RESUMEN
DNA replication is a central process in all living organisms. Polyomavirus DNA replication serves as a model system for eukaryotic DNA replication and has considerably contributed to our understanding of basic replication mechanisms. However, the details of the involved processes are still unclear, in particular regarding lagging strand synthesis. To delineate the complex mechanism of coordination of various cellular proteins binding simultaneously or consecutively to DNA to initiate replication, we investigated single-stranded DNA (ssDNA) interactions by the SV40 large T antigen (Tag). Using single molecule imaging by atomic force microscopy (AFM) combined with biochemical and spectroscopic analyses we reveal independent activity of monomeric and oligomeric Tag in high affinity binding to ssDNA. Depending on ssDNA length, we obtain dissociation constants for Tag-ssDNA interactions (KD values of 10-30 nM) that are in the same order of magnitude as ssDNA binding by human replication protein A (RPA). Furthermore, we observe the formation of RPA-Tag-ssDNA complexes containing hexameric as well as monomeric Tag forms. Importantly, our data clearly show stimulation of primase function in lagging strand Okazaki fragment synthesis by monomeric Tag whereas hexameric Tag inhibits the reaction, redefining DNA replication initiation on the lagging strand.
Asunto(s)
Antígenos Transformadores de Poliomavirus/metabolismo , Replicación del ADN , ADN de Cadena Simple/metabolismo , Proteína de Replicación A/metabolismo , Adenosina Trifosfato/metabolismo , ADN/metabolismo , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , ADN de Cadena Simple/química , Unión Proteica , Virus 40 de los Simios/inmunologíaRESUMEN
BACKGROUND: Craniopharyngioma represents a troublesome tumor of the intracranial sellar region. There are currently no available well-characterized craniopharyngioma cell lines. This lack of reliable, immortal cell lines is a major reason for the slow progress in fundamental research related to craniopharyngioma. METHODS: We describe the development of an immortal papillary craniopharyngioma (PCP) cell line by transfecting primary PCP cells with the pLenti-simian virus 40 large T antigen(SV40LT). RESULTS: Three clones have been cultured for more than 14 months so far, while non-transfected cells ceased proliferation within three months of isolation. The established immortal PCP cell lines were identified to have BRAFV600E mutations, while no mutations in tumor suppressor genes were found in primary cells or immortal cells. Immortal cells had higher proliferation rates and formed tumors when implanted in the bran of nude mice. BRAF inhibition in immortal PCP cells altered cell morphology, inhibited cell proliferation and promoted apoptosis. CONCLUSION: We successfully developed PCP cell lines by SV40LT-mediated immortalization. These cell lines represent a powerful tool for fundamental and therapeutical studies on craniopharyngioma.
Asunto(s)
Antígenos Virales de Tumores/inmunología , Craneofaringioma/inmunología , Virus 40 de los Simios/inmunología , Animales , Línea Celular Tumoral , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteínas de Unión al GTP rho/genéticaRESUMEN
Published data support the hypothesis that viruses could be trigger agents of multiple sclerosis onset. This link is based on evidence of early exposure to viral agents in patients affected by this neurologic disease. JC (JC polyomavirus [JCPyV]), BK (BKPyV), and simian virus 40 (SV40) neurotropic polyomavirus footprints have been detected in brain tissue specimens and samples from patients affected by different neurological diseases. In this investigation, serum samples from patients affected by multiple sclerosis and other inflammatory and noninflammatory neurologic diseases, as well as healthy subjects representing the control, were investigated for immunoglobulin G (IgG) antibodies against JCPyV. To this end, an immunologic approach was employed, which consists of employing indirect enzyme-linked immunosorbent assay testing with synthetic peptides mimicking viral capsid protein 1 antigens. A significantly lower prevalence of IgG antibodies against JCPyV VP1 epitopes, with a low titer, was detected in serum samples from patients with multiple sclerosis (MS) and other neurologic diseases than in healthy subjects. Our study indicates that the prevalence of JCPyV antibodies from patients with multiple sclerosis is 50% lower than in healthy subjects, suggesting specific immune impairments. These results indicate that patients affected by neurological diseases, including MS, respond poorly to JCPyV VP1 antigens, suggesting specific immunologic dysfunctions.
Asunto(s)
Anticuerpos/inmunología , Esclerosis Múltiple/inmunología , Enfermedades del Sistema Nervioso/inmunología , Virosis/inmunología , Adulto , Anciano , Especificidad de Anticuerpos/inmunología , Virus BK/inmunología , Virus BK/patogenicidad , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Virus JC/inmunología , Virus JC/patogenicidad , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/virología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/virología , Virus 40 de los Simios/inmunología , Virus 40 de los Simios/patogenicidad , Virosis/genética , Virosis/patología , Virosis/virologíaRESUMEN
Simian virus 40 (SV40) is a monkey polyomavirus. The capsid structure is icosahedral and comprises VP1 units that measure 45 nm in diameter. Five SV40 VP1 molecules form one pentamer subunit, and a single icosahedral subunit comprises 72 pentamers; a single SV40 VP1 capsid comprises 360 SV40 VP1 molecules. In a previous study, we showed that an influenza A virus matrix protein 1 (M1) CTL epitope inserted within SV40 virus-like particles (VLPs) induced cytotoxic T lymphocytes (CTLs) without the need for an adjuvant. Here, to address whether SV40 VLPs induce adaptive immune responses against VLP-incorporated antigens, we prepared SV40 VLPs containing M1 or chicken ovalbumin (OVA). This was done by fusing M1 or OVA with the carboxyl terminus of SV40 VP2 and co-expressing them with SV40 VP1 in insect cells using a baculovirus vector. Intraperitoneal (i.p.) or intranasal administration of SV40 VLPs incorporating M1 induced the production of CTLs specific for the M1 epitope without the requirement for adjuvant. The production of antibodies against SV40 VLPs was also induced by i.p. administration of SV40 VLPs in the absence of adjuvant. Finally, the administration of SV40 VLPs incorporating OVA induced anti-OVA antibodies in the absence of adjuvant; in addition, the level of antibody production was comparable with that after i.p. administration of OVA plus alum adjuvant. These results suggest that the SV40 capsid incorporating foreign antigens can be used as a vaccine platform to induce adaptive immune responses without the need for adjuvant.
Asunto(s)
Inmunidad Adaptativa/inmunología , Antígenos/inmunología , Proteínas de la Cápside/inmunología , Cápside/inmunología , Virus 40 de los Simios/inmunología , Animales , Baculoviridae/inmunología , Ratones , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/inmunología , Vacunas de Partículas Similares a Virus/inmunologíaRESUMEN
Host range (HR) mutants of simian virus 40 (SV40) containing mutations in the C terminus of large T antigen fail to replicate efficiently or form plaques in restrictive cell types. HR mutant viruses exhibit impairments at several stages of the viral life cycle, including early and late gene and protein expression, DNA replication, and virion assembly, although the underlying mechanism for these defects is unknown. Host protein FAM111A, whose depletion rescues early and late gene expression and plaque formation for SV40 HR viruses, has been shown to play a role in cellular DNA replication. SV40 viral DNA replication occurs in the nucleus of infected cells in viral replication centers where viral proteins and cellular replication factors localize. Here, we examined the role of viral replication center formation and DNA replication in the FAM111A-mediated HR phenotype. We found that SV40 HR virus rarely formed viral replication centers in restrictive cells, a phenotype that could be rescued by FAM111A depletion. Furthermore, while FAM111A localized to nucleoli in uninfected cells in a cell cycle-dependent manner, FAM111A relocalized to viral replication centers after infection with SV40 wild-type or HR viruses. We also found that inhibition of viral DNA replication through aphidicolin treatment or through the use of replication-defective SV40 mutants diminished the effects of FAM111A depletion on viral gene expression. These results indicate that FAM111A restricts SV40 HR viral replication center formation and that viral DNA replication contributes to the FAM111A-mediated effect on early gene expression.IMPORTANCE SV40 has served as a powerful tool for understanding fundamental viral and cellular processes; however, despite extensive study, the SV40 HR mutant phenotype remains poorly understood. Mutations in the C terminus of large T antigen that disrupt binding to the host protein FAM111A render SV40 HR viruses unable to replicate in restrictive cell types. Our work reveals a defect of HR mutant viruses in the formation of viral replication centers that can be rescued by depletion of FAM111A. Furthermore, inhibition of viral DNA replication reduces the effects of FAM111A restriction on viral gene expression. Additionally, FAM111A is a poorly characterized cellular protein whose mutation leads to two severe human syndromes, Kenny-Caffey syndrome and osteocraniostenosis. Our findings regarding the role of FAM111A in restricting viral replication and its localization to nucleoli and viral replication centers provide further insight into FAM111A function that could help reveal the underlying disease-associated mechanisms.
Asunto(s)
Antígenos Virales de Tumores/genética , Proteínas de Ciclo Celular/metabolismo , ADN Viral/metabolismo , Virus 40 de los Simios/fisiología , Animales , Antígenos Virales de Tumores/química , Proteínas de Ciclo Celular/genética , Línea Celular , Núcleo Celular/virología , Chlorocebus aethiops , Regulación Viral de la Expresión Génica , Especificidad del Huésped , Humanos , Mutación , Fenotipo , Virus 40 de los Simios/genética , Virus 40 de los Simios/inmunología , Replicación ViralRESUMEN
SV40-encoded microRNA (miRNA), miR-S1, downregulates the large and small T antigens (LTag and STag), which promote viral replication and cellular transformation, thereby presumably impairing LTag and STag functions essential for the viral life cycle. To explore the functional significance of miR-S1-mediated downregulation of LTag and STag as well as the functional roles of miR-S1, we evaluated viral DNA replication and proinflammatory cytokine induction in cells transfected with simian virus 40 (SV40) genome plasmid and its mutated form lacking miR-S1 expression. The SV40 genome encodes two mature miR-S1s, miR-S1-3p and miR-S1-5p, of which miR-S1-3p is the predominantly expressed form. MiR-S1-3p exerted strong repressive effects on a reporter containing full-length sequence complementarity, but only marginal effect on one harboring a sequence complementary to its seed sequence. Consistently, miR-S1-3p downregulated LTag and STag transcripts with complete sequence complementarity through miR-S1-3p-Ago2-mediated mRNA decay. Transfection of SV40 plasmid induced higher DNA replication and lower LTag and STag transcripts in most of the examined cells compared to that miR-S1-deficient SV40 plasmid. However, miR-S1 itself did not affect DNA replication without the downregulation of LTag transcripts. Both LTag and STag induced the expression of tumor necrosis factor α (TNFα) and interleukin (IL)-17F, which was slightly reduced by miR-S1 due to miR-S1-mediated downregulation of LTag and STag. Forced miR-S1 expression did not affect TNFα expression, but increased IL-17F expression. Overall, our findings suggest that miR-S1-3p is a latent modifier of LTag and STag functions, ensuring efficient viral replication and attenuating cytokine expression detrimental to the viral life cycle.
Asunto(s)
Antígenos Virales de Tumores/genética , Regulación Viral de la Expresión Génica/inmunología , MicroARNs/metabolismo , ARN Viral/metabolismo , Virus 40 de los Simios/genética , Células A549 , Replicación del ADN/inmunología , ADN Viral/biosíntesis , Células HEK293 , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Interleucina-17/metabolismo , Interleucina-8/metabolismo , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/inmunología , Infecciones por Polyomavirus/virología , Virus 40 de los Simios/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/virología , Replicación Viral/inmunologíaRESUMEN
Recent data indicate that the Simian virus 40 (SV40) infection appears to be transmitted in humans independently from early SV40-contaminated antipolio vaccines. Serum antibodies against SV40 large T antigen (Tag) were analyzed in children/adolescents and young adults. To investigate antibodies reacting to SV40 Tag antigens, serum samples ( n = 812) from children and young adults were analyzed by indirect ELISAs using specific SV40 Tag mimotopes. Mimotopes were synthetic peptides corresponding to SV40 Tag epitopes. In sera ( n = 412) from healthy children up to 17 years old, IgG antibodies against SV40 Tag mimotopes reached an overall prevalence of 15%. IgM antibodies against SV40 Tag were detected in sera of children 6-8 months old confirming and extending the knowledge that SV40 seroconversion occurs early in life. In children/adolescents affected by different diseases ( n = 180) SV40 Tag had a prevalence of 18%, being the difference no significant compared to healthy subjects ( n = 220; 16%) of the same age. Our immunological data indicate that SV40 circulates in children and young adults, both in healthy conditions and affected by distinct diseases. The IgM detection in sera from healthy children suggests that the SV40 infection/seroconversion occurs early in life (>6 months). Our immunological data support the hypothesis that SV40, or a closely related still unknown polyomavirus, infects humans. The SV40 seroprevalence is lower than common polyomaviruses, such as BKPyV and JCPyV, and other new human polyomaviruses. In addition, our immunological surveillance indicates a lack of association between different diseases, considered herein, and SV40.
Asunto(s)
Anticuerpos/sangre , Antígenos Virales de Tumores/inmunología , Epítopos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Infecciones por Polyomavirus/diagnóstico , Seroconversión , Virus 40 de los Simios/inmunología , Adolescente , Factores de Edad , Animales , Línea Celular , Niño , Preescolar , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática , Humanos , Lactante , Infecciones por Polyomavirus/sangre , Infecciones por Polyomavirus/inmunologíaRESUMEN
Simian Virus 40 (SV40), a monkey polyomavirus, was administered to human populations by early anti-poliomylitis vaccines contaminated by this small DNA tumor virus. Data on SV40 infection in humans remain controversial. Elderly subjects represent an interesting cohort to investigate, because they were not immunized with SV40-contaminated vaccines. Taking advantage of the Italian population, the second oldest worldwide, elderly subjects (n = 237) up to 100 years old were enrolled in this study. Their sera were analyzed, by ELISA tests with synthetic peptides mimicking the viral epitopes, for IgG antibodies reacting with SV40 large Tumor antigen (Tag), the viral oncoprotein. An overall seroprevalence of 22% was revealed in subjects aged 66-100 years, ranging from 19% in individuals 66-74 years old, to 24% in subjects 82-100 years old, with a lower SV40 titer detected in the oldest group. Our data show that: (i) SV40 infection is not frequent in old individuals; (ii) the infection rate increases in elderly with the age; (iii) the antibody titer of SV40 Tag decreases with the age. In conclusion, SV40 infection seems to spread in old subjects independently from SV40-contaminated vaccines. This study seems to confirm that SV40 is also a human virus. J. Cell. Physiol. 232: 176-181, 2017. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Anticuerpos/sangre , Antígenos Virales de Tumores/inmunología , Virus 40 de los Simios/inmunología , Anciano , Anciano de 80 o más Años , Envejecimiento , Anticuerpos/inmunología , Femenino , Voluntarios Sanos , Humanos , Masculino , Proteínas Oncogénicas/inmunología , Infecciones por Polyomavirus/inmunología , Infecciones por Polyomavirus/virología , Estudios Seroepidemiológicos , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/virologíaRESUMEN
The Mesenchymal Stromal Cells from umbilical cord Wharton's jelly (WJSCs) are a source of cells with high potentiality for the treatment of human immunological disorders. Footprints of the oncogenic viruses Simian Virus 40 (SV40) and JC Virus (JCPyV) have been recently detected in human WJSCs specimens. The aim of this study is to evaluate if WJSCs can be efficiently infected by these Polyomaviruses and if they can potentially exert tumoral activity. Cell culture experiments indicated that WJSCs could sustain both SV40 and JCPyV infections. A transient and lytic replication was observed for JCPyV, while SV40 persistently infected WJSCs over a long period of time, releasing a viral progeny at low titer without evident cytopathic effect (CPE). Considering the association between SV40 and human tumors and the reported ability of the oncogenic viruses to drive the host innate immune response to cell transformation, the expression profile of a large panel of immune mediators was evaluated in supernatants by the Bioplex platform. RANTES, IL-3, MIG, and IL-12p40, involved in chronic inflammation, cells differentiation, and transformation, were constantly measured at high concentration comparing to control. These findings represent a new aspect of SV40 biological activity in the humans, highlighting its interaction with specific host cellular pathways. In view of these results, it seems to be increasingly urgent to consider Polyomaviruses in the management of WJSCs for their safely use as promising therapeutic source. J. Cell. Physiol. 232: 3060-3066, 2017. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Transformación Celular Viral , Mediadores de Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/virología , Virus 40 de los Simios/fisiología , Gelatina de Wharton/citología , Línea Celular Transformada , Separación Celular/métodos , Quimiocina CCL5/metabolismo , Quimiocina CXCL9/metabolismo , Efecto Citopatogénico Viral , ADN Viral/biosíntesis , ADN Viral/genética , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/inmunología , Subunidad p40 de la Interleucina-12/metabolismo , Interleucina-3/metabolismo , Virus JC/fisiología , Células Madre Mesenquimatosas/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus 40 de los Simios/genética , Virus 40 de los Simios/inmunología , Factores de Tiempo , Regulación hacia Arriba , Carga Viral , Replicación ViralRESUMEN
A new immunological investigation was carried out to study the association between non-Hodgkin lymphoma and Simian virus 40 (SV40). To this end, a new indirect ELISA was employed with two mimotopes from SV40 large T antigen (Tag), the viral oncoprotein, to analyse for specific reactions to antibodies in sera from non-Hodgkin lymphoma patients and controls, represented by healthy subjects (HS) and breast carcinoma (BC) patients. This study allowed us to assay a new sera collection from non-Hodgkin lymphoma patients (NHL, n = 254). To verify the association between NHL and SV40 Tag, two totally independent cohorts were analysed: NHL1 n = 150 and NHL2 n = 104. The epidemiological survey included sera from HS1, n = 150; HS2, n = 104 and BC, n = 78. This new indirect ELISA revealed that antibodies against SV40 Tag mimotopes are detectable in NHL1 and NHL2 sera with a prevalence of 37 and 36%, respectively. The prevalence of SV40-antibodies detected in both NHL1 and NHL2 cohorts differs statistically from controls, at 19% for HS1 (p < 0.01), HS2 (p < 0.05) and BC patients (p < 0.05). This study, carried out with an immunological assay with specific Tag oncoprotein mimotopes of Simian virus 40, reports the presence of IgG antibodies against the large Tumour antigen in non-Hodgkin lymphomas for the first time. Our immunological data with two independent NHL cohorts show a statistically significant association between Simian virus 40 Tag and non-Hodgkin lymphoma. These results suggest that SV40-positive non-Hodgkin lymphomas could be treated differently from those tested SV40-negative.
Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales de Tumores/inmunología , Linfoma no Hodgkin/inmunología , Proteínas Oncogénicas/metabolismo , Virus 40 de los Simios/inmunología , Adulto , Animales , Femenino , Humanos , Linfoma no Hodgkin/patología , Ratones , Ratones Transgénicos , Persona de Mediana Edad , PrevalenciaRESUMEN
The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo.
Asunto(s)
Cinesinas/biosíntesis , Neoplasias de la Retina/metabolismo , Retinoblastoma/metabolismo , Animales , Antígenos Virales de Tumores/biosíntesis , Procesos de Crecimiento Celular/genética , Modelos Animales de Enfermedad , Femenino , Cinesinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Retinoblastoma/genética , Retinoblastoma/patología , Virus 40 de los Simios/inmunologíaRESUMEN
BACKGROUND: Many investigators detected the simian polyomavirus SV40 footprints in human brain tumors and neurologic diseases and recently it has been indicated that SV40 seems to be associated with multiple sclerosis (MS) disease. Interestingly, SV40 interacts with human leukocyte antigen (HLA) class I molecules for cell entry. HLA class I antigens, in particular non-classical HLA-G molecules, characterized by an immune-regulatory function, are involved in MS disease, and the levels of these molecules are modified according with the disease status. OBJECTIVE: We investigated in serum samples, from Italian patients affected by MS, other inflammatory diseases (OIND), non-inflammatory neurological diseases (NIND) and healthy subjects (HS), SV40-antibody and soluble sHLA-G and the association between SV40-prevalence and sHLA-G levels. METHODS: ELISA tests were used for SV40-antibodies detection and sHLA-G quantitation in serum samples. RESULTS: The presence of SV40 antibodies was observed in 6 % of patients affected by MS (N = 4/63), 10 % of OIND (N = 8/77) and 15 % of NIND (N = 9/59), which is suggestive of a lower prevalence in respect to HS (22 %, N = 18/83). MS patients are characterized by higher sHLA-G serum levels (13.9 ± 0.9 ng/ml; mean ± St. Error) in comparison with OIND (6.7 ± 0.8 ng/ml), NIND (2.9 ± 0.4 ng/ml) and HS (2.6 ± 0.7 ng/ml) subjects. Interestingly, we observed an inverse correlation between SV40 antibody prevalence and sHLA-G serum levels in MS patients. CONCLUSION: The data obtained showed a low prevalence of SV40 antibodies in MS patients. These results seems to be due to a generalized status of inability to counteract SV40 infection via antibody production. In particular, we hypothesize that SV40 immune-inhibitory direct effect and the presence of high levels of the immune-inhibitory HLA-G molecules could co-operate in impairing B lymphocyte activation towards SV40 specific peptides.
Asunto(s)
Antígenos Virales/inmunología , Antígenos HLA-G/sangre , Inmunoglobulina G/sangre , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Virus 40 de los Simios/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Femenino , Humanos , Inflamación/patología , Masculino , Persona de Mediana Edad , SolubilidadRESUMEN
Polyomaviruses encode a large T Ag (LT), a multifunctional protein essential for the regulation of both viral and host cell gene expression and productive viral infection. Previously, we have shown that stable expression of LT protein results in upregulation of genes involved in the IFN induction and signaling pathway. In this study, we focus on the cellular signaling mechanism that leads to the induction of IFN responses by LT. Our results show that ectopic expression of SV40 LT results in the induction of IFN-stimulated genes (ISGs) in human fibroblasts and confers an antiviral state. We describe a LT-initiated DNA damage response (DDR) that activates IFN regulatory factor 1, causing IFN-ß production and consequent ISG expression in human cells. This IFN-ß and ISG induction is dependent on ataxia-telangiectasia mutated and Rad3-related (ATR) kinase, but independent of ATM. ATR kinase inhibition using a selective kinase inhibitor (ETP-46464) caused a decrease in IFN regulatory factor 1 stabilization and ISG expression. Furthermore, expression of a mutant LT that does not induce DDR also does not induce IFN-ß and ISGs. These results show that, in the absence of viral infection, LT-initiated activation of ATR-dependent DDR is sufficient for the induction of an IFN-ß-mediated innate immune response in human cells. Thus, we have uncovered a novel and critical role for ATR as a mediator of antiviral responses utilizing LT.
Asunto(s)
Antígenos Transformadores de Poliomavirus/inmunología , Daño del ADN/inmunología , Factor 1 Regulador del Interferón/inmunología , Interferón beta/inmunología , Virus 40 de los Simios/inmunología , Antígenos Transformadores de Poliomavirus/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Daño del ADN/genética , Células HEK293 , Humanos , Factor 1 Regulador del Interferón/genética , Interferón beta/genética , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad Proteica/efectos de los fármacos , Virus 40 de los Simios/genéticaRESUMEN
BACKGROUND: Simian virus 40 (SV40) has been considered to be an oncogenic viral agent in the development of osteosarcoma (OS), which to the authors' knowledge continues to be of unknown etiology. METHODS: In the current study, serum samples from patients with OS were investigated with an indirect enzyme-linked immunoadsorbent assay (ELISA) to test for the presence of immunoglobulin G antibodies, which react with SV40 antigens. In ELISA, SV40 antigens were represented by 2 synthetic polypeptides that mimic epitopes of the viral capsid proteins 1 to 3. Additional sera from patients with breast cancer and undifferentiated nasopharyngeal carcinoma as well as healthy subjects were the controls. RESULTS: Immunologic results suggested that antibodies that react with SV40 mimotopes were more prevalent (44%) in serum samples from patients with OS compared with healthy subjects (17%). The difference in prevalence between these cohorts was statistically significant (P<.001). It is interesting to note that in the patients with OS, significance indicated the difference between OS versus breast cancer (44% vs 15%; P<.001) and OS versus undifferentiated nasopharyngeal carcinoma (44% vs 25%; P<.05). CONCLUSIONS: The data from the current study indicate an association between OS and SV40. These data could be transferred to clinical applications for innovative therapies to address SV40-positive OS.
Asunto(s)
Anticuerpos Antivirales/sangre , Neoplasias Óseas/sangre , Inmunoglobulina G/sangre , Osteosarcoma/sangre , Virus 40 de los Simios/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/inmunología , Neoplasias Óseas/inmunología , Neoplasias Óseas/virología , Neoplasias de la Mama/sangre , Proteínas de la Cápside/inmunología , Carcinoma , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/sangre , Osteosarcoma/inmunología , Osteosarcoma/virologíaRESUMEN
B-Lymphotropic Polyomavirus (LPyV) serves as a paradigm of virus receptor binding and tropism, and is the closest relative of the recently discovered Human Polyomavirus 9 (HPyV9). LPyV infection depends on sialic acid on host cells, but the molecular interactions underlying LPyV-receptor binding were unknown. We find by glycan array screening that LPyV specifically recognizes a linear carbohydrate motif that contains α2,3-linked sialic acid. High-resolution crystal structures of the LPyV capsid protein VP1 alone and in complex with the trisaccharide ligands 3'-sialyllactose and 3'-sialyl-N-acetyl-lactosamine (3SL and 3SLN, respectively) show essentially identical interactions. Most contacts are contributed by the sialic acid moiety, which is almost entirely buried in a narrow, preformed cleft at the outer surface of the capsid. The recessed nature of the binding site on VP1 and the nature of the observed glycan interactions differ from those of related polyomaviruses and most other sialic acid-binding viruses, which bind sialic acid in shallow, more exposed grooves. Despite their different modes for recognition, the sialic acid binding sites of LPyV and SV40 are half-conserved, hinting at an evolutionary strategy for diversification of binding sites. Our analysis provides a structural basis for the observed specificity of LPyV for linear glycan motifs terminating in α2,3-linked sialic acid, and links the different tropisms of known LPyV strains to the receptor binding site. It also serves as a useful template for understanding the ligand-binding properties and serological crossreactivity of HPyV9.
Asunto(s)
Proteínas de la Cápside/química , Ácido N-Acetilneuramínico/química , Oligosacáridos/química , Poliomavirus/química , Secuencias de Aminoácidos , Sitios de Unión , Proteínas de la Cápside/inmunología , Conformación de Carbohidratos , Reacciones Cruzadas , Humanos , Ácido N-Acetilneuramínico/inmunología , Oligosacáridos/inmunología , Poliomavirus/inmunología , Virus 40 de los Simios/química , Virus 40 de los Simios/inmunologíaRESUMEN
MRI methods that accurately identify various stages of mouse mammary cancer could provide new knowledge that may have a direct impact on the management of breast cancer in patients. This research investigates whether we can accurately follow the progression from in situ to invasive cancer by the evaluation of in vivo and ex vivo MRI, and in comparison with histology as the gold standard for the diagnosis and staging of cancer. Six C3(1)SV40Tag virgin female mice, aged 12-16 weeks, were studied. At this age, these mice develop in situ cancer that resembles human ductal carcinoma in situ (DCIS). Fast spin-echo images of inguinal mammary glands were acquired at 9.4 T. After in vivo MRI, mice were sacrificed; inguinal mammary glands were excised and fixed in formalin for ex vivo MRI. Three-dimensional, volume-rendered, in vivo and ex vivo MR images were then correlated with histology. High-resolution ex vivo scans facilitated the comparison of in vivo scans with histology. The sizes of mammary cancers classified as in situ on the basis of histology ranged from 150 to 400 µm in largest diameter, and the average signal intensity relative to muscle was 1.40 ± 0.18 on T2 -weighted images. Cancers classified as invasive on the basis of histology were >400 µm in largest diameter, and the average intensity relative to muscle on T2 -weighted images was 2.34 ± 0.26. Using a cut-off of 400 µm in largest diameter to distinguish between in situ and invasive cancers, a T2 -weighted signal intensity of at least 1.4 times that of muscle for in situ cancer, and at least 2.3 times that of muscle for invasive cancer, 96% of in situ and 100% of invasive cancers were correctly identified on in vivo MRI, using histology as the gold standard. Precise MRI-histology correlation demonstrates that MRI reliably detects early in situ cancer and differentiates in situ from invasive cancers in the SV40Tag mouse model of human breast cancer.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias Mamarias Experimentales/patología , Animales , Antígenos Transformadores de Poliomavirus/genética , Carcinoma Intraductal no Infiltrante/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Transgénicos , Invasividad Neoplásica , Virus 40 de los Simios/inmunologíaRESUMEN
BACKGROUND AND PURPOSE: It has been demonstrated that inflammation may contribute to epileptogenesis and cause neuronal injury in epilepsy. In this study, the prevalence of antibodies to simian virus 40 (SV40), a kidney and neurotropic polyomavirus, was investigated in serum samples from 88 epileptic children/adolescents/young adults. METHODS: Serum antibodies reacting to specific SV40 peptides were analysed by indirect enzyme-linked immunosorbent assay. Synthetic peptides corresponding to the epitopes of viral capsid proteins 1-3 were used as SV40 antigens. RESULTS: A significantly higher prevalence of antibodies against SV40 was detected in sera from epileptic patients compared to controls (41% vs. 19%). Specifically, the highest significant difference was revealed in the cohort of patients from 1.1 to 10 years old (54% vs. 21%), with a peak in the sub-cohort of 3.1-6 years old (65% vs. 18%). CONCLUSION: Our immunological data suggest a strong association between epilepsy and the SV40 infection.
Asunto(s)
Anticuerpos Antivirales/sangre , Epilepsia/inmunología , Inflamación/inmunología , Virus 40 de los Simios/inmunología , Adolescente , Adulto , Niño , Preescolar , Epilepsia/etiología , Femenino , Humanos , Lactante , Inflamación/complicaciones , Masculino , Prevalencia , Adulto JovenRESUMEN
Human malignant pleural mesothelioma (MPM) is considered a rare tumor, but recent estimations indicate that one-quarter million people will die of this neoplasm in Europe in the next three decades. The mineral asbestos is considered the main causative agent of this neoplasm. MPM is largely unresponsive to conventional chemotherapy/radiotherapy. In addition to asbestos exposure, genetic predisposition to asbestos carcinogenesis and to simian virus (SV)40 infection has also been suggested. SV40 is a DNA tumor virus found in some studies to be associated at high prevalence with MPM. SV40 sequences have also been detected, although at a lower prevalence than in MPM, in blood specimens from healthy donors. However, some studies have failed to reveal SV40 footprints in MPM and its association with this neoplasm. These conflicting results indicate the need for further investigations with new approaches. We report on the presence of antibodies in serum samples from patients affected by MPM that specifically react with two different SV40 mimotopes. The two SV40 peptides used in indirect ELISAs correspond to viral capsid proteins. ELISA with the two SV40 mimotopes gave overlapping results. Our data indicate that in serum samples from MPM-affected patients (n = 97), the prevalence of antibodies against SV40 viral capsid protein antigens is significantly higher (26%, P = 0.043) than in the control group (15%) represented by healthy subjects (n = 168) with the same median age (66 y) and sex. Our results suggest that SV40 is associated with a subset of MPM and circulates in humans.
Asunto(s)
Anticuerpos Antivirales/sangre , Proteínas de la Cápside/inmunología , Mesotelioma/inmunología , Neoplasias Pleurales/inmunología , Virus 40 de los Simios/inmunología , Secuencia de Aminoácidos , Proteínas de la Cápside/química , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , EmbarazoRESUMEN
BACKGROUND: Methods for determining the origin of BK virus (BKV)-infected cells (decoy cells) in clinical urine samples have not been established although they could enhance the diagnosis of BKV infection in immunocompromised patients. METHODS: We performed simultaneous immunostaining with anti-S100P (a urothelial marker) and anti-SV40 antibodies in 66 clinical urine samples exhibiting SV40 positivity and a decoy-cell appearance on Papanicolaou staining. The clinical voided urine samples included seven cases of renal transplantation, 47 cases of cancer therapy and 12 cases of non-neoplastic disease. SurePath(™) liquid-based cytology was used for the urine samples. RESULTS: BKV-infected cells were categorized as SV40(+)/S100P(+) and SV40 (+)/S100p(-). SV40(+)/S100P(-) cells were found in 55 cases (83.4%); nine cases (13.6%) carried both SV40(+)/S100P(-) and SV40(+)/S100P(+) cells. The former were identified as BKV infection in renal tubules and the latter in both the renal tubules and urothelial epithelia. The remaining two cases (3.0%) had only SV40(+)/S100P(+) cells of urothelial origin. CONCLUSION: Simultaneous immunostaining with anti-S100P and anti-SV40 is a useful method for determining the origin of BKV-infected cells in clinical urine samples from immunocompromised patients such as renal transplantation recipients.
Asunto(s)
Anticuerpos/inmunología , Virus BK/inmunología , Proteínas de Unión al Calcio/inmunología , Proteínas de Neoplasias/inmunología , Infecciones por Polyomavirus/orina , Virus 40 de los Simios/inmunología , Infecciones Tumorales por Virus/orina , Orina/virología , Biomarcadores/orina , Humanos , Infecciones por Polyomavirus/diagnóstico , Infecciones por Polyomavirus/inmunología , Infecciones por Polyomavirus/virología , Infecciones Tumorales por Virus/diagnóstico , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/virología , Urotelio/inmunología , Urotelio/virologíaRESUMEN
Altered peptide ligands (APLs) with enhanced binding to MHC class I can increase the CD8(+) T cell response to native Ags, including tumor Ags. In this study, we investigate the influence of peptide-MHC (pMHC) stability on recruitment of tumor Ag-specific CD8(+) T cells through cross-priming. Among the four known H-2(b)-restricted CD8(+) T cell determinants within SV40 large tumor Ag (TAg), the site V determinant ((489)QGINNLDNL(497)) forms relatively low-stability pMHC and is characteristically immunorecessive. Absence of detectable site V-specific CD8(+) T cells following immunization with wild-type TAg is due in part to inefficient cross-priming. We mutated nonanchor residues within the TAg site V determinant that increased pMHC stability but preserved recognition by both TCR-transgenic and polyclonal endogenous T cells. Using a novel approach to quantify the fraction of naive T cells triggered through cross-priming in vivo, we show that immunization with TAg variants expressing higher-stability determinants increased the fraction of site V-specific T cells cross-primed and effectively overcame the immunorecessive phenotype. In addition, using MHC class I tetramer-based enrichment, we demonstrate for the first time, to our knowledge, that endogenous site V-specific T cells are primed following wild-type TAg immunization despite their low initial frequency, but that the magnitude of T cell accumulation is enhanced following immunization with a site V variant TAg. Our results demonstrate that site V APLs cross-prime a higher fraction of available T cells, providing a potential mechanism for high-stability APLs to enhance immunogenicity and accumulation of T cells specific for the native determinant.