Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 290(33): 20233-44, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26092725

RESUMEN

Neuregulin 1 (NRG1) is a trophic factor that is thought to have important roles in the regulating brain circuitry. Recent studies suggest that NRG1 regulates synaptic transmission, although the precise mechanisms remain unknown. Here we report that NRG1 influences glutamate uptake by increasing the protein level of excitatory amino acid carrier (EAAC1). Our data indicate that NRG1 induced the up-regulation of EAAC1 in primary cortical neurons with an increase in glutamate uptake. These in vitro results were corroborated in the prefrontal cortex (PFC) of mice given NRG1. The stimulatory effect of NRG1 was blocked by inhibition of the NRG1 receptor ErbB4. The suppressed expression of ErbB4 by siRNA led to a decrease in the expression of EAAC1. In addition, the ablation of ErbB4 in parvalbumin (PV)-positive neurons in PV-ErbB4(-/-) mice suppressed EAAC1 expression. Taken together, our results show that NRG1 signaling through ErbB4 modulates EAAC1. These findings link proposed effectors in schizophrenia: NRG1/ErbB4 signaling perturbation, EAAC1 deficit, and neurotransmission dysfunction.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/fisiología , Ácido Glutámico/metabolismo , Neurregulina-1/fisiología , Regulación hacia Arriba , Animales , Transportador 3 de Aminoácidos Excitadores/metabolismo , Ratas , Ratas Sprague-Dawley
2.
Biochim Biophys Acta ; 1840(6): 1640-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24412196

RESUMEN

BACKGROUND: Rapid trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) to the plasma membrane is considered a fundamental biological process for learning and memory. GluR1 is an AMPAR subunit. We have shown that mice with knockout of excitatory amino acid transporter type 3 (EAAT3), a neuronal glutamate transporter, have impaired learning and memory. The mechanisms for this impairment are not known and may be via regulation of AMPAR trafficking. METHODS: Freshly prepared 300µm coronal hippocampal slices from wild-type or EAAT3 knockout mice were incubated with or without 25mM tetraethylammonium for 10min. The trafficking of GluR1, an AMPAR subunit, to the plasma membrane and its phosphorylation were measured. RESULTS: Tetraethylammonium increased the trafficking of GluR1 and EAAT3 to the plasma membrane in the wild-type mouse hippocampal slices but did not cause GluR1 trafficking in the EAAT3 knockout mice. Tetraethylammonium also increased the phosphorylation of GluR1 at S845, a protein kinase A (PKA) site, in the wild-type mice but not in the EAAT3 knockout mice. The PKA antagonist KT5720 attenuated tetraethylammonium-induced GluR1 phosphorylation and trafficking in the wild-type mice. The PKA agonist 6-BNz-cAMP caused GluR1 trafficking to the plasma membrane in the EAAT3 knockout mice. In addition, EAAT3 was co-immunoprecipitated with PKA. CONCLUSIONS: These results suggest that EAAT3 is upstream of PKA in a pathway to regulate GluR1 trafficking. GENERAL SIGNIFICANCE: Our results provide initial evidence for the involvement of EAAT3 in the biochemical cascade of learning and memory.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/fisiología , Hipocampo/metabolismo , Receptores AMPA/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Masculino , Ratones , Transporte de Proteínas , Compuestos de Tetraetilamonio/farmacología
3.
J Neurochem ; 133(4): 558-71, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25692227

RESUMEN

Prion protein (PrP) plays crucial roles in regulating antioxidant systems to improve cell defenses against cellular stress. Here, we show that the interactions of PrP with the excitatory amino acid transporter 3 (EAAT3), γ-glutamyl transpeptidase (γ-GT), and multi-drug resistance protein 1 (MRP1) in astrocytes and the interaction between PrP and EAAT3 in neurons regulate the astroglial and neuronal metabolism of the antioxidant glutathione. Ablation of PrP in astrocytes and cerebellar neurons leads to dysregulation of EAAT3-mediated uptake of glutamate and cysteine, which are precursors for the synthesis of glutathione. In PrP-deficient astrocytes, levels of intracellular glutathione are increased, and under oxidative stress, levels of extracellular glutathione are increased, due to (i) increased glutathione release via MRP1 and (ii) reduced activity of the glutathione-degrading enzyme γ-GT. In PrP-deficient cerebellar neurons, cell death is enhanced under oxidative stress and glutamate excitotoxicity, when compared to wild-type cerebellar neurons. These results indicate a functional interplay of PrP with EAAT3, MRP1 and γ-GT in astrocytes and of PrP and EAAT3 in neurons, suggesting that these interactions play an important role in the metabolic cross-talk between astrocytes and neurons and in protection of neurons by astrocytes from oxidative and glutamate-induced cytotoxicity. Interactions of prion protein (PrP) with excitatory amino acid transporter 3 (EAAT3), γ-glutamyl transpeptidase (GGT) and multi-drug resistance protein 1 (MRP1) regulate the astroglial and neuronal metabolism of glutathione (GSH) which protects cells against the cytotoxic oxidative stress. PrP controls the release of GSH from astrocytes via MRP1 and regulates the hydrolysis of extracellular GSH by GGT as well as the neuronal and astroglial glutamate and cysteine uptake via EAAT3.


Asunto(s)
Cisteína/metabolismo , Transportador 3 de Aminoácidos Excitadores/fisiología , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Neuronas/metabolismo , Priones/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células CHO , Células Cultivadas , Cerebelo/citología , Cricetulus , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Transportador 3 de Aminoácidos Excitadores/genética , Femenino , Fluoresceínas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Priones/genética
4.
Mol Pharmacol ; 85(5): 747-57, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24569088

RESUMEN

Canonically, opioids influence cells by binding to a G protein-coupled opioid receptor, initiating intracellular signaling cascades, such as protein kinase, phosphatidylinositol 3-kinase, and extracellular receptor kinase pathways. This results in several downstream effects, including decreased levels of the reduced form of glutathione (GSH) and elevated oxidative stress, as well as epigenetic changes, especially in retrotransposons and heterochromatin, although the mechanism and consequences of these actions are unclear. We characterized the acute and long-term influence of morphine on redox and methylation status (including DNA methylation levels) in cultured neuronal SH-SY5Y cells. Acting via µ-opioid receptors, morphine inhibits excitatory amino acid transporter type 3-mediated cysteine uptake via multiple signaling pathways, involving different G proteins and protein kinases in a temporal manner. Decreased cysteine uptake was associated with decreases in both the redox and methylation status of neuronal cells, as defined by the ratios of GSH to oxidized forms of glutathione and S-adenosylmethionine to S-adenosylhomocysteine levels, respectively. Further, morphine induced global DNA methylation changes, including CpG sites in long interspersed nuclear elements (LINE-1) retrotransposons, resulting in increased LINE-1 mRNA. Together, these findings illuminate the mechanism by which morphine, and potentially other opioids, can influence neuronal-cell redox and methylation status including DNA methylation. Since epigenetic changes are implicated in drug addiction and tolerance phenomenon, this study could potentially extrapolate to elucidate a novel mechanism of action for other drugs of abuse.


Asunto(s)
Cisteína/antagonistas & inhibidores , Metilación de ADN/efectos de los fármacos , Transportador 3 de Aminoácidos Excitadores/antagonistas & inhibidores , Morfina/farmacología , Retroelementos/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Línea Celular Tumoral , Cisteína/metabolismo , Metilación de ADN/fisiología , Transportador 3 de Aminoácidos Excitadores/fisiología , Humanos , Oxidación-Reducción/efectos de los fármacos , Retroelementos/fisiología , Transcripción Genética/fisiología
5.
Transgenic Res ; 22(4): 757-66, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23361868

RESUMEN

Parasympathetic tone is a dominant neural regulator for basal heart rate. Glutamate transporters (EAAT) via their glutamate uptake functions regulate glutamate neurotransmission in the central nervous system. We showed that EAAT type 3 (EAAT3) knockout mice had a slower heart rate than wild-type mice when they were anesthetized. We design this study to determine whether non-anesthetized EAAT3 knockout mice have a slower heart rate and, if so, what may be the mechanism for this effect. Young adult EAAT3 knockout mice had slower heart rates than those of their littermate wild-type mice no matter whether they were awake or anesthetized. This difference was abolished by atropine, a parasympatholytic drug. Carbamylcholine chloride, a parasympathomimetic drug, equally effectively reduced the heart rates of wild-type and EAAT3 knockout mice. Positive immunostaining for EAAT3 was found in the area of nuclei deriving fibers for vagus nerve. There was no positive staining for the EAATs in the sinoatrial node. These results suggest that EAAT3 knockout mice have a slower heart rate at rest. This effect may be caused by an increased parasympathetic tone possibly due to increased glutamate neurotransmission in the central nervous system. These findings indicate that regulation of heart rate, a vital sign, is one of the EAAT biological functions.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Frecuencia Cardíaca/genética , Animales , Atropina/administración & dosificación , Sistema Nervioso Central/metabolismo , Transportador 3 de Aminoácidos Excitadores/fisiología , Ácido Glutámico/genética , Humanos , Ratones , Ratones Noqueados , Nodo Sinoatrial/efectos de los fármacos , Transmisión Sináptica , Nervio Vago/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 106(34): 14297-302, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19706515

RESUMEN

Glutamate transporters maintain low synaptic concentrations of neurotransmitter by coupling uptake to flux of other ions. Their transport cycle consists of two separate translocation steps, namely cotransport of glutamic acid with three Na(+) followed by countertransport of K(+). Two Tl(+) binding sites, presumed to serve as sodium sites, were observed in the crystal structure of a related archeal homolog and the side chain of a conserved aspartate residue contributed to one of these sites. We have mutated the corresponding residue of the eukaryotic glutamate transporters GLT-1 and EAAC1 to asparagine, serine, and cysteine. Remarkably, these mutants exhibited significant sodium-dependent radioactive acidic amino acid uptake when expressed in HeLa cells. Reconstitution experiments revealed that net uptake by the mutants in K(+)-loaded liposomes was impaired. However, with Na(+) and unlabeled L-aspartate inside the liposomes, exchange levels were around 50-90% of those by wild-type. In further contrast to wild-type, where either substrate or K(+) stimulated the anion conductance by the transporter, substrate but not K(+) modulated the anion conductance of the mutants expressed in oocytes. Both with wild-type EAAC1 and EAAC1-D455N, not only sodium but also lithium could support radioactive acidic amino acid uptake. In contrast, with D455S and D455C, radioactive uptake was only observed in the presence of sodium. Thus the conserved aspartate is required for transporter-cation interactions in each of the two separate translocation steps and likely participates in an overlapping sodium and potassium binding site.


Asunto(s)
Encéfalo/metabolismo , Cationes/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Talio/metabolismo , Animales , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Sitios de Unión , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/fisiología , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/fisiología , Femenino , Células HeLa , Humanos , Transporte Iónico/efectos de los fármacos , Liposomas , Litio/metabolismo , Litio/farmacología , Potenciales de la Membrana/efectos de los fármacos , Mutación , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oocitos/fisiología , Potasio/metabolismo , Potasio/farmacología , Unión Proteica , Conejos , Ratas , Sodio/metabolismo , Sodio/farmacología , Xenopus laevis
7.
J Neurosci ; 29(46): 14581-95, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19923291

RESUMEN

In the mammalian brain, the specificity of excitatory synaptic transmission depends on rapid diffusion of glutamate away from active synapses and the powerful uptake capacity of glutamate transporters in astrocytes. The extent to which neuronal glutamate transporters influence the lifetime of glutamate in the extracellular space remains unclear. Here we show that EAAC1, the predominant neuronal glutamate transporter at excitatory synapses in hippocampal area CA1, buffers glutamate released during synaptic events and prolongs the time course of its clearance by astrocytes. EAAC1 does not significantly alter activation of receptors in the synaptic cleft. Instead, it reduces recruitment of perisynaptic/extrasynaptic NR2B-containing NMDARs, thereby facilitating induction of long-term potentiation by short bursts of high-frequency stimulation. We describe novel roles of EAAC1 in regulating glutamate diffusion and propose that NMDARs at different subsynaptic locations can make distinct contributions to the regulation of synaptic strength.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/fisiología , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema de Transporte de Aminoácidos X-AG/fisiología , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Transportador 3 de Aminoácidos Excitadores/deficiencia , Transportador 3 de Aminoácidos Excitadores/genética , Hipocampo/citología , Hipocampo/fisiología , Ratones , Ratones Noqueados
8.
J Neurosci ; 29(24): 7898-908, 2009 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-19535601

RESUMEN

Glutamate released from synaptic vesicles mediates excitatory neurotransmission by stimulating glutamate receptors. Glutamate transporters maintain low synaptic glutamate levels critical for this process, a role primarily attributed to astrocytes. Recently, vesicular release of glutamate from unmyelinated axons in the rat corpus callosum has been shown to elicit AMPA receptor-mediated currents in glial progenitor cells. Glutamate transporters are the only mechanism of glutamate clearance, yet very little is known about the role of glutamate transporters in normal development of oligodendrocytes (OLs) or in excitotoxic injury to OLs. We found that OLs in culture are capable of sodium-dependent glutamate uptake with a K(m) of 10 +/- 2 microm and a V(max) of 2.6, 5.0, and 3.8 nmol x min(-1) x mg(-1) for preoligodendrocytes, immature, and mature OLs, respectively. Surprisingly, EAAC1, thought to be exclusively a neuronal transporter, contributes more to [(3)H]l-glutamate uptake in OLs than GLT1 or GLAST. These data suggest that glutamate transporters on oligodendrocytes may serve a critical role in maintaining glutamate homeostasis at a time when unmyelinated callosal axons are engaging in glutamatergic signaling with glial progenitors. Furthermore, GLT1 was significantly increased in cultured mature OLs contrary to in vivo data in which we have shown that, although GLT1 is present on developing OLs when unmyelinated axons are prevalent in the developing rat corpus callosum, after myelination, GLT1 is not expressed on mature OLs. The absence of GLT1 in mature OLs in the rat corpus callosum and its presence in mature rat cultured OLs may indicate that a signaling process in vivo is not activated in vitro.


Asunto(s)
Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Transportador 2 de Aminoácidos Excitadores/fisiología , Transportador 3 de Aminoácidos Excitadores/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Oligodendroglía/metabolismo , Animales , Animales Recién Nacidos , Ácido Aspártico/farmacología , Benzodiazepinas/farmacología , Bicuculina/farmacología , Células Cultivadas , Antagonistas de Aminoácidos Excitadores/farmacología , Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 3 de Aminoácidos Excitadores/antagonistas & inhibidores , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Antagonistas del GABA/farmacología , Gangliósidos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Antígenos O/metabolismo , Técnicas de Placa-Clamp/métodos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Embarazo , Quinoxalinas/farmacología , Ratas , Ratas Long-Evans , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Tritio/metabolismo
9.
J Gen Physiol ; 152(10)2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32835376

RESUMEN

In the mammalian glutamate transporters, countertransported intracellular K+ is essential for relocating the glutamate binding site to the extracellular side of the membrane. This K+-dependent process is believed to be rate limiting for the transport cycle. In contrast, extracellular K+ induces glutamate release upon transporter reversal. Here, we analyzed potential K+ binding sites using molecular dynamics (MD) simulations and site-directed mutagenesis. Two candidate sites were identified by spontaneous K+ binding in MD simulations, one site (K1 site) overlapping with the Na1 Na+ binding site and the K2 site being localized under hairpin loop 2 (HP2). Mutations to conserved amino acid residues in these sites resulted in several transporters that were defective in K+-induced reverse transport and which bound K+ with reduced apparent affinity compared with the wild-type transporter. However, external K+ interaction was abolished in only one mutant transporter EAAC1D454A in the K1 site. Our results, for the first time, directly demonstrate effects of K1-site mutations on K+ binding, in contrast to previous reports on K+ binding sites based on indirect evidence. We propose that K+ binding to the K1 site is responsible for catalyzing the relocation step, whereas binding to the K2 site may have an as-of-yet unidentified regulatory function.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores , Potasio , Animales , Sitios de Unión , Transportador 3 de Aminoácidos Excitadores/fisiología , Ácido Glutámico , Potasio/metabolismo , Sodio/metabolismo
10.
J Neurosci ; 27(11): 2943-7, 2007 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-17360917

RESUMEN

Excitatory amino acid transporters (EAATs) use sodium and potassium gradients to remove glutamate from the synapse and surrounding extracellular space, thereby sustaining efficient synaptic transmission and maintaining extracellular glutamate concentrations at subneurotoxic levels. In addition to sodium-driven glutamate uptake, EAATs also mediate a glutamate-activated chloride conductance via a channel-like mechanism. EAATs are trimeric proteins and are thought to comprise three identical subunits. Previous studies have shown that the sodium-driven uptake of glutamate occurs independently in each of the three subunits. In contrast, a recent study reports high Hill coefficients for the activation of EAAT anion currents by glutamate and suggests that the subunits function cooperatively in gating the chloride conductance. In the present work, we find that the Hill coefficient for the activation of the anion current by glutamate is approximately 1 in both EAAT3 and EAAT4. Furthermore, we also used fluorescent labeling and inactivation correlation on EAAT3 and EAAT4 to determine whether the glutamate-activated chloride conductance is gated independently or cooperatively by the transporters. We found that both glutamate uptake currents and glutamate-activated chloride currents are mediated independently by each subunit of an EAAT multimer. It has been suggested that EAAT subtypes with particularly large anion conductances can directly influence the excitability of presynaptic terminals in certain neurons. Thus, the finding that the anion conductance is gated independently, rather than cooperatively, is important because it significantly alters predictions of the influence that EAAT-mediated anion currents will have on synaptic transmission at low glutamate concentrations.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/fisiología , Transportador 4 de Aminoácidos Excitadores/fisiología , Ácido Glutámico/farmacología , Activación del Canal Iónico/fisiología , Subunidades de Proteína/fisiología , Animales , Línea Celular , Transportador 3 de Aminoácidos Excitadores/agonistas , Transportador 4 de Aminoácidos Excitadores/agonistas , Femenino , Humanos , Activación del Canal Iónico/efectos de los fármacos , Valor Predictivo de las Pruebas , Receptores de Glutamato/fisiología , Canales Aniónicos Dependientes del Voltaje/agonistas , Canales Aniónicos Dependientes del Voltaje/fisiología , Xenopus laevis
11.
Neuropharmacology ; 53(3): 369-78, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17631920

RESUMEN

Prenatal exposure to the CB1 receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone) mesylate (WIN) at a daily dose of 0.5 mg/kg, and Delta9-tetrahydrocannabinol (Delta9-THC) at a daily dose of 5 mg/kg, reduced dialysate glutamate levels in frontal cerebral cortex of adolescent offspring (40-day-old) with respect to those born from vehicle-treated mothers. WIN treatment induced a statistically significant enhancement of Vmaxl-[3H]glutamate uptake, whereas it did not modify glutamate Km, in frontal cerebral cortex synaptosomes of adolescent rats. Western blotting analysis, performed either in membrane proteins derived from homogenates and in proteins extracted from synaptosomes of frontal cerebral cortex, revealed that prenatal WIN exposure enhanced the expression of glutamate transporter 1 (GLT1) and excitatory amino acid carrier 1 (EAAC1). Moreover, immunocytochemical analyses of frontal cortex area revealed a more intense GLT1 and EAAC1 immunoreactivity (ir) distribution in the WIN-treated group. Collectively these results show that prenatal exposure to the cannabinoid CB1 receptor agonist WIN increases expression and functional activity of GLT1 and EAAC1 glutamate transporters (GluTs) associated to a decrease of cortical glutamate outflow, in adolescent rats. These findings may contribute to explain the mechanism underlying the cognitive impairment observed in the offspring of mothers who used marijuana during pregnancy.


Asunto(s)
Benzoxazinas/farmacología , Transportador 2 de Aminoácidos Excitadores/agonistas , Transportador 3 de Aminoácidos Excitadores/agonistas , Lóbulo Frontal/efectos de los fármacos , Ácido Glutámico/metabolismo , Morfolinas/farmacología , Naftalenos/farmacología , Efectos Tardíos de la Exposición Prenatal , Análisis de Varianza , Animales , Relación Dosis-Respuesta a Droga , Dronabinol/administración & dosificación , Transportador 2 de Aminoácidos Excitadores/fisiología , Transportador 3 de Aminoácidos Excitadores/fisiología , Femenino , Lóbulo Frontal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Wistar
12.
Eur J Pharmacol ; 565(1-3): 83-8, 2007 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17382927

RESUMEN

The authors investigated the effects of propofol on EAAT3 (excitatory amino acid transporter 3) activity under oxidative stress induced by tert-butyl hydroperoxide (t-BHP), and the mediation of these effects by protein kinase C (PKC). Rat EAAT3 was expressed in Xenopus oocytes and L-glutamate (30 microM)-induced membrane currents were measured using the two-electrode voltage clamp technique. Exposure of these oocytes to t-BHP (1-20 mM) for 10 min dose-dependently decreased EAAT3 activity, and t-BHP (5 mM) significantly decreased the Vmax, but not the Km of EAAT3 for glutamate, and propofol (1-100 microM) dose-dependently reversed this t-BHP-attenuated EAAT3 activity. Phorbol-12-myristate-13-acetate (a PKC activator), also abolished this t-BHP-induced reduction in EAAT3 activity, whereas staurosporine (a PKC inhibitor), significantly decreased EAAT3 activity. However, as compared with staurosporine or t-BHP alone, t-BHP and staurosporine in combination did not further reduce EAAT3 activity. A similar pattern was observed for chelerythrine (also a PKC inhibitor). In oocytes pretreated with combinations of t-BHP and PMA (or staurosporine), propofol failed to change EAAT3 activity. Our results suggest that propofol restores oxidative stress-reduced EAAT3 activity and that these effects of propofol may be PKC-mediated.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/efectos de los fármacos , Estrés Oxidativo , Propofol/farmacología , Proteína Quinasa C/fisiología , Animales , Relación Dosis-Respuesta a Droga , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/fisiología , Fármacos Neuroprotectores/farmacología , Ratas , Estaurosporina/farmacología , Acetato de Tetradecanoilforbol/farmacología , Xenopus , terc-Butilhidroperóxido/farmacología
13.
BMC Biochem ; 7: 10, 2006 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-16566829

RESUMEN

BACKGROUND: Prostate epithelial cells accumulate a high level of aspartate that is utilized as a substrate for their unique function of production and secretion of enormously high levels of citrate. In most mammalian cells aspartate is synthesized; and, therefore is a non-essential amino acid. In contrast, in citrate-producing prostate cells, aspartate is an essential amino acid that must be derived from circulation. The prostate intracellular/extracellular conditions present a 40:1 concentration gradient. Therefore, these cells must possess a plasma membrane-associated aspartate uptake transport process to achieve their functional activity. In earlier kinetic studies we identified the existence of a unique Na+-dependent high-affinity L-aspartate transport process in rat prostate secretory epithelial cells. The present report is concerned with the identification of this putative L-aspartate transporter in rat and human prostate cells. RESULTS: The studies show for the first time that EAAC1 is expressed in normal rat prostate epithelial cells, in normal and hyperplastic human prostate glands, and in human malignant prostate cell lines. EAAC1 expression and high-affinity L-aspartate transport are correspondingly down-regulated by EAAC1 siRNA knock down. Exposure of prostate cells to physiological levels of prolactin or testosterone results in an up-regulation of EAAC1 expression and a corresponding increase in the high-affinity transport of L-aspartate into the cells. CONCLUSION: This study shows that EAAC1 functions as the high-affinity L-aspartate transporter that is responsible for the uptake and accumulation of aspartate in prostate cells. In other cells (predominantly excitable tissue cells), EAAC1 has been reported to function as a glutamate transporter rather than as an aspartate transporter. The regulation of EAAC1 expression and L-aspartate transport by testosterone and prolactin is consistent with their regulation of citrate production in prostate cells. The identification of EAAC1 as the high-affinity L-aspartate transporter now permits studies to elucidate the mechanism of hormonal regulation of EAAC1 gene expression, and to investigate the mechanism by which the cellular environment effects the functioning of EAAC1 as an aspartate transporter or as a glutamate transporter.


Asunto(s)
Ácido Aspártico/metabolismo , Células Epiteliales/metabolismo , Transportador 3 de Aminoácidos Excitadores/fisiología , Prolactina/fisiología , Próstata/metabolismo , Testosterona/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Química Encefálica , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Ácido Cítrico/metabolismo , Células Epiteliales/efectos de los fármacos , Transportador 3 de Aminoácidos Excitadores/biosíntesis , Transportador 3 de Aminoácidos Excitadores/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Proteínas del Tejido Nervioso/análisis , Prolactina/farmacología , Próstata/citología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ratas , Testosterona/farmacología , Acetato de Tetradecanoilforbol/farmacología
14.
Eur J Pharmacol ; 531(1-3): 133-9, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16413532

RESUMEN

We investigated the effects of the intravenous anesthetics, thiopental, etomidate and ketamine, on the activity of one type of glutamate transporters, EAAT3 (excitatory amino acid transporter type 3). Rat EAAT3 was expressed in Xenopus oocytes by injection of its mRNA. Using two-electrode voltage clamp, membrane currents were recorded after the application of L-glutamate (30 microM) in the presence or absence of various concentrations of the anesthetics. Thiopental (0.3-30 microM) and ketamine (3-1000 microM) did not affect EAAT3 activity. Etomidate decreased EAAT3 activity in a concentration-dependent manner (0.10-10 microM). Etomidate at 1 microM significantly decreased the Vmax, but not the Km of EAAT3 for glutamate. Chelerythrine, a protein kinase C (PKC) inhibitor, significantly decreased EAAT3 activity, however, there were no statistical differences among the chelerythrine, etomidate or chelerythrine plus etomidate groups. Likewise, the combination of staurosporine, another PKC inhibitor, and etomidate did not decrease the responses further compared with staurosporine or etomidate alone. Phorbol-12-myrisate-13-acetate, a PKC activator, abolished etomidate-induced decrease in EAAT3 activity. Since our results showed that thiopental and ketamine did not affect EAAT3 activity significantly, EAAT3 may not be a target for their anesthetic effects. Our results also suggest that etomidate, possibly via PKC, decreased EAAT3 activity at clinically relevant concentrations.


Asunto(s)
Anestésicos Intravenosos/farmacología , Transportador 3 de Aminoácidos Excitadores/fisiología , Oocitos/efectos de los fármacos , Alcaloides , Animales , Benzofenantridinas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Etomidato/farmacología , Transportador 3 de Aminoácidos Excitadores/genética , Femenino , Ácido Glutámico/farmacología , Ketamina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Oocitos/metabolismo , Oocitos/fisiología , Fenantridinas/farmacología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Estaurosporina/farmacología , Acetato de Tetradecanoilforbol/farmacología , Tiopental/farmacología , Xenopus
15.
Neurochem Int ; 98: 4-18, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27233497

RESUMEN

The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/fisiología , Animales , Transportador 3 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Ácido gamma-Aminobutírico/biosíntesis , Ácido gamma-Aminobutírico/metabolismo
16.
Neuropharmacology ; 49(6): 850-61, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16183084

RESUMEN

The excitatory amino acid transporters (EAATs) play key roles in the regulation of CNS L-glutamate, especially related to synthesis, signal termination, synaptic spillover, and excitotoxic protection. Inhibitors available to delineate EAAT pharmacology and function are essentially limited to those that non-selectively block all EAATs or those that exhibit a substantial preference for EAAT2. Thus, it is difficult to selectively study the other subtypes, particularly EAAT1 and EAAT3. Structure activity studies on a series of beta-substituted aspartate analogues identify L-beta-benzyl-aspartate (L-beta-BA) as among the first blockers that potently and preferentially inhibits the neuronal EAAT3 subtype. Kinetic analysis of D-[(3)H]aspartate uptake into C17.2 cells expressing the hEAATs demonstrate that L-beta-threo-BA is the more potent diastereomer, acts competitively, and exhibits a 10-fold preference for EAAT3 compared to EAAT1 and EAAT2. Electrophysiological recordings of EAAT-mediated currents in Xenopus oocytes identify L-beta-BA as a non-substrate inhibitor. Analyzing L-beta-threo-BA within the context of a novel EAAT2 pharmacophore model suggests: (1) a highly conserved positioning of the electrostatic carboxyl and amino groups; (2) nearby regions that accommodate select structural modifications (cyclopropyl rings, methyl groups, oxygen atoms); and (3) a unique region L-beta-threo-BA occupied by the benzyl moieties of L-TBOA, L-beta-threo-BA and related analogues. It is plausible that the preference of L-beta-threo-BA and L-TBOA for EAAT3 and EAAT2, respectively, could reside in the latter two pharmacophore regions.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Transportador 3 de Aminoácidos Excitadores/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Animales , Ácido Aspártico/química , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Transportador 1 de Aminoácidos Excitadores/fisiología , Transportador 2 de Aminoácidos Excitadores/fisiología , Transportador 3 de Aminoácidos Excitadores/fisiología , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Modelos Moleculares , Neuronas/metabolismo , Oocitos , Técnicas de Placa-Clamp/métodos , Transfección/métodos , Tritio/farmacocinética , Xenopus
17.
Transl Psychiatry ; 3: e259, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23695234

RESUMEN

The SLC1A1 gene, which encodes the neuronal glutamate transporter, EAAC1, has consistently been implicated in obsessive-compulsive disorder (OCD) in genetic studies. Moreover, neuroimaging, biochemical and clinical studies support a role for glutamatergic dysfunction in OCD. Although SLC1A1 is an excellent candidate gene for OCD, little is known about its regulation at the genomic level. Here, we report the identification and characterization of three alternative SLC1A1/EAAC1 mRNAs: a transcript derived from an internal promoter, termed P2 to distinguish it from the transcript generated by the primary promoter (P1), and two alternatively spliced mRNAs: ex2skip, which is missing exon 2, and ex11skip, which is missing exon 11. All isoforms inhibit glutamate uptake from the full-length EAAC1 transporter. Ex2skip and ex11skip also display partial colocalization and interact with the full-length EAAC1 protein. The three isoforms are evolutionarily conserved between human and mouse, and are expressed in brain, kidney and lymphocytes under nonpathological conditions, suggesting that the isoforms are physiological regulators of EAAC1. Moreover, under specific conditions, all SLC1A1 transcripts were differentially expressed in lymphocytes derived from subjects with OCD compared with controls. These initial results reveal the complexity of SLC1A1 regulation and the potential clinical utility of profiling glutamatergic gene expression in OCD and other psychiatric disorders.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Trastorno Obsesivo Compulsivo/genética , Adolescente , Adulto , Anciano , Animales , Transportador 3 de Aminoácidos Excitadores/fisiología , Femenino , Ácido Glutámico/fisiología , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas , Adulto Joven
18.
J Alzheimers Dis ; 36(1): 197-209, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23579332

RESUMEN

Oxidative stress, hyperhomocysteinemia, altered DNA methylation, and insulin resistance in the brain are associated with Alzheimer's disease (AD), but the role of amyloid-ß (Aß) in these events remains unclear. Intracellular cysteine is rate-limiting for synthesis of the antioxidant glutathione (GSH), and factors regulating cysteine uptake exert a powerful influence over cellular redox status, especially in mature neurons where cysteine synthesis via transsulfuration of homocysteine (HCY) is restricted. We investigated the effect of soluble Aß oligomers (oAß) on basal and insulin-like growth factor-1 (IGF-1)-induced cysteine uptake mediated by the excitatory amino acid transporter 3 (EAAT3) in cultured human neuronal cells. We also examined the effect of oAß on intracellular thiol metabolite levels, DNA methylation, and the transcription status of redox and methylation-associated genes. oAß inhibited EAAT3-mediated cysteine uptake, causing a decrease in intracellular cysteine and GSH levels. The ratio of the methyl donor S-adenosylmethionine to the methylation inhibitor S-adenosylhomocysteine was decreased, in association with an increase in HCY and a global decrease in DNA methylation, indicative of decreased activity of the redox-sensitive enzyme methionine synthase. These metabolic effects of oAß coincided with changes in the expression of redox and methylation pathway genes. The ability of oAß to modulate gene expression via their redox and methylation-dependent epigenetic effects may contribute to the pathology of AD and recognition of this mechanism may lead to novel treatment approaches. We describe a role of IGF-1 signaling in regulating redox and methylation homeostasis, and propose this to be a pathogenic target of oAß.


Asunto(s)
Péptidos beta-Amiloides/fisiología , Cisteína/metabolismo , Metilación de ADN , Transportador 3 de Aminoácidos Excitadores/fisiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Células Cultivadas , Epigénesis Genética/fisiología , Transportador 3 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Oxidación-Reducción , Estrés Oxidativo/fisiología
19.
Neuroscience ; 250: 333-41, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23694703

RESUMEN

It is widely known that prenatal stress (PS) exposure causes depression-like behaviour to offspring, as well as maladaptive responses including neurobiological and physiological changes. However, the underlying mechanism of PS induced juvenile-onset depression remains largely unravelled. The inadequacies of monoamine deficiency hypothesis, the emerging evidence of altered glutamate neurotransmission in mood disorders, as well as our previous studies inspired us to assess the potential role of glutamatergic system in the pathogenesis of juvenile depression. In this research, we examined the expression of phosphorylated GluR1 subunit of ionotropic receptor alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), the Na+-dependent glutamate transporters excitatory amino acid transporter 2 (EAAT2) and EAAT3 in the hippocampus, striatum and frontal cortex of 1-month-old rat offspring after mid and late PS exposure. Prenatally stressed offspring rats showed significantly prolonged duration of immobility and shortened immobility latency in tail suspension test. We also detected that PS significantly altered the expression of glutamate receptor and glutamate transporters of these depressed rats. In brief, the changes of phosphorylated GluR1 subunit of AMPAR protein level in the hippocampus and frontal cortex, as well as markedly decreased EAAT2 mRNA expression in the hippocampus, striatum and frontal cortex and EAAT3 mRNA expression in the hippocampus of stressed rats were both observed. These results underpinned that glutamate receptors and glutamate transporters might be involved in the progress of depression-like behaviour in juvenile rat offspring induced by PS.


Asunto(s)
Depresión/psicología , Transportador 2 de Aminoácidos Excitadores/fisiología , Transportador 3 de Aminoácidos Excitadores/fisiología , Efectos Tardíos de la Exposición Prenatal/psicología , Receptores AMPA/fisiología , Animales , Western Blotting , Depresión/etiología , Femenino , Ácido Glutámico/fisiología , Suspensión Trasera , Hipocampo/metabolismo , Neostriado/metabolismo , Corteza Prefrontal/metabolismo , Embarazo , ARN/biosíntesis , ARN/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Restricción Física
20.
J Pharm Pharmacol ; 64(2): 302-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22221107

RESUMEN

OBJECTIVES: General anesthetics may contribute to the post-operative cognitive dysfunction. This study was designed to determine the effects of isoflurane on the learning and memory of healthy animals or animals with a decreased brain antioxidative capacity. METHODS: Seven- to nine-week-old female CD-1 wild-type mice or glutamate transporter type 3 (EAAT3) knockout mice whose brains have a decreased glutathione level were exposed to or were not exposed to 1.3% isoflurane for 2 h. They were subjected to fear conditioning or Barnes maze tests 1 week later. KEY FINDINGS: The EAAT3 knockout mice had less freezing behaviour than the wild-type mice in tone-related fear. Isoflurane did not affect the freezing behaviour of the wild-type and EAAT3 knockout mice. The time for the wild-type and EAAT3 knockout mice to identify the target hole in the training sessions and memory test with the Barnes maze was not affected by isoflurane. However, the EAAT3 knockout mice took longer to identify the target hole than the wild-type mice in these tests. CONCLUSIONS: These results suggest that EAAT3 knockout mice have significant cognitive impairment. Isoflurane may not significantly affect the cognition of wild-type and EAAT3 knockout mice in a delayed phase after isoflurane exposure.


Asunto(s)
Anestésicos por Inhalación/farmacología , Transportador 3 de Aminoácidos Excitadores/fisiología , Isoflurano/farmacología , Memoria/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Animales , Química Encefálica/efectos de los fármacos , Trastornos del Conocimiento , Femenino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA