel genetic variants of Bordetella pertussis and inadequate protection conferred by current acellular vaccines (aP). Biofilm is a source of novel vaccine candidates, including membrane protein assembly factor (BamB) and lipopolysaccharide assembly protein (LptD). Responses of BALB/c mice to candidate vaccines included IFN-γ and IL-17a production by spleen and lymph node cells, and serum IgG1 and IgG2a reactive with whole bacteria or aP. Protection was determined using bacterial cultured from lungs of vaccinated mice challenged with virulent B. pertussis. Mice vaccinated with biofilm produced efficient IFN-γ responses and more IL-17a and IgG2a than mice vaccinated with planktonic cells, aP or adjuvant alone. Vaccination with aP produced abundant IgG1 with little IgG2a. Mice vaccinated with aP plus BamB and LptD retained lower bacterial loads than mice vaccinated with aP alone. Whooping cough vaccines formulated with biofilm antigens, including BamB and LptD, may have clinical value.


Asunto(s)
Bordetella pertussis/inmunología , Inmunogenicidad Vacunal/inmunología , Vacunas Acelulares/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antibacterianos/sangre , Antígenos/inmunología , Biopelículas , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interferón gamma/inmunología , Interleucina-17/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Vacuna contra la Tos Ferina/inmunología , Bazo/inmunología , Vacunación/métodos , Tos Ferina/inmunología
19.
J Immunol ; 199(6): 2081-2095, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28779022

RESUMEN

Newborns are highly susceptible to infection. The underlying mechanism of neonatal infection susceptibility has generally been associated with neonatal immune cell immaturity. In this study, we challenged this notion and built upon our recent discovery that neonates are physiologically enriched with erythroid TER119+CD71+ cells (Elahi et al. 2013. Nature 504: 158-162). We have used Bordetella pertussis, a common neonatal respiratory tract infection, as a proof of concept to investigate the role of these cells in newborns. We found that CD71+ cells have distinctive immune-suppressive properties and suppress innate immune responses against B. pertussis infection. CD71+ cell ablation unleashed innate immune response and restored resistance to B. pertussis infection. In contrast, adoptive transfer of neonatal CD71+ cells into adult recipients impaired their innate immune response to B. pertussis infection. Enhanced innate immune response to B. pertussis was characterized by increased production of protective cytokines IFN-γ, TNF-α, and IL-12, as well as recruitment of NK cells, CD11b+, and CD11c+ cells in the lung. Neonatal and human cord blood CD71+ cells express arginase II, and this enzymatic activity inhibits phagocytosis of B. pertussis in vitro. Thus, our study challenges the notion that neonatal infection susceptibility is due to immune cell-intrinsic defects and instead highlights active immune suppression mediated by abundant CD71+ cells in the newborn. Our findings provide additional support for the novel theme in neonatal immunology that immunosuppression is essential to dampen robust immune responses in the neonate. We anticipate that our results will spark renewed investigation in modulating the function of these cells and developing novel strategies for enhancing host defense to infections in newborns.


Asunto(s)
Bordetella pertussis/inmunología , Células Eritroides/inmunología , Tos Ferina/inmunología , Animales , Animales Recién Nacidos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Grupos Sanguíneos , Células Cultivadas , Femenino , Humanos , Evasión Inmune , Tolerancia Inmunológica , Inmunidad Innata , Recién Nacido , Masculino , Ratones , Ratones Endogámicos BALB C , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo
20.
J Immunol ; 198(1): 363-374, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27864475

RESUMEN

γδ T cells play a role in protective immunity to infection at mucosal surface, but also mediate pathology in certain autoimmune diseases through innate IL-17 production. Recent reports have suggested that γδ T cells can have memory analogous to conventional αß T cells. In this study we have examined the role of γδ T cells in immunity to the respiratory pathogen Bordetella pertussis γδ T cells, predominantly Vγ4-γ1- cells, produced IL-17 in the lungs as early as 2 h after infection. The bacterial burden during primary infection was significantly enhanced and the induction of antimicrobial peptides was reduced in the absence of early IL-17. A second peak of γδ T cells is detected in the lungs 7-14 d after challenge and these γδ T cells were pathogen specific. γδ T cells, exclusively Vγ4, from the lungs of infected but not naive mice produced IL-17 in response to heat-killed B. pertussis in the presence of APC. Furthermore, γδ T cells from the lungs of mice reinfected with B. pertussis produced significantly more IL-17 than γδ T cells from infected unprimed mice. γδ T cells with a tissue resident memory T cell phenotype (CD69+CD103+) were expanded in the lungs during infection with B. pertussis and proliferated rapidly after rechallenge of convalescent mice. Our findings demonstrate that lung γδ T cells provide an early source of innate IL-17, which promotes antimicrobial peptide production, whereas pathogen-specific Vγ4 cells function in adaptive immunological memory against B. pertussis.


Asunto(s)
Memoria Inmunológica/inmunología , Interleucina-17/biosíntesis , Subgrupos de Linfocitos T/inmunología , Tos Ferina/inmunología , Inmunidad Adaptativa/inmunología , Animales , Bordetella pertussis/inmunología , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunidad Innata/inmunología , Interleucina-17/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Subgrupos de Linfocitos T/metabolismo , Tos Ferina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA