Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38171360

RESUMEN

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Asunto(s)
Estructuras de la Membrana Celular , Miosinas , Tubo Neural , Transducción de Señal , Animales , Ratones , Transporte Biológico , Estructuras de la Membrana Celular/metabolismo , Proteínas Hedgehog/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo
2.
Nature ; 628(8007): 391-399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408487

RESUMEN

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Asunto(s)
Tipificación del Cuerpo , Microfluídica , Tubo Neural , Humanos , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular , Cresta Neural/citología , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células Madre Pluripotentes/citología , Prosencéfalo/citología , Prosencéfalo/embriología , Médula Espinal/citología , Médula Espinal/embriología
3.
Cell ; 153(3): 550-61, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622240

RESUMEN

Sharply delineated domains of cell types arise in developing tissues under instruction of inductive signal (morphogen) gradients, which specify distinct cell fates at different signal levels. The translation of a morphogen gradient into discrete spatial domains relies on precise signal responses at stable cell positions. However, cells in developing tissues undergoing morphogenesis and proliferation often experience complex movements, which may affect their morphogen exposure, specification, and positioning. How is a clear pattern achieved with cells moving around? Using in toto imaging of the zebrafish neural tube, we analyzed specification patterns and movement trajectories of neural progenitors. We found that specified progenitors of different fates are spatially mixed following heterogeneous Sonic Hedgehog signaling responses. Cell sorting then rearranges them into sharply bordered domains. Ectopically induced motor neuron progenitors also robustly sort to correct locations. Our results reveal that cell sorting acts to correct imprecision of spatial patterning by noisy inductive signals.


Asunto(s)
Morfogénesis , Células-Madre Neurales/metabolismo , Tubo Neural/citología , Transducción de Señal , Pez Cebra/embriología , Animales , Movimiento Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas Hedgehog/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
4.
Nature ; 612(7941): 732-738, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517595

RESUMEN

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células Madre
5.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856082

RESUMEN

A major challenge in biology is to understand how mechanical interactions and cellular behavior affect the shapes of tissues and embryo morphology. The extension of the neural tube and paraxial mesoderm, which form the spinal cord and musculoskeletal system, respectively, results in the elongated shape of the vertebrate embryonic body. Despite our understanding of how each of these tissues elongates independently of the others, the morphogenetic consequences of their simultaneous growth and mechanical interactions are still unclear. Our study investigates how differential growth, tissue biophysical properties and mechanical interactions affect embryonic morphogenesis during axial extension using a 2D multi-tissue continuum-based mathematical model. Our model captures the dynamics observed in vivo by time-lapse imaging of bird embryos, and reveals the underestimated influence of differential tissue proliferation rates. We confirmed this prediction in quail embryos by showing that decreasing the rate of cell proliferation in the paraxial mesoderm affects long-term tissue dynamics, and shaping of both the paraxial mesoderm and the neighboring neural tube. Overall, our work provides a new theoretical platform upon which to consider the long-term consequences of tissue differential growth and mechanical interactions on morphogenesis.


Asunto(s)
Proliferación Celular , Mesodermo , Modelos Biológicos , Morfogénesis , Tubo Neural , Animales , Mesodermo/embriología , Mesodermo/citología , Tubo Neural/embriología , Tubo Neural/citología , Codorniz/embriología , Embrión no Mamífero/citología , Desarrollo Embrionario/fisiología , Viscosidad
6.
Nature ; 596(7870): 92-96, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34321664

RESUMEN

The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of this process requires a systematic characterization of cell states over the entire spatiotemporal range of brain development. The ability of single-cell RNA sequencing and spatial transcriptomics to reveal the molecular heterogeneity of complex tissues has therefore been particularly powerful in the nervous system. Previous studies have explored development in specific brain regions1-8, the whole adult brain9 and even entire embryos10. Here we report a comprehensive single-cell transcriptomic atlas of the embryonic mouse brain between gastrulation and birth. We identified almost eight hundred cellular states that describe a developmental program for the functional elements of the brain and its enclosing membranes, including the early neuroepithelium, region-specific secondary organizers, and both neurogenic and gliogenic progenitors. We also used in situ mRNA sequencing to map the spatial expression patterns of key developmental genes. Integrating the in situ data with our single-cell clusters revealed the precise spatial organization of neural progenitors during the patterning of the nervous system.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Análisis de la Célula Individual , Transcriptoma , Animales , Animales Recién Nacidos/genética , Encéfalo/anatomía & histología , Femenino , Gastrulación/genética , Masculino , Ratones , Tubo Neural/anatomía & histología , Tubo Neural/citología , Tubo Neural/embriología
7.
Nature ; 599(7884): 268-272, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707290

RESUMEN

Understanding human organ formation is a scientific challenge with far-reaching medical implications1,2. Three-dimensional stem-cell cultures have provided insights into human cell differentiation3,4. However, current approaches use scaffold-free stem-cell aggregates, which develop non-reproducible tissue shapes and variable cell-fate patterns. This limits their capacity to recapitulate organ formation. Here we present a chip-based culture system that enables self-organization of micropatterned stem cells into precise three-dimensional cell-fate patterns and organ shapes. We use this system to recreate neural tube folding from human stem cells in a dish. Upon neural induction5,6, neural ectoderm folds into a millimetre-long neural tube covered with non-neural ectoderm. Folding occurs at 90% fidelity, and anatomically resembles the developing human neural tube. We find that neural and non-neural ectoderm are necessary and sufficient for folding morphogenesis. We identify two mechanisms drive folding: (1) apical contraction of neural ectoderm, and (2) basal adhesion mediated via extracellular matrix synthesis by non-neural ectoderm. Targeting these two mechanisms using drugs leads to morphological defects similar to neural tube defects. Finally, we show that neural tissue width determines neural tube shape, suggesting that morphology along the anterior-posterior axis depends on neural ectoderm geometry in addition to molecular gradients7. Our approach provides a new route to the study of human organ morphogenesis in health and disease.


Asunto(s)
Morfogénesis , Tubo Neural/anatomía & histología , Tubo Neural/embriología , Técnicas de Cultivo de Órganos/métodos , Ectodermo/citología , Ectodermo/embriología , Humanos , Modelos Biológicos , Placa Neural/citología , Placa Neural/embriología , Tubo Neural/citología , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/patología , Regeneración , Células Madre/citología
8.
Annu Rev Cell Dev Biol ; 28: 627-53, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22905955

RESUMEN

Planar cell polarity (PCP), the orientation and alignment of cells within a sheet, is a ubiquitous cellular property that is commonly governed by the conserved set of proteins encoded by so-called PCP genes. The PCP proteins coordinate developmental signaling cues with individual cell behaviors in a wildly diverse array of tissues. Consequently, disruptions of PCP protein functions are linked to defects in axis elongation, inner ear patterning, neural tube closure, directed ciliary beating, and left/right patterning, to name only a few. This review attempts to synthesize what is known about PCP and the PCP proteins in vertebrate animals, with a particular focus on the mechanisms by which individual cells respond to PCP cues in order to execute specific cellular behaviors.


Asunto(s)
Polaridad Celular , Desarrollo Embrionario , Animales , División Celular , Movimiento Celular , Cilios/metabolismo , Cilios/fisiología , Nervio Facial/citología , Nervio Facial/embriología , Nervio Facial/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Folículo Piloso/citología , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Tubo Neural/citología , Tubo Neural/metabolismo , Tubo Neural/fisiología
9.
J Cell Sci ; 136(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37589341

RESUMEN

Bioenergetic metabolism is a key regulator of cellular function and signaling, but how it can instruct the behavior of cells and their fate during embryonic development remains largely unknown. Here, we investigated the role of glucose metabolism in the development of avian trunk neural crest cells (NCCs), a migratory stem cell population of the vertebrate embryo. We uncovered that trunk NCCs display glucose oxidation as a prominent metabolic phenotype, in contrast to what is seen for cranial NCCs, which instead rely on aerobic glycolysis. In addition, only one pathway downstream of glucose uptake is not sufficient for trunk NCC development. Indeed, glycolysis, mitochondrial respiration and the pentose phosphate pathway are all mobilized and integrated for the coordinated execution of diverse cellular programs, epithelial-to-mesenchymal transition, adhesion, locomotion, proliferation and differentiation, through regulation of specific gene expression. In the absence of glucose, the OXPHOS pathway fueled by pyruvate failed to promote trunk NCC adaptation to environmental stiffness, stemness maintenance and fate-decision making. These findings highlight the need for trunk NCCs to make the most of the glucose pathway potential to meet the high metabolic demands appropriate for their development.


Asunto(s)
Glucosa , Cresta Neural , Codorniz , Codorniz/crecimiento & desarrollo , Codorniz/metabolismo , Animales , Cresta Neural/crecimiento & desarrollo , Cresta Neural/metabolismo , Glucosa/metabolismo , Tubo Neural/citología , Células Cultivadas , Técnicas In Vitro , Fosforilación Oxidativa , Redes y Vías Metabólicas , Adhesión Celular
10.
Dev Growth Differ ; 66(5): 320-328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38925637

RESUMEN

During the formation of the neural tube, the primordium of the vertebrate central nervous system, the actomyosin activity of cells in different regions drives neural plate bending. However, how the stiffness of the neural plate and surrounding tissues is regulated and mechanically influences neural plate bending has not been elucidated. Here, we used atomic force microscopy to reveal the relationship between the stiffness of the neural plate and the mesoderm during Xenopus neural tube formation. Measurements with intact embryos revealed that the stiffness of the neural plate was consistently higher compared with the non-neural ectoderm and that it increased in an actomyosin activity-dependent manner during neural plate bending. Interestingly, measurements of isolated tissue explants also revealed that the relationship between the stiffness of the apical and basal sides of the neural plate was reversed during bending and that the stiffness of the mesoderm was lower than that of the basal side of the neural plate. The experimental elevation of mesoderm stiffness delayed neural plate bending, suggesting that low mesoderm stiffness mechanically supports neural tube closure. This study provides an example of mechanical interactions between tissues during large-scale morphogenetic movements.


Asunto(s)
Placa Neural , Tubo Neural , Xenopus laevis , Animales , Tubo Neural/embriología , Tubo Neural/citología , Tubo Neural/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Placa Neural/citología , Xenopus laevis/embriología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Microscopía de Fuerza Atómica , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/embriología
11.
Nature ; 544(7648): 88-91, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28321127

RESUMEN

The enteric nervous system of jawed vertebrates arises primarily from vagal neural crest cells that migrate to the foregut and subsequently colonize and innervate the entire gastrointestinal tract. Here we examine development of the enteric nervous system in the basal jawless vertebrate the sea lamprey (Petromyzon marinus) to gain insight into its evolutionary origin. Surprisingly, we find no evidence for the existence of a vagally derived enteric neural crest population in the lamprey. Rather, labelling with the lipophilic dye DiI shows that late-migrating cells, originating from the trunk neural tube and associated with nerve fibres, differentiate into neurons within the gut wall and typhlosole. We propose that these trunk-derived neural crest cells may be homologous to Schwann cell precursors, recently shown in mammalian embryos to populate post-embryonic parasympathetic ganglia, including enteric ganglia. Our results suggest that neural-crest-derived Schwann cell precursors made an important contribution to the ancient enteric nervous system of early jawless vertebrates, a role that was largely subsumed by vagal neural crest cells in early gnathostomes.


Asunto(s)
Evolución Biológica , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/embriología , Cresta Neural/citología , Neuronas/citología , Petromyzon/embriología , Torso/embriología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Ganglios/citología , Ganglios/embriología , Fibras Nerviosas , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células de Schwann/citología , Nervio Vago/citología , Nervio Vago/embriología
12.
PLoS Genet ; 16(11): e1009164, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175861

RESUMEN

The chromosome translocations generating PAX3-FOXO1 and PAX7-FOXO1 chimeric proteins are the primary hallmarks of the paediatric fusion-positive alveolar subtype of Rhabdomyosarcoma (FP-RMS). Despite the ability of these transcription factors to remodel chromatin landscapes and promote the expression of tumour driver genes, they only inefficiently promote malignant transformation in vivo. The reason for this is unclear. To address this, we developed an in ovo model to follow the response of spinal cord progenitors to PAX-FOXO1s. Our data demonstrate that PAX-FOXO1s, but not wild-type PAX3 or PAX7, trigger the trans-differentiation of neural cells into FP-RMS-like cells with myogenic characteristics. In parallel, PAX-FOXO1s remodel the neural pseudo-stratified epithelium into a cohesive mesenchyme capable of tissue invasion. Surprisingly, expression of PAX-FOXO1s, similar to wild-type PAX3/7, reduce the levels of CDK-CYCLIN activity and increase the fraction of cells in G1. Introduction of CYCLIN D1 or MYCN overcomes this PAX-FOXO1-mediated cell cycle inhibition and promotes tumour growth. Together, our findings reveal a mechanism that can explain the apparent limited oncogenicity of PAX-FOXO1 fusion transcription factors. They are also consistent with certain clinical reports indicative of a neural origin of FP-RMS.


Asunto(s)
Transdiferenciación Celular/genética , Transformación Celular Neoplásica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción Paired Box/metabolismo , Rabdomiosarcoma Alveolar/genética , Animales , Biopsia , Embrión de Pollo , Niño , Ciclina D1/genética , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Invasividad Neoplásica/genética , Células-Madre Neurales/patología , Tubo Neural/citología , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma Alveolar/patología , Fase S/genética
13.
Dev Biol ; 478: 59-75, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34029538

RESUMEN

Morphogenesis of the vertebrate neural tube occurs by elongation and bending of the neural plate, tissue shape changes that are driven at the cellular level by polarized cell intercalation and cell shape changes, notably apical constriction and cell wedging. Coordinated cell intercalation, apical constriction, and wedging undoubtedly require complex underlying cytoskeletal dynamics and remodeling of adhesions. Mutations of the gene encoding Scribble result in neural tube defects in mice, however the cellular and molecular mechanisms by which Scrib regulates neural cell behavior remain unknown. Analysis of Scribble mutants revealed defects in neural tissue shape changes, and live cell imaging of mouse embryos showed that the Scrib mutation results in defects in polarized cell intercalation, particularly in rosette resolution, and failure of both cell apical constriction and cell wedging. Scrib mutant embryos displayed aberrant expression of the junctional proteins ZO-1, Par3, Par6, E- and N-cadherins, and the cytoskeletal proteins actin and myosin. These findings show that Scribble has a central role in organizing the molecular complexes regulating the morphomechanical neural cell behaviors underlying vertebrate neurulation, and they advance our understanding of the molecular mechanisms involved in mammalian neural tube closure.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Defectos del Tubo Neural/embriología , Tubo Neural/embriología , Animales , Polaridad Celular , Forma de la Célula , Proteínas del Citoesqueleto , Expresión Génica , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Morfogénesis , Mutación , Proteínas del Tejido Nervioso/genética , Placa Neural/citología , Placa Neural/embriología , Tubo Neural/citología , Defectos del Tubo Neural/genética , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Células Neuroepiteliales/ultraestructura , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
14.
Development ; 146(23)2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31784457

RESUMEN

Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube.


Asunto(s)
Diferenciación Celular/fisiología , Células-Madre Neurales/metabolismo , Tubo Neural/embriología , Neurogénesis/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Epitelio/embriología , Ratones , Células-Madre Neurales/citología , Tubo Neural/citología , Neuronas/citología
15.
Development ; 146(14)2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239243

RESUMEN

Bone morphogenetic proteins (BMPs) are secreted regulators of cell fate in several developing tissues. In the embryonic spinal cord, they control the emergence of the neural crest, roof plate and distinct subsets of dorsal interneurons. Although a gradient of BMP activity has been proposed to determine cell type identity in vivo, whether this is sufficient for pattern formation in vitro is unclear. Here, we demonstrate that exposure to BMP4 initiates distinct spatial dynamics of BMP signalling within the self-emerging epithelia of both mouse and human pluripotent stem cell-derived spinal organoids. The pattern of BMP signalling results in the stereotyped spatial arrangement of dorsal neural tube cell types, and concentration, timing and duration of BMP4 exposure modulate these patterns. Moreover, differences in the duration of competence time-windows between mouse and human account for the species-specific tempo of neural differentiation. Together, this study describes efficient methods for generating patterned subsets of dorsal interneurons in spinal organoids and supports the conclusion that graded BMP activity orchestrates the spatial organization of the dorsal neural tube cellular diversity in mouse and human.


Asunto(s)
Proteína Morfogenética Ósea 4/fisiología , Diferenciación Celular/genética , Organoides/fisiología , Proteínas Smad/metabolismo , Columna Vertebral/citología , Animales , Linaje de la Célula/genética , Células Cultivadas , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Interneuronas/citología , Interneuronas/fisiología , Ratones , Cresta Neural/citología , Cresta Neural/fisiología , Tubo Neural/citología , Tubo Neural/embriología , Neuronas/citología , Neuronas/fisiología , Organoides/citología , Transducción de Señal/genética , Proteínas Smad/genética
16.
Bioessays ; 42(3): e1900186, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32078177

RESUMEN

The brain ventricular system is a series of connected cavities, filled with cerebrospinal fluid (CSF), that forms within the vertebrate central nervous system (CNS). The hollow neural tube is a hallmark of the chordate CNS, and a closed neural tube is essential for normal development. Development and function of the ventricular system is examined, emphasizing three interdigitating components that form a functional system: ventricle walls, CSF fluid properties, and activity of CSF constituent factors. The cellular lining of the ventricle both can produce and is responsive to CSF. Fluid properties and conserved CSF components contribute to normal CNS development. Anomalies of the CSF/ventricular system serve as diagnostics and may cause CNS disorders, further highlighting their importance. This review focuses on the evolution and development of the brain ventricular system, associated function, and connected pathologies. It is geared as an introduction for scholars with little background in the field.


Asunto(s)
Ventrículos Cerebrales/crecimiento & desarrollo , Ventrículos Cerebrales/metabolismo , Líquido Cefalorraquídeo/metabolismo , Animales , Evolución Biológica , Encefalopatías/metabolismo , Ventrículos Cerebrales/citología , Presión del Líquido Cefalorraquídeo/fisiología , Proteínas del Líquido Cefalorraquídeo/metabolismo , Cilios/metabolismo , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Humanos , Cinética , Tubo Neural/citología , Tubo Neural/crecimiento & desarrollo , Tubo Neural/metabolismo , Transducción de Señal
17.
Dev Biol ; 461(2): 184-196, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32084354

RESUMEN

Vertebrate head morphogenesis involves carefully-orchestrated tissue growth and cell movements of the mesoderm and neural crest to form the distinct craniofacial pattern. To better understand structural birth defects, it is important that we characterize the dynamics of these processes and learn how they rely on each other. Here we examine this question during chick head morphogenesis using time-lapse imaging, computational modeling, and experiments. We find that head mesodermal cells in culture move in random directions as individuals and move faster in the presence of neural crest cells. In vivo, mesodermal cells migrate in a directed manner and maintain neighbor relationships; neural crest cells travel through the mesoderm at a faster speed. The mesoderm grows with a non-uniform spatio-temporal profile determined by BrdU labeling during the period of faster and more-directed neural crest collective migration through this domain. We use computer simulations to probe the robustness of neural crest stream formation by varying the spatio-temporal growth profile of the mesoderm. We follow this with experimental manipulations that either stop mesoderm growth or prevent neural crest migration and observe changes in the non-manipulated cell population, implying a dynamic feedback between tissue growth and neural crest cell signaling to confer robustness to the system. Overall, we present a novel descriptive analysis of mesoderm and neural crest cell dynamics that reveals the coordination and co-dependence of these two cell populations during head morphogenesis.


Asunto(s)
Embrión de Pollo/citología , Cabeza/embriología , Mesodermo/citología , Cresta Neural/citología , Tubo Neural/citología , Animales , División Celular , Movimiento Celular , Células Cultivadas , Pollos , Simulación por Computador , Coturnix/embriología , Ectodermo/citología , Modelos Biológicos , Morfogénesis , Imagen de Lapso de Tiempo
18.
Dev Biol ; 461(2): 160-171, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32059837

RESUMEN

In amniotes, unlike primary neurulation in the anterior body, secondary neurulation (SN) proceeds along with axial elongation by the mesenchymal-to-epithelial transition of SN precursors in the tail bud. It has been under debate whether the SN is generated by neuromesodermal common progenitor cells (NMPs) or neural restricted lineage. Our direct cell labeling and serial transplantations identify uni-fated (neural) precursors in the early tail bud. The uni-fated SN precursor territory is further divided into two subpopulations, neural-differentiating and self-renewing cells, which are regulated by high- and low levels of Sox2, respectively. Unexpectedly, uni-fated SN precursors change their fate at later stages to produce both SN and mesoderm. Thus, chicken embryos adopt a previously unappreciated prolonged phase with uni-fated SN stem cells in the early tail bud, which is absent or very limited in mouse embryos.


Asunto(s)
Autorrenovación de las Células/fisiología , Pollos/genética , Células-Madre Neurales/citología , Tubo Neural/embriología , Neurulación/fisiología , Factores de Transcripción SOXB1/fisiología , Cola (estructura animal)/embriología , Animales , Linaje de la Célula , Embrión de Pollo , Genes Reporteros , Mesodermo/citología , Tubo Neural/citología , Neurulación/genética , Factores de Transcripción SOXB1/antagonistas & inhibidores , Factores de Transcripción SOXB1/genética , Cola (estructura animal)/citología
19.
J Cell Sci ; 132(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31182644

RESUMEN

Cellular generation of mechanical forces required to close the presumptive spinal neural tube, the 'posterior neuropore' (PNP), involves interkinetic nuclear migration (INM) and apical constriction. Both processes change the apical surface area of neuroepithelial cells, but how they are biomechanically integrated is unknown. Rho kinase (Rock; herein referring to both ROCK1 and ROCK2) inhibition in mouse whole embryo culture progressively widens the PNP. PNP widening is not caused by increased mechanical tension opposing closure, as evidenced by diminished recoil following laser ablation. Rather, Rock inhibition diminishes neuroepithelial apical constriction, producing increased apical areas in neuroepithelial cells despite diminished tension. Neuroepithelial apices are also dynamically related to INM progression, with the smallest dimensions achieved in cells positive for the pan-M phase marker Rb phosphorylated at S780 (pRB-S780). A brief (2 h) Rock inhibition selectively increases the apical area of pRB-S780-positive cells, but not pre-anaphase cells positive for phosphorylated histone 3 (pHH3+). Longer inhibition (8 h, more than one cell cycle) increases apical areas in pHH3+ cells, suggesting cell cycle-dependent accumulation of cells with larger apical surfaces during PNP widening. Consequently, arresting cell cycle progression with hydroxyurea prevents PNP widening following Rock inhibition. Thus, Rock-dependent apical constriction compensates for the PNP-widening effects of INM to enable progression of closure.This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
División Celular , Tubo Neural/citología , Tubo Neural/metabolismo , Quinasas Asociadas a rho/metabolismo , Actomiosina/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Embrión de Mamíferos/citología , Ratones , Células Neuroepiteliales/citología , Células Neuroepiteliales/efectos de los fármacos , Células Neuroepiteliales/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores
20.
Development ; 145(9)2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29678815

RESUMEN

Balancing the rate of differentiation and proliferation in developing tissues is essential to produce organs of robust size and composition. Although many molecular regulators have been established, how these connect to physical and geometrical aspects of tissue architecture is poorly understood. Here, using high-resolution timelapse imaging, we find that changes to cell geometry associated with dense tissue packing play a significant role in regulating differentiation rate in the zebrafish neural tube. Specifically, progenitors that are displaced away from the apical surface due to crowding, tend to differentiate in a Notch-dependent manner. Using simulations we show that interplay between progenitor density, cell shape and changes in differentiation rate could naturally result in negative-feedback control on progenitor cell number. Given these results, we suggest a model whereby differentiation rate is regulated by density dependent effects on cell geometry to: (1) correct variability in cell number; and (2) balance the rates of proliferation and differentiation over development to 'fill' the available space.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células-Madre Neurales/metabolismo , Tubo Neural/embriología , Neurogénesis/fisiología , Pez Cebra/embriología , Animales , Células-Madre Neurales/citología , Tubo Neural/citología , Receptores Notch/genética , Receptores Notch/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA