Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 21(12): 2182-5, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26583697

RESUMEN

Hendra virus occasionally causes severe disease in horses and humans. In Australia in 2013, infection was detected in a dog that had been in contact with an infected horse. Abnormalities and viral RNA were found in the dog's kidney, brain, lymph nodes, spleen, and liver. Dogs should be kept away from infected horses.


Asunto(s)
Perros/virología , Virus Hendra/patogenicidad , Infecciones por Henipavirus/transmisión , Zoonosis/transmisión , Animales , Quirópteros/virología , Perros/sangre , Infecciones por Henipavirus/virología , Enfermedades de los Caballos/virología , Caballos/virología , Queensland , Carga Viral/veterinaria , Zoonosis/virología
2.
J Virol ; 87(6): 3284-94, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23302882

RESUMEN

Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.


Asunto(s)
Células Epiteliales/inmunología , Células Epiteliales/virología , Virus Hendra/inmunología , Virus Hendra/patogenicidad , Interacciones Huésped-Patógeno , Virus Nipah/inmunología , Virus Nipah/patogenicidad , Células Cultivadas , Citocinas/biosíntesis , Perfilación de la Expresión Génica , Células Gigantes/virología , Humanos , Mucosa Respiratoria/citología , Mucosa Respiratoria/virología
3.
J Infect Dis ; 207(1): 142-51, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23089589

RESUMEN

Hendra virus (HeV) and Nipah virus (NiV) are closely related, recently emerged paramyxoviruses that form Henipavirus genus and are capable of causing considerable morbidity and mortality in a number of mammalian species, including humans. However, in contrast to many other species and despite expression of functional virus entry receptors, mice are resistant to henipavirus infection. We report here the susceptibility of mice deleted for the type I interferon receptor (IFNAR-KO) to both HeV and NiV. Intraperitoneally infected mice developed fatal encephalitis, with pathology and immunohistochemical features similar to what was found in humans. Viral RNA was found in the majority of analyzed organs, and sublethally infected animals developed virus-specific neutralizing antibodies. Altogether, these results reveal IFNAR-KO mice as a new small animal model to study HeV and NiV pathogenesis, prophylaxis, and treatment and suggest the critical role of type I interferon signaling in the control of henipavirus infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Encefalitis Viral/prevención & control , Infecciones por Henipavirus/prevención & control , Henipavirus/inmunología , Interferón Tipo I/genética , Animales , Anticuerpos Neutralizantes , Especificidad de Anticuerpos , Encéfalo/virología , Células Cultivadas , Modelos Animales de Enfermedad , Encefalitis Viral/inmunología , Encefalitis Viral/mortalidad , Encefalitis Viral/virología , Virus Hendra/genética , Virus Hendra/inmunología , Virus Hendra/patogenicidad , Henipavirus/genética , Henipavirus/patogenicidad , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/mortalidad , Infecciones por Henipavirus/virología , Humanos , Interferón Tipo I/inmunología , Ratones , Ratones Noqueados , Neuroglía/virología , Virus Nipah/genética , Virus Nipah/inmunología , Virus Nipah/patogenicidad , ARN Viral/análisis , Transducción de Señal , Análisis de Supervivencia , Virulencia , Internalización del Virus , Replicación Viral
4.
Curr Top Microbiol Immunol ; 359: 179-96, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22481141

RESUMEN

Since the last major review on diagnosis of henipavirus infection about a decade ago, significant progress has been made in many different areas of test development, especially in the development of molecular tests using real-time PCR and many novel serological test platforms. In addition to provide an updated review of the current test capabilities, this review also identifies key future challenges in henipavirus diagnosis.


Asunto(s)
Virus Hendra/aislamiento & purificación , Infecciones por Henipavirus/diagnóstico , Virus Nipah/aislamiento & purificación , Animales , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Virus Hendra/genética , Virus Hendra/patogenicidad , Infecciones por Henipavirus/sangre , Infecciones por Henipavirus/líquido cefalorraquídeo , Infecciones por Henipavirus/virología , Humanos , Inmunohistoquímica , Microscopía Electrónica , Tipificación Molecular , Pruebas de Neutralización , Virus Nipah/genética , Virus Nipah/patogenicidad , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Curr Top Microbiol Immunol ; 359: 153-77, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22476556

RESUMEN

The henipaviruses, Hendra virus (HeV), and Nipah virus (NiV), are enigmatic emerging pathogens that causes severe and often fatal neurologic and/or respiratory disease in both animals and humans. Amongst people, case fatality rates range between 40 and 75% and there are no vaccines or treatments approved for human use. A number of species of animals including guinea pigs, hamsters, cats, ferrets, pigs, and African green monkeys have been employed as animal models of human henipavirus infection. Here, we review the development of animal models for henipavirus infection, discuss the pathology and pathogenesis of these models, and assess the utility of each model to recapitulate important aspects of henipavirus-mediated disease seen in humans.


Asunto(s)
Chlorocebus aethiops/virología , Modelos Animales de Enfermedad , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/veterinaria , Animales , Enfermedades de los Gatos/virología , Gatos , Quirópteros/virología , Cricetinae , Hurones/virología , Cobayas , Virus Hendra/patogenicidad , Virus Hendra/fisiología , Infecciones por Henipavirus/virología , Caballos/virología , Especificidad del Huésped , Humanos , Virus Nipah/patogenicidad , Virus Nipah/fisiología , Porcinos/virología
6.
Artículo en Inglés | MEDLINE | ID: mdl-22782307

RESUMEN

Until the Nipah outbreak in Malaysia in 1999, knowledge of human infections with the henipaviruses was limited to the small number of cases associated with the emergence of Hendra virus in Australia in 1994. The Nipah outbreak in Malaysia alerted the global public health community to the severe pathogenic potential and widespread distribution of these unique paramyxoviruses. This chapter briefly describes the initial discovery of Nipah virus and the challenges encountered during the initial identification and characterisation of the aetiological agent responsible for the outbreak of febrile encephalitis. The initial attempts to isolate Nipah virus from the bat reservoir host are also described.


Asunto(s)
Brotes de Enfermedades , Reservorios de Enfermedades/veterinaria , Encefalitis Viral/diagnóstico , Encefalitis Viral/epidemiología , Infecciones por Henipavirus/diagnóstico , Infecciones por Henipavirus/epidemiología , Virus Nipah/aislamiento & purificación , Animales , Australia/epidemiología , Quirópteros/virología , Chlorocebus aethiops , Encefalitis Viral/líquido cefalorraquídeo , Encefalitis Viral/virología , Virus Hendra/aislamiento & purificación , Virus Hendra/patogenicidad , Infecciones por Henipavirus/líquido cefalorraquídeo , Infecciones por Henipavirus/virología , Humanos , Malasia/epidemiología , Virus Nipah/patogenicidad , Células Vero
7.
Curr Top Microbiol Immunol ; 359: 25-40, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22752412

RESUMEN

All seven recognized human cases of Hendra virus (HeV) infection have occurred in Queensland, Australia. Recognized human infections have all resulted from a HeV infected horse that was unusually efficient in transmitting the virus and a person with a high exposure to infectious secretions. In the large outbreak in Malaysia where Nipah virus (NiV) was first identified, most human infections resulted from close contact with NiV infected pigs. Outbreak investigations in Bangladesh have identified drinking raw date palm sap as the most common pathway of NiV transmission from Pteropus bats to people, but person-to-person transmission of NiV has been repeatedly identified in Bangladesh and India. Although henipaviruses are not easily transmitted to people, these newly recognized, high mortality agents warrant continued scientific attention.


Asunto(s)
Brotes de Enfermedades , Virus Hendra/aislamiento & purificación , Infecciones por Henipavirus/epidemiología , Enfermedades de los Caballos/epidemiología , Virus Nipah/aislamiento & purificación , Animales , Arecaceae/virología , Australia/epidemiología , Bangladesh/epidemiología , Quirópteros/virología , Frutas/virología , Virus Hendra/patogenicidad , Infecciones por Henipavirus/transmisión , Infecciones por Henipavirus/virología , Enfermedades de los Caballos/transmisión , Enfermedades de los Caballos/virología , Caballos/virología , Humanos , India/epidemiología , Malasia/epidemiología , Virus Nipah/patogenicidad , Filogeografía
8.
Curr Top Microbiol Immunol ; 359: 79-94, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22427111

RESUMEN

Nipah (NiV) and Hendra (HeV) viruses cause cell-cell fusion (syncytia) in brain, lung, heart, and kidney tissues, leading to encephalitis, pneumonia, and often death. Membrane fusion is essential to both viral entry and virus-induced cell-cell fusion, a hallmark of henipavirus infections. Elucidiation of the mechanism(s) of membrane fusion is critical to understanding henipavirus pathobiology and has the potential to identify novel strategies for the development of antiviral therapeutic agents. Henipavirus membrane fusion requires the coordinated actions of the viral attachment (G) and fusion (F) glycoproteins. Current henipavirus fusion models posit that attachment of NiV or HeV G to its cell surface receptors releases F from its metastable pre-fusion conformation to mediate membrane fusion. The identification of ephrinB2 and ephrinB3 as henipavirus receptors has paved the way for recent advances in our understanding of henipavirus membrane fusion. These advances highlight mechanistic similarities and differences between membrane fusion for the henipavirus and other genera within the Paramyxoviridae family. Here, we review these mechanisms and the current gaps in our knowledge in the field.


Asunto(s)
Efrina-B2/metabolismo , Efrina-B3/metabolismo , Virus Hendra/fisiología , Virus Nipah/fisiología , Receptores Virales/metabolismo , Proteínas Virales de Fusión/metabolismo , Animales , Encéfalo/patología , Encéfalo/virología , Efrina-B2/química , Efrina-B3/química , Virus Hendra/patogenicidad , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/virología , Humanos , Riñón/patología , Riñón/virología , Pulmón/patología , Pulmón/virología , Fusión de Membrana , Virus Nipah/patogenicidad , Receptores Virales/química , Proteínas Virales de Fusión/química , Internalización del Virus
9.
Curr Top Microbiol Immunol ; 359: 197-223, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22481140

RESUMEN

Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins.


Asunto(s)
Virus Hendra/inmunología , Infecciones por Henipavirus/prevención & control , Inmunización Pasiva , Virus Nipah/inmunología , Vacunación , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos/administración & dosificación , Anticuerpos/inmunología , Virus Hendra/patogenicidad , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/patología , Humanos , Virus Nipah/patogenicidad , Vacunas de Subunidad , Vacunas Sintéticas , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/biosíntesis , Tropismo Viral , Vacunas Virales/administración & dosificación , Vacunas Virales/biosíntesis
10.
Curr Top Microbiol Immunol ; 359: 105-21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22476529

RESUMEN

Hendra virus (HeV) and Nipah virus (NiV) form a separate genus Henipavirus within the family Paramyxoviridae, and are classified as biosafety level 4 pathogens due to their high case fatality rate following human infection and because of the lack of effective vaccines or therapy. Both viruses emerged from their natural reservoir during the last decade of the twentieth century, causing severe disease in humans, horses and swine, and infecting a number of other mammalian species. The current review summarizes our up to date understanding of pathology and pathogenesis in the natural reservoir species, the Pteropus bat, and in the equine and porcine spill over species.


Asunto(s)
Vasos Sanguíneos/patología , Sistema Nervioso Central/patología , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/veterinaria , Enfermedades de los Caballos/patología , Pulmón/patología , Enfermedades de los Porcinos/patología , Animales , Vasos Sanguíneos/virología , Sistema Nervioso Central/virología , Quirópteros/virología , Virus Hendra/patogenicidad , Virus Hendra/fisiología , Infecciones por Henipavirus/virología , Enfermedades de los Caballos/virología , Caballos/virología , Humanos , Pulmón/virología , Virus Nipah/patogenicidad , Virus Nipah/fisiología , Porcinos/virología , Enfermedades de los Porcinos/virología
11.
Curr Top Microbiol Immunol ; 359: 11-23, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22476530

RESUMEN

Hendra virus, a novel and fatally zoonotic member of the family Paramyxoviridae, was first described in Australia in 1994. Periodic spillover from its natural host (fruit bats) results in catastrophic disease in horses and occasionally the subsequent infection of humans. Prior to 2011, 14 equine incidents involving seven human cases (four fatal) were recorded. The year 2011 saw a dramatic departure from the sporadic incidents of the previous 16 years, with a cluster of 18 incidents in a single 3-month period. The fundamental difference in 2011 was the total number of incidents, the geographic clustering, and the expanded geographic range. The 2011 cluster more than doubled the total number of incidents previously reported, and poses the possibility of a new HeV infection paradigm. Epidemiologic evidence suggests that compelling additional host and/or environmental factors were at play.


Asunto(s)
Brotes de Enfermedades , Virus Hendra/patogenicidad , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Enfermedades de los Caballos/epidemiología , Zoonosis/epidemiología , Animales , Australia/epidemiología , Quirópteros/virología , Ecosistema , Virus Hendra/aislamiento & purificación , Infecciones por Henipavirus/virología , Enfermedades de los Caballos/virología , Caballos/virología , Humanos , Filogeografía , Zoonosis/virología
12.
Curr Top Microbiol Immunol ; 359: 59-78, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22695915

RESUMEN

Nipah (NiV) and Hendra (HeV) viruses are the deadliest human pathogens within the Paramyxoviridae family, which include human and animal pathogens of global biomedical importance. NiV and HeV infections cause respiratory and encephalitic illness with high mortality rates in humans. Henipaviruses (HNV) are the only Paramyxoviruses classified as biosafety level 4 (BSL4) pathogens due to their extreme pathogenicity, potential for bioterrorism, and lack of licensed vaccines and therapeutics. HNV use ephrin-B2 and ephrin-B3, highly conserved proteins, as viral entry receptors. This likely accounts for their unusually broad species tropism, and also provides opportunities to study how receptor usage, cellular tropism, and end-organ pathology relates to the pathobiology of HNV infections. The clinical and pathologic manifestations of NiV and HeV virus infections are reviewed in the chapters by Wong et al. and Geisbert et al. in this issue. Here, we will review the biology of the HNV receptors, and how receptor usage relates to HNV cell tropism in vitro and in vivo.


Asunto(s)
Efrina-B2/metabolismo , Efrina-B3/metabolismo , Virus Hendra/fisiología , Virus Nipah/fisiología , Receptores Virales/metabolismo , Proteínas Virales de Fusión/metabolismo , Tropismo Viral , Animales , Vasos Sanguíneos/patología , Vasos Sanguíneos/virología , Encéfalo/patología , Encéfalo/virología , Células Endoteliales/patología , Células Endoteliales/virología , Efrina-B2/química , Efrina-B3/química , Virus Hendra/patogenicidad , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/virología , Humanos , Modelos Moleculares , Virus Nipah/patogenicidad , Receptores Virales/química , Proteínas Virales de Fusión/química , Internalización del Virus
13.
Curr Top Microbiol Immunol ; 359: 95-104, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22427144

RESUMEN

The clinicopathological features of human Nipah virus and Hendra virus infections appear to be similar. The clinical manifestations may be mild, but if severe, includes acute encephalitic and pulmonary syndromes with a high mortality. The pathological features in human acute henipavirus infections comprise vasculopathy (vasculitis, endothelial multinucleated syncytia, thrombosis), microinfarcts and parenchymal cell infection in the central nervous system, lung, kidney and other major organs. Viral inclusions, antigens, nucleocapsids and RNA are readily demonstrated in blood vessel wall and numerous types of parenchymal cells. Relapsing henipavirus encephalitis is a rare complication reported in less than 10% of survivors of the acute infection and appears to be distinct from the acute encephalitic syndrome. Pathological evidence suggests viral recrudescence confined to the central nervous system as the cause.


Asunto(s)
Vasos Sanguíneos/patología , Sistema Nervioso Central/patología , Encefalitis Viral/patología , Infecciones por Henipavirus/patología , Infarto del Miocardio/patología , Miocardio/patología , Animales , Vasos Sanguíneos/virología , Sistema Nervioso Central/virología , Encefalitis Viral/complicaciones , Encefalitis Viral/mortalidad , Encefalitis Viral/virología , Virus Hendra/patogenicidad , Virus Hendra/fisiología , Infecciones por Henipavirus/complicaciones , Infecciones por Henipavirus/mortalidad , Infecciones por Henipavirus/virología , Humanos , Riñón/patología , Riñón/virología , Pulmón/patología , Pulmón/virología , Infarto del Miocardio/complicaciones , Infarto del Miocardio/mortalidad , Infarto del Miocardio/virología , Virus Nipah/patogenicidad , Virus Nipah/fisiología , Tasa de Supervivencia
14.
Curr Top Microbiol Immunol ; 359: 123-52, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22491899

RESUMEN

Nipah virus and Hendra virus are related, highly pathogenic paramyxoviruses with unusually broad host ranges. Henipaviruses encode several proteins that block innate immune responses, and these are likely to serve as virulence factors. Specfically, four virus-encoded proteins, the phosphoprotein (P), the V protein, the W protein, and the C protein have each been demonstrated to counteract aspects of the interferon (IFN)-α/ß response, a key component of the innate immune response to virus infection. The available data indicate that V and W can inhibit the production of IFNα/ß in response to various stimuli, while the P, V, and W proteins also block the ability of IFNs to signal and induce an antiviral state in cells. The C protein also inhibits the antiviral effects of IFNα/ß by a poorly characterized mechanism. Reverse genetics systems, which allow the generation of recombinant viruses bearing specific mutations, have demonstrated the importance of the viral IFN-antagonists for replication. With these systems in hand, the field is now poised to define how specific viral IFN-antagonist functions influence viral pathogenesis.


Asunto(s)
Virus Hendra/inmunología , Infecciones por Henipavirus/patología , Interferón-alfa/antagonistas & inhibidores , Interferón beta/antagonistas & inhibidores , Virus Nipah/inmunología , Proteínas Virales/inmunología , Animales , Virus Hendra/patogenicidad , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/virología , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Inmunidad Innata/efectos de los fármacos , Interferón-alfa/biosíntesis , Interferón-alfa/inmunología , Interferón beta/biosíntesis , Interferón beta/inmunología , Virus Nipah/patogenicidad , Genética Inversa , Transducción de Señal/efectos de los fármacos , Proteínas Virales/farmacología
15.
Virol J ; 10: 95, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23521919

RESUMEN

BACKGROUND: Hendra virus (HeV) is an Australian bat-borne zoonotic paramyxovirus that repeatedly spills-over to horses causing fatal disease. Human cases have all been associated with close contact with infected horses. METHODS: A full-length antigenome clone of HeV was assembled, a reporter gene (GFP or luciferase) inserted between the P and M genes and transfected to 293T cells to generate infectious reporter gene-encoding recombinant viruses. These viruses were then assessed in vitro for expression of the reporter genes. The GFP expressing recombinant HeV was used to challenge ferrets to assess the virulence and tissue distribution by monitoring GFP expression in infected cells. RESULTS: Three recombinant HeV constructs were successfully cloned and rescued; a wild-type virus, a GFP-expressing virus and a firefly luciferase-expressing virus. In vitro characterisation demonstrated expression of the reporter genes, with levels proportional to the initial inoculum levels. Challenge of ferrets with the GFP virus demonstrated maintenance of the fatal phenotype with disease progressing to death consistent with that observed previously with the parental wild-type isolate of HeV. GFP expression could be observed in infected tissues collected from animals at euthanasia. CONCLUSIONS: Here, we report on the first successful rescue of recombinant HeV, including wild-type virus and viruses expressing two different reporter genes encoded as an additional gene cassette inserted between the P and M genes. We further demonstrate that the GFP virus retained the ability to cause fatal disease in a well-characterized ferret model of henipavirus infection despite the genome being an extra 1290 nucleotides in length.


Asunto(s)
Genes Reporteros , Virus Hendra/genética , Virus Hendra/patogenicidad , Infecciones por Henipavirus/virología , Animales , Línea Celular , Modelos Animales de Enfermedad , Hurones , Proteínas Fluorescentes Verdes/genética , Humanos , Luciferasas/genética , Masculino , Coloración y Etiquetado/métodos , Análisis de Supervivencia , Virulencia
16.
J Virol ; 84(20): 10928-32, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20702638

RESUMEN

Triggering of the Hendra virus fusion (F) protein is required to initiate the conformational changes which drive membrane fusion, but the factors which control triggering remain poorly understood. Mutation of a histidine predicted to lie near the fusion peptide to alanine greatly reduced fusion despite wild-type cell surface expression levels, while asparagine substitution resulted in a moderate restoration in fusion levels. Slowed kinetics of six-helix bundle formation, as judged by sensitivity to heptad repeat B-derived peptides, was observed for all H372 mutants. These data suggest that side chain packing beneath the fusion peptide is an important regulator of Hendra virus F triggering.


Asunto(s)
Virus Hendra/fisiología , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/fisiología , Sustitución de Aminoácidos , Animales , Chlorocebus aethiops , Cristalografía por Rayos X , Virus Hendra/genética , Virus Hendra/patogenicidad , Humanos , Técnicas In Vitro , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Transfección , Células Vero , Proteínas Virales de Fusión/genética , Internalización del Virus
17.
J Virol ; 84(19): 9831-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20660198

RESUMEN

The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are emerging zoonotic paramyxoviruses that can cause severe and often lethal neurologic and/or respiratory disease in a wide variety of mammalian hosts, including humans. There are presently no licensed vaccines or treatment options approved for human or veterinarian use. Guinea pigs, hamsters, cats, and ferrets, have been evaluated as animal models of human HeV infection, but studies in nonhuman primates (NHP) have not been reported, and the development and approval of any vaccine or antiviral for human use will likely require efficacy studies in an NHP model. Here, we examined the pathogenesis of HeV in the African green monkey (AGM) following intratracheal inoculation. Exposure of AGMs to HeV produced a uniformly lethal infection, and the observed clinical signs and pathology were highly consistent with HeV-mediated disease seen in humans. Ribavirin has been used to treat patients infected with either HeV or NiV; however, its utility in improving outcome remains, at best, uncertain. We examined the antiviral effect of ribavirin in a cohort of nine AGMs before or after exposure to HeV. Ribavirin treatment delayed disease onset by 1 to 2 days, with no significant benefit for disease progression and outcome. Together our findings introduce a new disease model of acute HeV infection suitable for testing antiviral strategies and also demonstrate that, while ribavirin may have some antiviral activity against the henipaviruses, its use as an effective standalone therapy for HeV infection is questionable.


Asunto(s)
Antivirales/farmacología , Virus Hendra , Infecciones por Henipavirus/tratamiento farmacológico , Infecciones por Henipavirus/etiología , Ribavirina/farmacología , Animales , Secuencia de Bases , Encéfalo/patología , Chlorocebus aethiops , Cartilla de ADN/genética , ADN Viral/genética , Modelos Animales de Enfermedad , Femenino , Virus Hendra/genética , Virus Hendra/patogenicidad , Virus Hendra/fisiología , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/virología , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Radiografía , Replicación Viral
18.
Ann Trop Med Parasitol ; 105(1): 1-11, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21294944

RESUMEN

Hendra virus (HeV) was first isolated in 1994, from a disease outbreak involving at least 21 horses and two humans in the Brisbane suburb of Hendra, Australia. The affected horses and humans all developed a severe but unidentified respiratory disease that resulted in the deaths of one of the human cases and the deaths or putting down of 14 of the horses. The virus, isolated by culture from a horse and the kidney of the fatal human case, was initially characterised as a new member of the genus Morbillivirus in the family Paramyxoviridae. Comparative sequence analysis of part of the matrix protein gene of the virus and the discovery that the virus had an exceptionally large genome subsequently led to HeV being assigned to a new genus, Henipavirus, along with Nipah virus (a newly emergent virus in pigs). The regular outbreaks of HeV-related disease that have occurred in Australia since 1994 have all been characterised by acute respiratory and neurological manifestations, with high levels of morbidity and mortality in the affected horses and humans. The modes of transmission of HeV remain largely unknown. Although fruit bats have been identified as natural hosts of the virus, direct bat-horse, bat-human or human-human transmission has not been reported. Human infection can occur via exposure to infectious urine, saliva or nasopharyngeal fluid from horses. The treatment options and efficacy are very limited and no vaccine exists. Reports on the outbreaks of HeV in Australia are collated in this review and the available data on the biology, transmission and detection of the pathogen are summarized and discussed.


Asunto(s)
Quirópteros/virología , Brotes de Enfermedades , Virus Hendra/patogenicidad , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/virología , Enfermedades de los Caballos/virología , Animales , Australia/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Virus Hendra/genética , Virus Hendra/aislamiento & purificación , Infecciones por Henipavirus/mortalidad , Infecciones por Henipavirus/transmisión , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/transmisión , Caballos , Humanos , Inmunohistoquímica , Virus Nipah/patogenicidad , Zoonosis/epidemiología , Zoonosis/virología
19.
Nat Rev Microbiol ; 4(1): 23-35, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16357858

RESUMEN

Hendra virus and Nipah virus are highly pathogenic paramyxoviruses that have recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These features led to their classification into the new genus Henipavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. This review provides an overview of henipaviruses and the types of infection they cause, and describes how studies on the structure and function of henipavirus proteins expressed from cloned genes have provided insights into the unique biological properties of these emerging human pathogens.


Asunto(s)
Virus Hendra/patogenicidad , Virus Nipah/patogenicidad , Animales , Genoma Viral , Virus Hendra/clasificación , Virus Hendra/genética , Infecciones por Henipavirus/etiología , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/virología , Humanos , Microscopía Electrónica , Virus Nipah/clasificación , Virus Nipah/genética , Transducción de Señal , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/fisiología , Virulencia
20.
Curr Opin Virol ; 34: 79-89, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30665189

RESUMEN

In the last two decades, several high impact zoonotic disease outbreaks have been linked to bat-borne viruses. These include SARS coronavirus, Hendra virus and Nipah virus. In addition, it has been suspected that ebolaviruses and MERS coronavirus are also linked to bats. It is being increasingly accepted that bats are potential reservoirs of a large number of known and unknown viruses, many of which could spillover into animal and human populations. However, our knowledge into basic bat biology and immunology is very limited and we have little understanding of major factors contributing to the risk of bat virus spillover events. Here we provide a brief review of the latest findings in bat viruses and their potential risk of cross-species transmission.


Asunto(s)
Quirópteros/virología , Enfermedades Transmisibles Emergentes/veterinaria , Reservorios de Enfermedades/veterinaria , Virosis/veterinaria , Zoonosis/transmisión , Zoonosis/virología , Animales , Enfermedades Transmisibles Emergentes/virología , Coronavirus/genética , Coronavirus/patogenicidad , Brotes de Enfermedades , Reservorios de Enfermedades/virología , Virus Hendra/patogenicidad , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Virosis/transmisión , Virus/genética , Virus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA