Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.360
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 630(8016): 392-400, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811741

RESUMEN

Organs have a distinctive yet often overlooked spatial arrangement in the body1-5. We propose that there is a logic to the shape of an organ and its proximity to its neighbours. Here, by using volumetric scans of many Drosophila melanogaster flies, we develop methods to quantify three-dimensional features of organ shape, position and interindividual variability. We find that both the shapes of organs and their relative arrangement are consistent yet differ between the sexes, and identify unexpected interorgan adjacencies and left-right organ asymmetries. Focusing on the intestine, which traverses the entire body, we investigate how sex differences in three-dimensional organ geometry arise. The configuration of the adult intestine is only partially determined by physical constraints imposed by adjacent organs; its sex-specific shape is actively maintained by mechanochemical crosstalk between gut muscles and vascular-like trachea. Indeed, sex-biased expression of a muscle-derived fibroblast growth factor-like ligand renders trachea sexually dimorphic. In turn, tracheal branches hold gut loops together into a male or female shape, with physiological consequences. Interorgan geometry represents a previously unrecognized level of biological complexity which might enable or confine communication across organs and could help explain sex or species differences in organ function.


Asunto(s)
Drosophila melanogaster , Intestinos , Caracteres Sexuales , Tráquea , Animales , Femenino , Masculino , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Intestinos/anatomía & histología , Tráquea/anatomía & histología , Tráquea/fisiología , Tamaño de los Órganos , Músculos/anatomía & histología , Músculos/fisiología , Ligandos , Factores de Crecimiento de Fibroblastos/metabolismo , Especificidad de la Especie
2.
Cell ; 148(1-2): 189-200, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265411

RESUMEN

Coordinated beating of cilia in the trachea generates a directional flow of mucus required to clear the airways. Each cilium originates from a barrel-shaped basal body, from the side of which protrudes a structure known as the basal foot. We generated mice in which exons 6 and 7 of Odf2, encoding a basal body and centrosome-associated protein Odf2/cenexin, are disrupted. Although Odf2(ΔEx6,7/ΔEx6,7) mice form cilia, ciliary beating is uncoordinated, and the mice display a coughing/sneezing phenotype. Whereas residual expression of the C-terminal region of Odf2 in these mice is sufficient for ciliogenesis, the resulting basal bodies lack basal feet. Loss of basal feet in ciliated epithelia disrupted the polarized organization of apical microtubule lattice without affecting planar cell polarity. The requirement for Odf2 in basal foot formation, therefore, reveals a crucial role of this structure in the polarized alignment of basal bodies and coordinated ciliary beating.


Asunto(s)
Cilios/metabolismo , Proteínas de Choque Térmico/metabolismo , Síndrome de Kartagener/patología , Tráquea/fisiología , Tráquea/ultraestructura , Animales , Cilios/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de Choque Térmico/genética , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Ratones , Microscopía Electrónica de Rastreo , Microtúbulos/metabolismo , Ruidos Respiratorios/fisiología
3.
Nat Rev Mol Cell Biol ; 15(10): 665-76, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25186133

RESUMEN

Many organs contain networks of epithelial tubes that transport gases or fluids. A lumen can be generated by tissue that enwraps a pre-existing extracellular space or it can arise de novo either between cells or within a single cell in a position where there was no space previously. Apparently distinct mechanisms of de novo lumen formation observed in vitro - in three-dimensional cultures of endothelial and Madin-Darby canine kidney (MDCK) cells - and in vivo - in zebrafish vasculature, Caenorhabditis elegans excretory cells and the Drosophila melanogaster trachea - in fact share many common features. In all systems, lumen formation involves the structured expansion of the apical plasma membrane through general mechanisms of vesicle transport and of microtubule and actin cytoskeleton regulation.


Asunto(s)
Membrana Celular/fisiología , Epitelio/fisiología , Espacio Extracelular/fisiología , Microtúbulos/fisiología , Citoesqueleto de Actina/fisiología , Animales , Caenorhabditis elegans , Línea Celular , Perros , Drosophila melanogaster , Epitelio/embriología , Humanos , Células de Riñón Canino Madin Darby , Tráquea/citología , Tráquea/embriología , Tráquea/fisiología , Venas Umbilicales/citología , Pez Cebra
4.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L203-L217, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771135

RESUMEN

This study investigated the relationship between three respiratory support approaches on lung volume recruitment during the first 2 h of postnatal life in preterm lambs. We estimated changes in lung aeration, measuring respiratory resistance and reactance by oscillometry at 5 Hz. We also measured intratracheal pressure in subsets of lambs. The first main finding is that sustained inflation (SI) applied noninvasively (Mask SI; n = 7) or invasively [endotracheal tube (ETT) SI; n = 6] led to similar rapid lung volume recruitment (∼6 min). In contrast, Mask continuous positive airway pressure (CPAP) without SI (n = 6) resuscitation took longer (∼30-45 min) to reach similar lung volume recruitment. The second main finding is that, in the first 15 min of postnatal life, the Mask CPAP without SI group closed their larynx during custom ventilator-driven expiration, leading to intratracheal positive end-expiratory pressure of ∼17 cmH2O (instead of 8 cmH2O provided by the ventilator). In contrast, the Mask SI group used the larynx to limit inspiratory pressure to ∼26 cmH2O (instead of 30 cmH2O provided by the ventilator). These different responses affected tidal volume, being larger in the Mask CPAP without SI group [8.4 mL/kg; 6.7-9.3 interquartile range (IQR)] compared to the Mask SI (5.0 mL/kg; 4.4-5.2 IQR) and ETT SI groups (3.3 mL/kg; 2.6-3.7 IQR). Distinct physiological responses suggest that spontaneous respiratory activity of the larynx of preterm lambs at birth can uncouple pressure applied by the ventilator to that applied to the lung, leading to unpredictable lung pressure and tidal volume delivery independently from the ventilator settings.NEW & NOTEWORTHY We compared invasive and noninvasive resuscitation on lambs at birth, including or not sustained inflation (SI). Lung volume recruitment was faster in those receiving SI. During noninvasive resuscitation, larynx modulation reduced tracheal pressure from that applied to the mask in lambs receiving SI, while it led to increased auto-positive end-expiratory pressure and very large tidal volumes in lambs not receiving SI. Our results highlight the need for individualizing pressures and monitoring tidal volumes during resuscitation at birth.


Asunto(s)
Animales Recién Nacidos , Pulmón , Volumen de Ventilación Pulmonar , Tráquea , Animales , Volumen de Ventilación Pulmonar/fisiología , Ovinos , Pulmón/fisiología , Tráquea/fisiología , Mecánica Respiratoria/fisiología , Presión de las Vías Aéreas Positiva Contínua/métodos , Resucitación/métodos , Intubación Intratraqueal/métodos , Presión , Respiración con Presión Positiva/métodos
5.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463728

RESUMEN

The collective polarization of cellular structures and behaviors across a tissue plane is a near universal feature of epithelia known as planar cell polarity (PCP). This property is controlled by the core PCP pathway, which consists of highly conserved membrane-associated protein complexes that localize asymmetrically at cell junctions. Here, we introduce three new mouse models for investigating the localization and dynamics of transmembrane PCP proteins: Celsr1, Fz6 and Vangl2. Using the skin epidermis as a model, we characterize and verify the expression, localization and function of endogenously tagged Celsr1-3xGFP, Fz6-3xGFP and tdTomato-Vangl2 fusion proteins. Live imaging of Fz6-3xGFP in basal epidermal progenitors reveals that the polarity of the tissue is not fixed through time. Rather, asymmetry dynamically shifts during cell rearrangements and divisions, while global, average polarity of the tissue is preserved. We show using super-resolution STED imaging that Fz6-3xGFP and tdTomato-Vangl2 can be resolved, enabling us to observe their complex localization along junctions. We further explore PCP fusion protein localization in the trachea and neural tube, and discover new patterns of PCP expression and localization throughout the mouse embryo.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de la Membrana/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Diagnóstico por Imagen/métodos , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Células Epidérmicas/metabolismo , Células Epidérmicas/fisiología , Epidermis/metabolismo , Epidermis/fisiología , Epitelio/metabolismo , Epitelio/fisiología , Receptores Frizzled/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/metabolismo , Tubo Neural/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Tráquea/metabolismo , Tráquea/fisiología
6.
Sensors (Basel) ; 24(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39275422

RESUMEN

Analysis of tracheal breathing sounds (TBS) is a significant area of study in medical diagnostics and monitoring for respiratory diseases and obstructive sleep apnea (OSA). Recorded at the suprasternal notch, TBS can provide detailed insights into the respiratory system's functioning and health. This method has been particularly useful for non-invasive assessments and is used in various clinical settings, such as OSA, asthma, respiratory infectious diseases, lung function, and detection during either wakefulness or sleep. One of the challenges and limitations of TBS recording is the background noise, including speech sound, movement, and even non-tracheal breathing sounds propagating in the air. The breathing sounds captured from the nose or mouth can interfere with the tracheal breathing sounds, making it difficult to isolate the sounds necessary for accurate diagnostics. In this study, two surface microphones are proposed to accurately record TBS acquired solely from the trachea. The frequency response of each microphone is compared with a reference microphone. Additionally, this study evaluates the tracheal and lung breathing sounds of six participants recorded using the proposed microphones versus a commercial omnidirectional microphone, both in environments with and without background white noise. The proposed microphones demonstrated reduced susceptibility to background noise particularly in the frequency ranges (1800-2199) Hz and (2200-2599) Hz with maximum deviation of 2 dB and 2.1 dB, respectively, compared to 9 dB observed in the commercial microphone. The findings of this study have potential implications for improving the accuracy and reliability of respiratory diagnostics in clinical practice.


Asunto(s)
Ruidos Respiratorios , Tráquea , Humanos , Tráquea/fisiología , Ruidos Respiratorios/fisiología , Masculino , Adulto , Diseño de Equipo , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/fisiopatología , Femenino , Procesamiento de Señales Asistido por Computador , Respiración
7.
Cell Tissue Bank ; 25(3): 765-772, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38776014

RESUMEN

Tissue engineering is a set of techniques for producing or reconstructing tissue that primarily aims to restore or improve the function of tissues in the human body. The aim of the present study was to evaluate the mechanical and histological characteristics of decellularized tracheal scaffolds prepared in comparison with fresh trachea for use in tracheal repair. In order to prepare the scaffold, sheep's trachea was prepared and after cleaning the waste tissues, they were decellularized. Then decellularized scaffolds were evaluated histologically and laboratory and numerical study of the nonlinear mechanical behavior of tracheal tissue and scaffold and their comparison. Examining the results of histological evaluations showed that the decellularization of the scaffolds was completely done. These results were confirmed by hematoxylin-eosin staining. Also, the exact hyperelastic properties of tracheal tissue and scaffold were used in biomechanical models, and according to the presented results, the five-term Mooney-Rivlin strain energy density function became a suitable behavioral model for modeling the hyperelastic behavior of trachea and scaffold. In total, the results of this research showed that the scaffolds obtained from decellularization by preserving the main compositions of the desired tissue can be a suitable platform for investigating cell behaviors.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Tráquea , Tráquea/citología , Tráquea/fisiología , Animales , Andamios del Tejido/química , Ovinos , Fenómenos Biomecánicos , Ingeniería de Tejidos/métodos
8.
Surg Radiol Anat ; 46(6): 877-883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683421

RESUMEN

PURPOSE: There have been numerous studies focused on the stiffness of tracheal cartilage. However, no research has been conducted specifically on the annular ligament, nor have any regional differences in the annular ligament been identified. The purpose of this study was to investigate the stiffness of the ligaments present between the thyroid, cricoid and tracheal cartilages. METHODS: The ligaments were identified in the cervical region of living subjects with ultrasonography. The stiffness of the ligaments was measured from the body surface using a digital palpation device (MyotonPRO). Since it is impossible to measure the entire trachea in a living subject, an additional measurement was performed on human cadavers. RESULTS: Both in vivo and cadaveric investigations found that the stiffness of annular ligaments decreased gradually from the superior to inferior parts. There was no difference in the stiffness between males and females in the superior part of the trachea. However, the stiffness of the middle and inferior parts was predominantly higher in females than in males. Furthermore, males showed significant differences in stiffness between the superior and middle parts, while females showed no significant differences. CONCLUSION: These results reveal that there are regional and sex-related differences in the stiffness of human tracheal ligaments.


Asunto(s)
Cadáver , Ligamentos , Tráquea , Humanos , Masculino , Femenino , Tráquea/diagnóstico por imagen , Tráquea/anatomía & histología , Tráquea/fisiología , Ligamentos/anatomía & histología , Ligamentos/diagnóstico por imagen , Ligamentos/fisiología , Adulto , Anciano , Persona de Mediana Edad , Ultrasonografía , Factores Sexuales , Variación Anatómica , Anciano de 80 o más Años , Adulto Joven
9.
Development ; 147(8)2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32188630

RESUMEN

Alary muscles (AMs) have been described as a component of the cardiac system in various arthropods. Lineage-related thoracic muscles (TARMs), linking the exoskeleton to specific gut regions, have recently been discovered in Drosophila Asymmetrical attachments of AMs and TARMs, to the exoskeleton on one side and internal organs on the other, suggested an architectural function in moving larvae. Here, we analysed the shape and sarcomeric organisation of AMs and TARMs, and imaged their atypical deformability in crawling larvae. We then selectively eliminated AMs and TARMs by targeted apoptosis. Elimination of AMs revealed that AMs are required for suspending the heart in proper intra-haemocelic position and for opening of the heart lumen, and that AMs constrain the curvature of the respiratory tracheal system during crawling; TARMs are required for proper positioning of visceral organs and efficient food transit. AM/TARM cardiac versus visceral attachment depends on Hox control, with visceral attachment being the ground state. TARMs and AMs are the first example of multinucleate striated muscles connecting the skeleton to the cardiac and visceral systems in bilaterians, with multiple physiological functions.


Asunto(s)
Drosophila melanogaster/anatomía & histología , Músculo Estriado/fisiología , Especificidad de Órganos , Tórax/fisiología , Animales , Calcio/metabolismo , Sistema Digestivo/metabolismo , Drosophila melanogaster/genética , Alimentos , Tránsito Gastrointestinal , Genes Homeobox , Corazón/fisiología , Espacio Intracelular/metabolismo , Larva/fisiología , Locomoción , Sarcómeros/metabolismo , Tráquea/fisiología
10.
Am J Pathol ; 192(1): 104-111, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34756873

RESUMEN

The proinflammatory cytokine tumor necrosis factor-α (TNF-α) augments intracellular Ca2+ signaling and contractile responses of airway smooth muscles, leading to airway hyperresponsiveness. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the cellular mechanism of the potentiated contraction of mouse tracheal smooth muscle induced by TNF-α. The results showed that TNF-α triggered facilitation of mouse tracheal smooth muscle contraction in an epithelium-independent manner. The TNF-α-induced hypercontractility could be suppressed by the protein kinase C inhibitor GF109203X, the tyrosine kinase inhibitor genistein, the Src inhibitor PP2, or the L-type voltage-dependent Ca2+ channel blocker nifedipine. Following TNF-α incubation, the α1C L-type Ca2+ channel (CaV1.2) was up-regulated in cultured primary mouse tracheal smooth muscle cells. Pronounced phosphotyrosine levels were observed in mouse tracheas. In conclusion, this study shows that TNF-α enhanced airway smooth muscle contraction via protein kinase C-Src-CaV1.2 pathways, which provides novel insights into the pathologic role of proinflammatory cytokines in mediating airway hyperresponsiveness.


Asunto(s)
Contracción Muscular , Músculo Liso/fisiología , Tráquea/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Canales de Calcio Tipo L/metabolismo , Carbacol/farmacología , Masculino , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Fosfotirosina/metabolismo , Proteína Quinasa C/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/fisiología , Transducción de Señal/efectos de los fármacos , Tráquea/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Familia-src Quinasas/metabolismo
11.
Respir Res ; 24(1): 267, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925434

RESUMEN

BACKGROUND: Airway tuft cells, formerly called brush cells have long been described only morphologically in human airways. More recent RNAseq studies described a chemosensory cell population, which includes tuft cells, by a distinct gene transcription signature. Yet, until which level in the tracheobronchial tree in native human airway epithelium tuft cells occur and if they function as regulators of innate immunity, e.g., by regulating mucociliary clearance, remained largely elusive. METHODS: We performed immunohistochemistry, RT-PCR and immunoblotting analyses for various tuft cell markers to confirm the presence of this cell type in human tracheal samples. Immunohistochemistry was conducted to study the distribution of tuft cells along the intrapulmonary airways in humans. We assessed the influence of bitter substances and the taste transduction pathway on mucociliary clearance in mouse and human tracheal samples by measuring particle transport speed. RESULTS: Tuft cells identified by the expression of their well-established marker POU class 2 homeobox 3 (POU2F3) were present from the trachea to the bronchioles. We identified choline acetyltransferase in POU2F3 expressing cells as well as the transient receptor potential melastatin 5 (TRPM5) channel in a small population of tracheal epithelial cells with morphological appearance of tuft cells. Application of bitter substances, such as denatonium, led to an increase in mucociliary clearance in human tracheal preparations. This was dependent on activation of the TRPM5 channel and involved cholinergic and nitric oxide signalling, indicating a functional role for human tuft cells in the regulation of mucociliary clearance. CONCLUSIONS: We were able to detect tuft cells in the tracheobronchial tree down to the level of the bronchioles. Moreover, taste transduction and cholinergic signalling occur in the same cells and regulate mucociliary clearance. Thus, tuft cells are potentially involved in the regulation of innate immunity in human airways.


Asunto(s)
Depuración Mucociliar , Tráquea , Humanos , Ratones , Animales , Tráquea/fisiología , Transducción de Señal , Gusto , Colinérgicos/metabolismo
12.
Int J Med Sci ; 20(13): 1671-1678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928871

RESUMEN

Histamine receptor-1 (H1) antagonists like levocetirizine are frequently used nowadays to treat rhinitis patients who experience rhinorrhea and sneezing. The trachea may be affected by the H1 antagonist when it is used to treat nasal symptoms, either orally or through inhalation. The purpose of this study was to ascertain in vitro effects of levocetirizine on isolated tracheal smooth muscle. As a parasympathetic mimetic, methacholine (10-6 M) causes contractions in tracheal smooth muscle, which is how we tested effectiveness of levocetirizine on isolated rat tracheal smooth muscle. We also tested the drug's impact on electrically induced tracheal smooth muscle contractions. The impact of menthol (either before or after) on the contraction brought on by 10-6 M methacholine was also investigated. According to the results, the addition of levocetirizine at concentrations of 10-5 M or more caused a slight relaxation in response to methacholine's 10-6 M contraction. Levocetirizine could prevent spike contraction brought on by electrical field stimulation (EFS). As the concentration rose, it alone had a neglect effect on the trachea's basal tension. Before menthol was applied, levocetirizine might have also inhibited the function of the cold receptor. According to this study, levocetirizine might potentially impede the parasympathetic function of the trachea. If levocetirizine was used prior to menthol addition, it also reduced the function of cold receptors.


Asunto(s)
Cetirizina , Mentol , Ratas , Humanos , Animales , Cloruro de Metacolina/farmacología , Mentol/farmacología , Cetirizina/farmacología , Cetirizina/uso terapéutico , Músculo Liso/fisiología , Contracción Muscular , Tráquea/fisiología
13.
PLoS Genet ; 16(12): e1009232, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33347437

RESUMEN

Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.


Asunto(s)
Dineínas Axonemales/metabolismo , Axonema/metabolismo , Transporte Biológico Activo/genética , Movimiento Celular/genética , Cilios/metabolismo , Embrión de Mamíferos/metabolismo , Microtúbulos/metabolismo , Animales , Dineínas Axonemales/genética , Axonema/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cilios/genética , Embrión de Mamíferos/fisiología , Embrión de Mamíferos/ultraestructura , Epéndimo/embriología , Epéndimo/metabolismo , Epéndimo/fisiología , Técnica del Anticuerpo Fluorescente , Genotipo , Inmunoprecipitación , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microtúbulos/genética , Mutación , Fenotipo , Tráquea/embriología , Tráquea/metabolismo , Tráquea/fisiología , Tráquea/ultraestructura
14.
FASEB J ; 35(7): e21674, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34115899

RESUMEN

Current therapeutic approaches to avoid or reverse bronchoconstriction rely primarily on ß2 adrenoceptor agonists (ß-agonists) that regulate pharmacomechanical coupling/cross bridge cycling in airway smooth muscle (ASM). Targeting actin cytoskeleton polymerization in ASM represents an alternative means to regulate ASM contraction. Herein we report the cooperative effects of targeting these distinct pathways with ß-agonists and inhibitors of the mammalian Abelson tyrosine kinase (Abl1 or c-Abl). The cooperative effect of ß-agonists (isoproterenol) and c-Abl inhibitors (GNF-5, or imatinib) on contractile agonist (methacholine, or histamine) -induced ASM contraction was assessed in cultured human ASM cells (using Fourier Transfer Traction Microscopy), in murine precision cut lung slices, and in vivo (flexiVent in mice). Regulation of intracellular signaling that regulates contraction (pMLC20, pMYPT1, pHSP20), and actin polymerization state (F:G actin ratio) were assessed in cultured primary human ASM cells. In each (cell, tissue, in vivo) model, c-Abl inhibitors and ß-agonist exhibited additive effects in either preventing or reversing ASM contraction. Treatment of contracted ASM cells with c-Abl inhibitors and ß-agonist cooperatively increased actin disassembly as evidenced by a significant reduction in the F:G actin ratio. Mechanistic studies indicated that the inhibition of pharmacomechanical coupling by ß-agonists is near optimal and is not increased by c-Abl inhibitors, and the cooperative effect on ASM relaxation resides in further relaxation of ASM tension development caused by actin cytoskeleton depolymerization, which is regulated by both ß-agonists and c-Abl inhibitors. Thus, targeting actin cytoskeleton polymerization represents an untapped therapeutic reserve for managing airway resistance.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Sinergismo Farmacológico , Contracción Muscular , Relajación Muscular , Músculo Liso/fisiología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Tráquea/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Antineoplásicos/farmacología , Benzamidas/farmacología , Humanos , Mesilato de Imatinib/farmacología , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Músculo Liso/citología , Músculo Liso/efectos de los fármacos , Pirimidinas/farmacología , Transducción de Señal , Tráquea/citología , Tráquea/efectos de los fármacos
15.
PLoS Biol ; 17(2): e2006507, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30730882

RESUMEN

The unique avian vocal organ, the syrinx, is located at the caudal end of the trachea. Although a larynx is also present at the opposite end, birds phonate only with the syrinx. Why only birds evolved a novel sound source at this location remains unknown, and hypotheses about its origin are largely untested. Here, we test the hypothesis that the syrinx constitutes a biomechanical advantage for sound production over the larynx with combined theoretical and experimental approaches. We investigated whether the position of a sound source within the respiratory tract affects acoustic features of the vocal output, including fundamental frequency and efficiency of conversion from aerodynamic energy to sound. Theoretical data and measurements in three bird species suggest that sound frequency is influenced by the interaction between sound source and vocal tract. A physical model and a computational simulation also indicate that a sound source in a syringeal position produces sound with greater efficiency. Interestingly, the interactions between sound source and vocal tract differed between species, suggesting that the syringeal sound source is optimized for its position in the respiratory tract. These results provide compelling evidence that strong selective pressures for high vocal efficiency may have been a major driving force in the evolution of the syrinx. The longer trachea of birds compared to other tetrapods made them likely predisposed for the evolution of a syrinx. A long vocal tract downstream from the sound source improves efficiency by facilitating the tuning between fundamental frequency and the first vocal tract resonance.


Asunto(s)
Acústica , Estructuras Animales/fisiología , Evolución Biológica , Modelos Biológicos , Animales , Aves/anatomía & histología , Simulación por Computador , Laringe/fisiología , Mamíferos/anatomía & histología , Sonido , Tráquea/fisiología , Vocalización Animal
16.
PLoS Comput Biol ; 17(3): e1008744, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780433

RESUMEN

Vocalization in mammals, birds, reptiles, and amphibians occurs with airways that have wide openings to free-space for efficient sound radiation, but sound is also produced with occluded or semi-occluded airways that have small openings to free-space. It is hypothesized that pressures produced inside the airway with semi-occluded vocalizations have an overall widening effect on the airway. This overall widening then provides more opportunity to produce wide-narrow contrasts along the airway for variation in sound quality and loudness. For human vocalization described here, special emphasis is placed on the epilaryngeal airway, which can be adjusted for optimal aerodynamic power transfer and for optimal acoustic source-airway interaction. The methodology is three-fold, (1) geometric measurement of airway dimensions from CT scans, (2) aerodynamic and acoustic impedance calculation of the airways, and (3) simulation of acoustic signals with a self-oscillating computational model of the sound source and wave propagation.


Asunto(s)
Faringe , Habla/fisiología , Tráquea , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Masculino , Modelos Biológicos , Faringe/diagnóstico por imagen , Faringe/fisiología , Espectrografía del Sonido , Acústica del Lenguaje , Tráquea/diagnóstico por imagen , Tráquea/fisiología
17.
Naturwissenschaften ; 109(6): 55, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36331664

RESUMEN

All known species of the Triassic archosauromorph genus Tanystropheus are known to have had the longest neck in proportion to their torso. This feature is related to a series of ventilatory challenges since an increase in neck length also increases airway length and, therefore, the volume of stagnant air that does not reach the lungs, the dead space volume. Based on this challenge, the objective of the present study was to model the type of respiratory system of Tanystropheus able to meet its metabolic demands during the early Triassic period. The modeling was based on allometric relations for morphological and physiological ventilatory and metabolic variables, and to do so, the mean body mass of Tanystropheus was estimated based on three different methods. In addition, the tracheal airflow was also estimated based on the proportions of Tanystropheus elongated neck, the results of allometric modeling, and fundamental equations of fluid mechanics. The estimation of the body mass indicated that an animal of 3.6 m would possess a body mass of 50.6 ± 21.6 kg. Allometric modeling suggested that the respiratory system best suited to Tanystropheus' oxygen demands, especially during activity, would be a generic reptilian-like respiratory system composed of multicameral lungs. The best respiratory pattern to maintain adequate tracheal flow rates and effective pulmonary ventilation would be one ventilating the relatively narrower trachea at lower frequencies to deal with tracheal dead space volume.


Asunto(s)
Pulmón , Tráquea , Animales , Pulmón/fisiología , Tráquea/fisiología , Reptiles
18.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L473-L485, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33438520

RESUMEN

Mucociliary transport in the respiratory epithelium depends on beating of cilia to move a mucus layer containing trapped inhaled particles toward the mouth. Little is known about the relationship between cilia beat frequency (CBF) and mucus transport velocity (MTV) in vivo under normal physiological conditions and when inspired air is dry or not fully humidified. This study was designed to use video-microscopy to simultaneously measure CBF and MTV in the tracheal epithelium through an implanted optical window in mechanically ventilated lambs. The inspired air in 6 animals was heated to body temperature and fully saturated with water for 4 hours as a baseline. In another series of experiments, 5 lambs were ventilated with air at different temperatures and humidities and the mucosal surface temperature was monitored with infrared macro-imaging. In the baseline experiments, during ventilation with fully humidified air at body temperature, CBF remained constant, mean 13.9 ± 1.6 Hz but MTV varied considerably between 0.1 and 26.1 mm/min with mean 11.0 ± 3.9 mm/min, resulting in a maximum mucus displacement of 34.2 µm/cilia beat. Fully humidified air at body temperature prevented fluctuations in the surface temperature during breathing indicating a thermodynamic balance in the airways. When lambs were ventilated with dryer air, the mucosal surface temperature and MTV dropped without a significant change in CBF. When inspired air was dry, mainly latent heat (92%) was transferred to air in the trachea, reducing the surface temperature by 5 °C. Reduced humidity of the inspired air lowered the surface temperature and reduced MTV in the epithelium during ventilation.


Asunto(s)
Cilios/fisiología , Humedad , Pulmón/fisiología , Depuración Mucociliar/fisiología , Respiración Artificial/métodos , Mucosa Respiratoria/fisiología , Tráquea/fisiología , Animales , Masculino , Ovinos
19.
Cell Tissue Res ; 385(1): 21-35, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33616728

RESUMEN

Cholinergic chemosensory cells (CCC) are infrequent epithelial cells with immunosensor function, positioned in mucosal epithelia preferentially near body entry sites in mammals including man. Given their adaptive capacity in response to infection and their role in combatting pathogens, we here addressed the time points of their initial emergence as well as their postnatal development from first exposure to environmental microbiota (i.e., birth) to adulthood in urethra and trachea, utilizing choline acetyltransferase (ChAT)-eGFP reporter mice, mice with genetic deletion of MyD88, toll-like receptor-2 (TLR2), TLR4, TLR2/TLR4, and germ-free mice. Appearance of CCC differs between the investigated organs. CCC of the trachea emerge during embryonic development at E18 and expand further after birth. Urethral CCC show gender diversity and appear first at P6-P10 in male and at P11-P20 in female mice. Urethrae and tracheae of MyD88- and TLR-deficient mice showed significantly fewer CCC in all four investigated deficient strains, with the effect being most prominent in the urethra. In germ-free mice, however, CCC numbers were not reduced, indicating that TLR2/4-MyD88 signaling, but not vita-PAMPs, governs CCC development. Collectively, our data show a marked postnatal expansion of CCC populations with distinct organ-specific features, including the relative impact of TLR2/4-MyD88 signaling. Strong dependency on this pathway (urethra) correlates with absence of CCC at birth and gender-specific initial development and expansion dynamics, whereas moderate dependency (trachea) coincides with presence of first CCC at E18 and sex-independent further development.


Asunto(s)
Técnicas Biosensibles/métodos , Colinérgicos/metabolismo , Células Epiteliales/metabolismo , Inmunidad Innata/inmunología , Tráquea/fisiología , Uretra/fisiología , Animales , Masculino , Ratones
20.
Respir Res ; 22(1): 303, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34823518

RESUMEN

BACKGROUND: The mucociliary clearance system driven by beating cilia protects the airways from inhaled microbes and particles. Large particles are cleared by mucus bundles made in submucosal glands by parallel linear polymers of the MUC5B mucins. However, the structural organization and function of the mucus generated in surface goblet cells are poorly understood. METHODS: The origin and characteristics of different mucus structures were studied on live tissue explants from newborn wild-type (WT), cystic fibrosis transmembrane conductance regulator (CFTR) deficient (CF) piglets and weaned pig airways using video microscopy, Airyscan imaging and electron microscopy. Bronchoscopy was performed in juvenile pigs in vivo. RESULTS: We have identified a distinct mucus formation secreted from the surface goblet cells with a diameter less than two micrometer. This type of mucus was named mucus threads. With time mucus threads gathered into larger mucus assemblies, efficiently collecting particles. The previously observed Alcian blue stained mucus bundles were around 10 times thicker than the threads. Together the mucus bundles, mucus assemblies and mucus threads cleared the pig trachea from particles. CONCLUSIONS: These results demonstrate that normal airway mucus is more complex and has a more variable structural organization and function than was previously understood. These observations emphasize the importance of studying young objects to understand the function of a non-compromised lung.


Asunto(s)
Células Caliciformes/fisiología , Depuración Mucociliar/fisiología , Moco/citología , Tráquea/fisiología , Animales , Broncoscopía , Células Caliciformes/citología , Microscopía por Video , Modelos Animales , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA