Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 16(5): e1008681, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32463832

RESUMEN

A large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through "domestication"-the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was. Here, we identify ALP2 genetically as a suppressor of Polycomb-group (PcG) mutant phenotypes and show that it arose from the second, DNA binding component of Harbinger transposases. Molecular analysis of PcG compromised backgrounds reveals that ALP genes oppose silencing and H3K27me3 deposition at key PcG target genes. Proteomic analysis reveals that ALP1 and ALP2 are components of a variant PRC2 complex that contains the four core components but lacks plant-specific accessory components such as the H3K27me3 reader LIKE HETEROCHROMATION PROTEIN 1 (LHP1). We show that the N-terminus of ALP2 interacts directly with ALP1, whereas the C-terminus of ALP2 interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1), a core component of PRC2. Proteomic analysis reveals that in alp2 mutant backgrounds ALP1 protein no longer associates with PRC2, consistent with a role for ALP2 in recruitment of ALP1. We suggest that the propensity of Harbinger TE to insert in gene-rich regions of the genome, together with the modular two component nature of their transposases, has predisposed them for domestication and incorporation into chromatin modifying complexes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/metabolismo , Transposasas/fisiología , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico/genética , Células Cultivadas , Domesticación , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Células Sf9 , Spodoptera , Transposasas/genética
2.
Nucleic Acids Res ; 46(19): 10286-10301, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30239795

RESUMEN

Some DNA transposons relocate from one genomic location to another using a mechanism that involves generating double-strand breaks at their transposon ends by forming hairpins on flanking DNA. The same double-strand break mode is employed by the V(D)J recombinase at signal-end/coding-end junctions during the generation of antibody diversity. How flanking hairpins are formed during DNA transposition has remained elusive. Here, we describe several co-crystal structures of the Hermes transposase bound to DNA that mimics the reaction step immediately prior to hairpin formation. Our results reveal a large DNA conformational change between the initial cleavage step and subsequent hairpin formation that changes which strand is acted upon by a single active site. We observed that two factors affect the conformational change: the complement of divalent metal ions bound by the catalytically essential DDE residues, and the identity of the -2 flanking base pair. Our data also provides a mechanistic link between the efficiency of hairpin formation (an A:T basepair is favored at the -2 position) and Hermes' strong target site preference. Furthermore, we have established that the histidine residue within a conserved C/DxxH motif present in many transposase families interacts directly with the scissile phosphate, suggesting a crucial role in catalysis.


Asunto(s)
Roturas del ADN de Doble Cadena , División del ADN , Eucariontes/enzimología , Transposasas/fisiología , Animales , Sitios de Unión , Catálisis , Dominio Catalítico , Elementos Transponibles de ADN , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/enzimología , Células Eucariotas/metabolismo , Humanos , Familia de Multigenes , Conformación Proteica , Transposasas/química , Transposasas/genética
3.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172005

RESUMEN

The development of high-throughput sequencing (next-generation sequencing technology (NGS)) and the continuous increase in experimental throughput require the upstream sample processing steps of NGS to be as simple as possible to improve the efficiency of the entire NGS process. The transposition system has fast "cut and paste" and "copy and paste" functions, and has been innovatively applied to the NGS field. For example, the Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-Seq) uses high-throughput sequencing to detect chromatin regions accessible by Tn5 transposase. Linear Amplification via Transposon Insertion (LIANTI) uses Tn5 transposase for linear amplification, haploid typing, and structural variation detection. Not only is it efficient and simple, it effectively shortens the time for NGS sample library construction, realizes large-scale and rapid sequencing, improves sequencing resolution, and can be flexibly modified for more technological innovation.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Transposasas/genética , Transposasas/metabolismo , Animales , Cromatina/genética , Epigenómica/métodos , Variación Genética/genética , Genómica/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Transposasas/fisiología
4.
Mol Cell ; 34(5): 612-9, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524540

RESUMEN

Target site choice is a complex and poorly understood aspect of DNA transposition despite its importance in rational transposon-mediated gene delivery. Though most transposons choose target sites essentially randomly or with some slight sequence or structural preferences, insertion sequence IS608 from Helicobacter pylori, which transposes using single-stranded DNA, always inserts just 3' of a TTAC tetranucleotide. Our results from studies on the IS608 transposition mechanism demonstrated that the transposase recognizes its target site by co-opting an internal segment of transposon DNA and utilizes it for specific recognition of the target sites through base-pairing. This suggested a way to redirect IS608 transposition to novel target sites. As we demonstrate here, we can now direct insertions in a predictable way into a variety of different chosen target sequences, both in vitro and in vivo.


Asunto(s)
Proteínas Bacterianas/fisiología , Elementos Transponibles de ADN/fisiología , ADN de Cadena Simple/química , Helicobacter pylori/genética , Modelos Genéticos , Transposasas/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Emparejamiento Base , Secuencia de Bases , Mutación Puntual , Transposasas/química , Transposasas/genética
5.
Nat Methods ; 7(6): 451-3, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20418868

RESUMEN

We developed a method, MosDEL, to generate targeted knockouts of genes in Caenorhabditis elegans by injection. We generated a double-strand break by mobilizing a Mos1 transposon adjacent to the region to be deleted; the double-stranded break is repaired using injected DNA as a template. Repair can delete up to 25 kb of DNA and simultaneously insert a positive selection marker.


Asunto(s)
Caenorhabditis elegans/genética , Elementos Transponibles de ADN/genética , Eliminación de Gen , Animales , Hibridación Genómica Comparativa , Reparación del ADN , Proteínas de Unión al ADN/fisiología , Transposasas/fisiología
6.
Crit Rev Biochem Mol Biol ; 45(1): 50-69, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20067338

RESUMEN

DNA rearrangements are important in genome function and evolution. Genetic material can be rearranged inadvertently during processes such as DNA repair, or can be moved in a controlled manner by enzymes specifically dedicated to the task. DNA transposases comprise one class of such enzymes. These move DNA segments known as transposons to new locations, without the need for sequence homology between transposon and target site. Several biochemically distinct pathways have evolved for DNA transposition, and genetic and biochemical studies have provided valuable insights into many of these. However, structural information on transposases - particularly with DNA substrates - has proven elusive in most cases. On the other hand, large-scale genome sequencing projects have led to an explosion in the number of annotated prokaryotic and eukaryotic mobile elements. Here, we briefly review biochemical and mechanistic aspects of DNA transposition, and propose that integrating sequence information with structural information using bioinformatics tools such as secondary structure prediction and protein threading can lead not only to an additional level of understanding but possibly also to testable hypotheses regarding transposition mechanisms. Detailed understanding of transposition pathways is a prerequisite for the long-term goal of exploiting DNA transposons as genetic tools and as a basis for genetic medical applications.


Asunto(s)
Bacterias/genética , Eucariontes/genética , Transposasas , Animales , Bacterias/enzimología , ADN/análisis , ADN/genética , ADN/metabolismo , Eucariontes/enzimología , Reordenamiento Génico , Genoma , Inestabilidad Genómica , Humanos , Relación Estructura-Actividad , Transposasas/química , Transposasas/fisiología
7.
Semin Cancer Biol ; 20(4): 261-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20478384

RESUMEN

Significant emphasis has recently been placed on the characterization of the human cancer genome. This effort has been assisted by the development of new DNA sequencing technologies that allow the genomes of individual tumors to be analyzed in much greater detail. However, the genetic complexity of human cancer has complicated the identification of driver mutations among the more abundant passenger mutations found in tumors. Recently, the Sleeping Beauty (SB) transposon system has been engineered to model cancer in mice. SB-induced tumors are produced by transposon insertional mutagenesis, thus the tagged mutations facilitate the identification of novel cancer genes. This review provides a brief summary of the SB system and its use in modeling cancer in mice.


Asunto(s)
Elementos Transponibles de ADN/fisiología , Modelos Animales de Enfermedad , Estudios de Asociación Genética/métodos , Ratones/genética , Neoplasias/genética , Animales , Genes Relacionados con las Neoplasias , Pruebas Genéticas/métodos , Humanos , Modelos Biológicos , Neoplasias/diagnóstico , Neoplasias/patología , Transposasas/metabolismo , Transposasas/fisiología
8.
EMBO Rep ; 10(2): 144-51, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19165139

RESUMEN

The retroviral integrase superfamily (RISF) comprises numerous important nucleic acid-processing enzymes, including transposases, integrases and various nucleases. These enzymes are involved in a wide range of processes such as transposition, replication and repair of DNA, homologous recombination, and RNA-mediated gene silencing. Two out of the four enzymes that are encoded by the human immunodeficiency virus--RNase H1 and integrase--are members of this superfamily. RISF enzymes act on various substrates, and yet show remarkable mechanistic and structural similarities. All share a common fold of the catalytic core and the active site, which is composed primarily of carboxylate residues. Here, I present RISF proteins from a structural perspective, describing the individual members and the common and divergent elements of their structures, as well as the mechanistic insights gained from the structures of RNase H1 enzyme complexes with RNA/DNA hybrids.


Asunto(s)
Integrasas/química , Familia de Multigenes , Proteínas de los Retroviridae/química , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Dominio Catalítico , Dimerización , Hidrólisis , Integrasas/fisiología , Mamíferos/metabolismo , Ratones , Modelos Moleculares , Ácidos Nucleicos/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de los Retroviridae/fisiología , Ribonucleasa H/química , Ribonucleasa H/fisiología , Especificidad de la Especie , Relación Estructura-Actividad , Especificidad por Sustrato , Transposasas/química , Transposasas/fisiología , Proteínas Virales/química , Proteínas Virales/fisiología
9.
Mol Ther ; 18(11): 1896-906, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20717103

RESUMEN

Sleeping Beauty (SB) transposase enables somatic integration of exogenous DNA in mammalian cells, but potency as a gene transfer vector especially in large mammals has been lacking. Herein, we show that hyperactive transposase system delivered by high-capacity adenoviral vectors (HC-AdVs) can result in somatic integration of a canine factor IX (cFIX) expression-cassette in canine liver, facilitating stabilized transgene expression and persistent haemostatic correction of canine hemophilia B with negligible toxicity. We observed stabilized cFIX expression levels during rapid cell cycling in mice and phenotypic correction of the bleeding diathesis in hemophilia B dogs for up to 960 days. In contrast, systemic administration of an inactive transposase system resulted in rapid loss of transgene expression and transient phenotypic correction. Notably, in dogs a higher viral dose of the active SB transposase system resulted into transient phenotypic correction accompanied by transient increase of liver enzymes. Molecular analysis of liver samples revealed SB-mediated integration and provide evidence that transgene expression was derived mainly from integrated vector forms. Demonstrating that a viral vector system can deliver clinically relevant levels of a therapeutic protein in a large animal model of human disease paves a new path toward the possible cure of genetic diseases.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética , Hemofilia B/terapia , Transposasas/fisiología , Adenoviridae/genética , Animales , Secuencia de Bases , Elementos Transponibles de ADN/genética , Perros , Factor IX/inmunología , Factor IX/metabolismo , Vectores Genéticos , Hemofilia B/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fenotipo , Homología de Secuencia de Ácido Nucleico , Transgenes/fisiología
10.
Mol Brain ; 14(1): 56, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726803

RESUMEN

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Oxitocina/uso terapéutico , Conducta Social , Transposasas/genética , Administración Intranasal , Animales , Trastorno del Espectro Autista/psicología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Humanos , Ratones , Mutación Missense , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxitocina/administración & dosificación , Oxitocina/farmacología , Mutación Puntual , Regiones Promotoras Genéticas , Unión Proteica , Receptores de Oxitocina/biosíntesis , Receptores de Oxitocina/genética , Receptores de Vasopresinas/biosíntesis , Receptores de Vasopresinas/genética , Transcripción Genética , Transposasas/fisiología
11.
Genetica ; 138(3): 301-11, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19763844

RESUMEN

Protozoan parasites affect millions of people around the world. Treatment and control of these diseases are complicated partly due to the intricate biology of these organisms. The interactions of species of Plasmodium, Leishmania and trypanosomes with their hosts are mediated by an unusual control of gene expression that is not fully understood. The availability of the genome sequence of these protozoa sets the stage for using more comprehensive, genome-wide strategies to study gene function. Transposons are effective tools for the systematic introduction of genetic alterations and different transposition systems have been adapted to study gene function in these human pathogens. A mariner transposon toolkit for use in vivo or in vitro in Leishmania parasites has been developed and can be used in a variety of applications. These modified mariner elements not only permit the inactivation of genes, but also mediate the rescue of translational gene fusions, bringing a major contribution to the investigation of Leishmania gene function. The piggyBac and Tn5 transposons have also been shown to mobilize across Plasmodium spp. genomes circumventing the current limitations in the genetic manipulation of these organisms.


Asunto(s)
Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Leishmania/fisiología , Mutagénesis , Animales , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Genoma de Protozoos , Humanos , Plasmodium/fisiología , Infecciones por Protozoos/parasitología , Transposasas/fisiología , Trypanosoma/fisiología
12.
Genetica ; 137(3): 265-76, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19533383

RESUMEN

Mariner transposons are probably the most widespread transposable element family in animal genomes. To date, they are believed not to require species-specific host factors for transposition. Despite this, Mos1, one of the most-studied mariner elements (with Himar1), has been shown to be active in insects, but inactive in mammalian genomes. To circumvent this problem, one strategy consists of both enhancing the activity of the Mos1 transposase (MOS1), and making it insensitive to activity-altering post-translational modifications. Here, we report rational mutagenesis studies performed to obtain hyperactive and non-phosphorylable MOS1 variants. Transposition assays in bacteria have made it possible to isolate numerous hyperactive MOS1 variants. The best mutant combinations, named FETY and FET, are 60- and 800-fold more active than the wild-type MOS1 version, respectively. However, there are serious difficulties in using them, notably because they display severe cytotoxicity. On the other hand, three positions lying within the HTH motif, T88, S99, and S104 were found to be sensitive to phosphorylation. Our efforts to obtain active non-phosphorylable mutants at S99 and S104 positions were unsuccessful, as these residues, like the co-linear amino acids in their close vicinity, are critical for MOS1 activity. Even if host factors are not essential for transposition, our data demonstrate that the host machinery is essential in regulating MOS1 activity.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Mutagénesis Insercional/genética , Mutagénesis Insercional/métodos , Ingeniería de Proteínas/métodos , Transposasas/fisiología , Secuencias de Aminoácidos/genética , Calibración , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/genética , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiología , Ingeniería de Proteínas/normas , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Transposasas/genética , Transposasas/metabolismo
13.
J Microbiol Biotechnol ; 19(3): 217-28, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19349746

RESUMEN

Mobile genetic segments, or transposons, are also referred to as "jumping genes" as they can shift from one position in the genome to another, thus inducing a chromosomal mutation. According to the target site-specificity of the transposon during a transposition event, the result is either the insertion of a gene of interest at a specific chromosomal site, or the creation of knockout mutants. The former situation includes the integration of conjugative transposons via site-specific recombination, several transposons preferring a target site of a conserved ATrich sequence, and Tn7 being site-specifically inserted at attTn7, the downstream of the essential glmS gene. The latter situation is exploited for random mutagenesis in many prokaryotes, including IS (insertion sequence) elements, mariner, Mu, Tn3 derivatives (Tn4430 and Tn917), Tn5, modified Tn7, Tn10, Tn552, and Ty1, enabling a variety of genetic manipulations. Randomly inserted transposons have been previously employed for a variety of applications such as fmgenetic footprinting, gene transcriptional and translational fusion, signature-tagged mutagenesis(STM),DNA or cDNA sequencing, transposon site hybridization(TraSH), and scanning linker mutagenesis(SLM). Therefore, transposon-mediated genetic engineering is a baluable discipiline for the study of bacterial physiology and pathogenesis in living hosts.


Asunto(s)
Bacterias/genética , Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Animales , Cromosomas Bacterianos , Secuencia Conservada/fisiología , Técnicas de Inactivación de Genes/métodos , Técnicas Genéticas , Humanos , Mutagénesis Sitio-Dirigida/métodos , Recombinación Genética , Transposasas/fisiología
14.
Yakugaku Zasshi ; 129(12): 1433-43, 2009 Dec.
Artículo en Japonés | MEDLINE | ID: mdl-19952518

RESUMEN

Transposons are mobile genetic elements that move between or within vectors and chromosomes. For the transposition, an enzyme called transposase recognizes transposon-specific terminal inverted repeat sequences (IRs) located on both ends of transposons, and remove them from their original sites and, integrates them into other sites. Because of this feature, transposons containing genes of interest between their two IRs are able to carry the genes from vectors to chromosomes. Transposons are promising systems for chromosomal integration because they can not only integrate exogenous genes efficiently, but also be transfected to a variety of cells or organs using a range of transfection methods. In this review, we focused on the therapeutic application of transposons. A few transposons can integrate transgenes into mammalian chromosomes. They have been used in preclinical studies of gene therapy and cell therapy. In addition, they have recently been used for generation of induced pluripotent stem cells. Transposon-based integrative vector systems have two components. One is the transposon containing transgenes, and the other is the expression cassette of the transposase. Both viral and non-viral vectors have been used to deliver these two components to mammalian cells or organs, and sustained transgene expression has been achieved. Transposon-mediated sustained transgene expression has also produced therapeutic effect in disease models of hereditary and chronic diseases. Although transposon-based integrative vector systems have problems, such as insertional mutagenesis, studies to overcome these problems have been progressing, and these vector systems will become indispensable tools to cure refractory diseases.


Asunto(s)
Elementos Transponibles de ADN , Terapia Genética , Vectores Genéticos , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Cromosomas/genética , Elementos Transponibles de ADN/genética , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Secuencias Invertidas Repetidas/genética , Mutagénesis Insercional , Células Madre Pluripotentes , Transfección/métodos , Transgenes , Transposasas/fisiología
16.
Stem Cells ; 25(11): 2919-27, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17673526

RESUMEN

Efficient and stable genetic modification of human embryonic stem (ES) cells is required to realize the full scientific and potential therapeutic use of these cells. Currently, only limited success toward this goal has been achieved without using a viral vector. The Sleeping Beauty (SB) transposon system mediates nonviral gene insertion and stable expression in target cells and tissues. Here, we demonstrate use of the nonviral SB transposon system to effectively mediate stable gene transfer in human ES cells. Transposons encoding (a) green fluorescent protein coupled to the zeocin gene or (b) the firefly luciferase (luc) gene were effectively delivered to undifferentiated human ES cells with either a DNA or RNA source of transposase. Only human ES cells cotransfected with transposon- and transposase-encoding sequences exhibited transgene expression after 1 week in culture. Molecular analysis of transposon integrants indicated that 98% of stable gene transfer resulted from transposition. Stable luc expression was observed up to 5 months in human ES cells cotransfected with a transposon along with either DNA or RNA encoding SB transposase. Genetically engineered human ES cells demonstrated the ability to differentiate into teratomas in vivo and mature hematopoietic cells in vitro while maintaining stable transgene expression. We conclude that the SB transposon system provides an effective approach with several advantages for genetic manipulation and durable gene expression in human ES cells.


Asunto(s)
Elementos Transponibles de ADN/fisiología , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Transferencia de Gen , Transgenes , Secuencia de Bases , Células Madre Embrionarias/metabolismo , Humanos , Datos de Secuencia Molecular , Transposasas/biosíntesis , Transposasas/genética , Transposasas/fisiología
18.
Nat Genet ; 49(7): 1005-1014, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28504702

RESUMEN

Genomic rearrangements are a hallmark of human cancers. Here, we identify the piggyBac transposable element derived 5 (PGBD5) gene as encoding an active DNA transposase expressed in the majority of childhood solid tumors, including lethal rhabdoid tumors. Using assembly-based whole-genome DNA sequencing, we found previously undefined genomic rearrangements in human rhabdoid tumors. These rearrangements involved PGBD5-specific signal (PSS) sequences at their breakpoints and recurrently inactivated tumor-suppressor genes. PGBD5 was physically associated with genomic PSS sequences that were also sufficient to mediate PGBD5-induced DNA rearrangements in rhabdoid tumor cells. Ectopic expression of PGBD5 in primary immortalized human cells was sufficient to promote cell transformation in vivo. This activity required specific catalytic residues in the PGBD5 transposase domain as well as end-joining DNA repair and induced structural rearrangements with PSS breakpoints. These results define PGBD5 as an oncogenic mutator and provide a plausible mechanism for site-specific DNA rearrangements in childhood and adult solid tumors.


Asunto(s)
Transformación Celular Neoplásica/genética , Tumor Rabdoide/genética , Transposasas/fisiología , Adulto , Animales , Dominio Catalítico , Línea Celular , Niño , Preescolar , Aberraciones Cromosómicas , Puntos de Rotura del Cromosoma , Reparación del ADN por Unión de Extremidades/genética , ADN de Neoplasias/genética , Reordenamiento Génico/genética , Genes Supresores de Tumor , Humanos , Lactante , Ratones , Ratones Desnudos , Mutagénesis Sitio-Dirigida , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Secuencias Repetidas Terminales/genética , Transposasas/química , Transposasas/genética
19.
Cancer Res ; 77(6): 1357-1368, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28108518

RESUMEN

RAS genes are mutated in 20% of human tumors, but these mutations are very rare in breast cancer. Here, we used a mouse model to generate tumors upon activation of a mutagenic T2Onc2 transposon via expression of a transposase driven by the keratin K5 promoter in a p53+/- background. These animals mainly developed mammary tumors, most of which had transposon insertions in one of two RASGAP genes, neurofibromin1 (Nf1) and RAS p21 protein activator (Rasa1). Immunohistochemical analysis of a collection of human breast tumors confirmed that low expression of RASA1 is frequent in basal (triple-negative) and estrogen receptor negative tumors. Bioinformatic analysis of human breast tumors in The Cancer Genome Atlas database showed that although RASA1 mutations are rare, allelic loss is frequent, particularly in basal tumors (80%) and in association with TP53 mutation. Inactivation of RASA1 in MCF10A cells resulted in the appearance of a malignant phenotype in the context of mutated p53. Our results suggest that alterations in the Ras pathway due to the loss of negative regulators of RAS may be a common event in basal breast cancer. Cancer Res; 77(6); 1357-68. ©2017 AACR.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Elementos Transponibles de ADN/genética , Transposasas/fisiología , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/fisiología , Proteína Activadora de GTPasa p120/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Transgénicos , Estadificación de Neoplasias , Pronóstico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína Activadora de GTPasa p120/genética
20.
FEBS J ; 284(11): 1590-1605, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27973733

RESUMEN

The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/fisiología , Evolución Molecular , Genes RAG-1 , Proteínas de Homeodominio/fisiología , Recombinación V(D)J , Vertebrados/inmunología , Animales , Secuencia Conservada , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Transferencia de Gen Horizontal , Humanos , Anfioxos/genética , Anfioxos/inmunología , Modelos Genéticos , Filogenia , Erizos de Mar/genética , Erizos de Mar/inmunología , Estrellas de Mar/genética , Estrellas de Mar/inmunología , Transposasas/genética , Transposasas/fisiología , VDJ Recombinasas/genética , VDJ Recombinasas/fisiología , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA