Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 21-43, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569520

RESUMEN

My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).


Asunto(s)
Calnexina/genética , Calreticulina/genética , Interacciones Huésped-Patógeno/genética , Virus de la Influenza A/genética , Picornaviridae/genética , Proteínas Virales/genética , Virología/historia , Animales , Calnexina/química , Calnexina/metabolismo , Calreticulina/química , Calreticulina/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Endosomas/metabolismo , Endosomas/virología , Regulación de la Expresión Génica , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Virus de la Influenza A/metabolismo , Picornaviridae/metabolismo , Pliegue de Proteína , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Internalización del Virus
2.
J Med Virol ; 96(1): e29376, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235850

RESUMEN

Semliki Forest virus (SFV) viral replicon particles (VRPs) have been frequently used in various animal models and clinical trials. Chimeric replicon particles offer different advantages because of their unique biological properties. We here constructed a novel three-plasmid packaging system for chimeric SFV/SIN VRPs. The capsid and envelope of SIN structural proteins were generated using two-helper plasmids separately, and the SFV replicon contained the SFV replicase gene, packaging signal of SIN, subgenomic promoter followed by the exogenous gene, and 3' UTR of SIN. The chimeric VRPs carried luciferase or eGFP as reporter genes. The fluorescence and electron microscopy results revealed that chimeric VRPs were successfully packaged. The yield of the purified chimeric VRPs was approximately 2.5 times that of the SFV VRPs (1.38 × 107 TU/ml vs. 5.41 × 106 TU/ml) (p < 0.01). Furthermore, chimeric VRPs could be stored stably at 4°C for at least 60 days. Animal experiments revealed that mice immunized with chimeric VRPs (luciferase) had stronger luciferase expression than those immunized with equivalent amount of SFV VRPs (luciferase) (p < 0.01), and successfully expressed luciferase for approximately 12 days. Additionally, the chimeric VRPs expressed the RBD of SARS-CoV-2 efficiently and induced robust RBD-specific antibody responses in mice. In conclusion, the chimeric VRPs constructed here met the requirements of a gene delivery tool for vaccine development and cancer therapy.


Asunto(s)
Virus de los Bosques Semliki , Virus Sindbis , Ratones , Animales , Virus de los Bosques Semliki/genética , Virus Sindbis/genética , Plásmidos/genética , Replicón , Luciferasas/genética , Vectores Genéticos
3.
PLoS Pathog ; 17(5): e1009603, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34019569

RESUMEN

The positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus' hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.


Asunto(s)
Infecciones por Alphavirus/virología , Proteínas de la Cápside/metabolismo , Interacciones Huésped-Patógeno , Degradación de ARNm Mediada por Codón sin Sentido/genética , Virus de los Bosques Semliki/fisiología , Proteínas de la Cápside/genética , Células HeLa , Humanos , Virus de los Bosques Semliki/genética , Replicación Viral
4.
J Virol ; 95(20): e0097321, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34319778

RESUMEN

Alphaviruses (family Togaviridae) include both human pathogens such as chikungunya virus (CHIKV) and Sindbis virus (SINV) and model viruses such as Semliki Forest virus (SFV). The alphavirus positive-strand RNA genome is translated into nonstructural (ns) polyprotein(s) that are precursors for four nonstructural proteins (nsPs). The three-dimensional structures of nsP2 and the N-terminal 2/3 of nsP3 reveal that these proteins consist of several domains. Cleavage of the ns-polyprotein is performed by the strictly regulated protease activity of the nsP2 region. Processing results in the formation of a replicase complex that can be considered a network of functional modules. These modules work cooperatively and should perform the same task for each alphavirus. To investigate functional interactions between replicase components, we generated chimeras using the SFV genome as a backbone. The functional modules corresponding to different parts of nsP2 and nsP3 were swapped with their counterparts from CHIKV and SINV. Although some chimeras were nonfunctional, viruses harboring the CHIKV N-terminal domain of nsP2 or any domain of nsP3 were viable. Viruses harboring the protease part of nsP2, the full-length nsP2 of CHIKV, or the nsP3 macrodomain of SINV required adaptive mutations for functionality. Seven mutations that considerably improved the infectivity of the corresponding chimeric genomes affected functionally important hot spots recurrently highlighted in previous alphavirus studies. These data indicate that alphaviruses utilize a rather limited set of strategies to survive and adapt. Furthermore, functional analysis revealed that the disturbance of processing was the main defect resulting from chimeric alterations within the ns-polyprotein. IMPORTANCE Alphaviruses cause debilitating symptoms and have caused massive outbreaks. There are currently no approved antivirals or vaccines for treating these infections. Understanding the functions of alphavirus replicase proteins (nsPs) provides valuable information for both antiviral drug and vaccine development. The nsPs of all alphaviruses consist of similar functional modules; however, to what extent these are independent in functionality and thus interchangeable among homologous viruses is largely unknown. Homologous domain swapping was used to study the functioning of modules from nsP2 and nsP3 of other alphaviruses in the context of Semliki Forest virus. Most of the introduced substitutions resulted in defects in the processing of replicase precursors that were typically compensated by adaptive mutations that mapped to determinants of polyprotein processing. Understanding the principles of virus survival strategies and identifying hot spot mutations that permit virus adaptation highlight a route to the rapid development of attenuated viruses as potential live vaccine candidates.


Asunto(s)
Adaptación Biológica/genética , Alphavirus/genética , Virus de los Bosques Semliki/genética , Línea Celular , Virus Chikungunya/genética , Quimera/genética , Quimera/metabolismo , Virus ADN/genética , Humanos , Mutación/genética , Poliproteínas/metabolismo , ARN Viral/metabolismo , Virus Sindbis/genética , Proteínas no Estructurales Virales/genética , Compartimentos de Replicación Viral/metabolismo , Replicación Viral/genética
5.
Mol Ther ; 29(2): 611-625, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33160073

RESUMEN

A first-in-human phase I trial of Vvax001, an alphavirus-based therapeutic cancer vaccine against human papillomavirus (HPV)-induced cancers was performed assessing immunological activity, safety, and tolerability. Vvax001 consists of replication-incompetent Semliki Forest virus replicon particles encoding HPV16-derived antigens E6 and E7. Twelve participants with a history of cervical intraepithelial neoplasia were included. Four cohorts of three participants were treated per dose level, ranging from 5 × 105 to 2.5 × 108 infectious particles per immunization. The participants received three immunizations with a 3-week interval. For immune monitoring, blood was drawn before immunization and 1 week after the second and third immunization. Immunization with Vvax001 was safe and well tolerated, with only mild injection site reactions, and resulted in both CD4+ and CD8+ T cell responses against E6 and E7 antigens. Even the lowest dose of 5 × 105 infectious particles elicited E6/E7-specific interferon (IFN)-γ responses in all three participants in this cohort. Overall, immunization resulted in positive vaccine-induced immune responses in 12 of 12 participants in one or more assays performed. In conclusion, Vvax001 was safe and induced immune responses in all participants. These data strongly support further clinical evaluation of Vvax001 as a therapeutic vaccine in patients with HPV-related malignancies.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Vectores Genéticos/genética , Neoplasias/etiología , Neoplasias/terapia , Infecciones por Papillomavirus/complicaciones , Vacunas contra Papillomavirus/inmunología , Virus de los Bosques Semliki/genética , Alphapapillomavirus/inmunología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/genética , Vectores Genéticos/administración & dosificación , Humanos , Inmunización , Neoplasias/prevención & control , Proteínas Oncogénicas Virales/inmunología , Proteínas E7 de Papillomavirus/inmunología , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/administración & dosificación , Vacunas contra Papillomavirus/genética , Proteínas Represoras/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Resultado del Tratamiento , Vacunación
6.
J Virol ; 94(3)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31694940

RESUMEN

RNA interference (RNAi) is a conserved antiviral immune defense in eukaryotes, and numerous viruses have been found to encode viral suppressors of RNAi (VSRs) to counteract antiviral RNAi. Alphaviruses are a large group of positive-stranded RNA viruses that maintain their transmission and life cycles in both mosquitoes and mammals. However, there is little knowledge about how alphaviruses antagonize RNAi in both host organisms. In this study, we identified that Semliki Forest virus (SFV) capsid protein can efficiently suppress RNAi in both insect and mammalian cells by sequestrating double-stranded RNA and small interfering RNA. More importantly, when the VSR activity of SFV capsid was inactivated by reverse genetics, the resulting VSR-deficient SFV mutant showed severe replication defects in mammalian cells, which could be rescued by blocking the RNAi pathway. Besides, capsid protein of Sindbis virus also inhibited RNAi in cells. Together, our findings show that SFV uses capsid protein as VSR to antagonize RNAi in infected mammalian cells, and this mechanism is probably used by other alphaviruses, which shed new light on the knowledge of SFV and alphavirus.IMPORTANCE Alphaviruses are a genus of positive-stranded RNA viruses and include numerous important human pathogens, such as Chikungunya virus, Ross River virus, Western equine encephalitis virus, etc., which create the emerging and reemerging public health threat worldwide. RNA interference (RNAi) is one of the most important antiviral mechanisms in plants and insects. Accumulating evidence has provided strong support for the existence of antiviral RNAi in mammals. In response to antiviral RNAi, viruses have evolved to encode viral suppressors of RNAi (VSRs) to antagonize the RNAi pathway. It is unclear whether alphaviruses encode VSRs that can suppress antiviral RNAi during their infection in mammals. In this study, we first uncovered that capsid protein encoded by Semliki Forest virus (SFV), a prototypic alphavirus, had a potent VSR activity that can antagonize antiviral RNAi in the context of SFV infection in mammalian cells, and this mechanism is probably used by other alphaviruses.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Interferencia de ARN/fisiología , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/metabolismo , Animales , Cápside , Línea Celular , Virus Chikungunya/fisiología , Drosophila , Virus de la Encefalitis Equina del Oeste/fisiología , Células HEK293 , Humanos , ARN Interferente Pequeño , ARN Viral , Virus Sindbis/fisiología , Virión , Replicación Viral
7.
Mol Ther ; 28(1): 119-128, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31624015

RESUMEN

Here, we present a potent RNA vaccine approach based on a novel bipartite vector system using trans-amplifying RNA (taRNA). The vector cassette encoding the vaccine antigen originates from an alphaviral self-amplifying RNA (saRNA), from which the replicase was deleted to form a transreplicon. Replicase activity is provided in trans by a second molecule, either by a standard saRNA or an optimized non-replicating mRNA (nrRNA). The latter delivered 10- to 100-fold higher transreplicon expression than the former. Moreover, expression driven by the nrRNA-encoded replicase in the taRNA system was as efficient as in a conventional monopartite saRNA system. We show that the superiority of nrRNA- over saRNA-encoded replicase to drive expression of the transreplicon is most likely attributable to its higher translational efficiency and lack of interference with cellular translation. Testing the novel taRNA system in mice, we observed that doses of influenza hemagglutinin antigen-encoding RNA as low as 50 ng were sufficient to induce neutralizing antibodies and mount a protective immune response against live virus challenge. These findings, together with a favorable safety profile, a simpler production process, and the universal applicability associated with this bipartite vector system, warrant further exploration of taRNA.


Asunto(s)
Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/metabolismo , Infecciones por Orthomyxoviridae/prevención & control , ARN Viral/genética , Virus de los Bosques Semliki/genética , Vacunación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Cricetinae , Perros , Femenino , Vectores Genéticos , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Proteinas del Complejo de Replicasa Viral/genética
8.
Mol Ther ; 27(11): 1892-1905, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31563534

RESUMEN

Immune checkpoint blockade has shown anti-cancer efficacy, but requires systemic administration of monoclonal antibodies (mAbs), often leading to adverse effects. To avoid toxicity, mAbs could be expressed locally in tumors. We developed adeno-associated virus (AAV) and Semliki Forest virus (SFV) vectors expressing anti-programmed death ligand 1 (aPDL1) mAb. When injected intratumorally in MC38 tumors, both viral vectors led to similar local mAb expression at 24 h, diminishing quickly in SFV-aPDL1-treated tumors. However, SFV-aPDL1 induced >40% complete regressions and was superior to AAV-aPDL1, as well as to aPDL1 mAb given systemically or locally. SFV-aPDL1 induced abscopal effects and was also efficacious against B16-ovalbumin (OVA). The higher SFV-aPDL1 antitumor activity could be related to local upregulation of interferon-stimulated genes because of SFV RNA replication. This was confirmed by combining local SFV-LacZ administration and systemic aPDL1 mAb, which provided higher antitumor effects than each separated agent. SFV-aPDL1 promoted tumor-specific CD8 T cells infiltration in both tumor models. In MC38, SFV-aPDL1 upregulated co-stimulatory markers (CD137/OX40) in tumor CD8 T cells, and its combination with anti-CD137 mAb showed more pronounced antitumor effects than each single agent. These results indicate that local transient expression of immunomodulatory mAbs using non-propagative RNA vectors inducing type I interferon (IFN-I) responses represents a potent and safe approach for cancer treatment.


Asunto(s)
Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Expresión Génica , Vectores Genéticos/genética , Neoplasias/genética , Neoplasias/inmunología , Virus ARN/genética , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Inmunomodulación/efectos de los fármacos , Inmunofenotipificación , Inyecciones Intralesiones , Ratones , Neoplasias/patología , Neoplasias/terapia , Proteínas Recombinantes de Fusión/genética , Virus de los Bosques Semliki/genética , Tasa de Supervivencia , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Carga Tumoral
9.
J Neurophysiol ; 120(4): 2049-2058, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30110231

RESUMEN

The locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe. We subcloned a channelrhodopsin variant and the yellow fluorescent protein Venus into a Semliki Forest virus vector and injected the virus into the optic lobe of locusts ( Schistocerca americana). Fluorescence was observed in all injected optic lobes. Most neurons that expressed the recombinant proteins were located in the first two neuropils of the optic lobe, the lamina and medulla. Extracellular recordings demonstrated that laser illumination increased the firing rate of medullary neurons expressing channelrhodopsin. The optogenetic activation of the medullary neurons also triggered excitatory postsynaptic potentials and firing of a postsynaptic, looming-sensitive neuron, the lobula giant movement detector. These results indicate that Semliki Forest virus is efficient at mediating transient exogenous gene expression and provides a tool to manipulate neural circuits in the locust nervous system and likely other insects. NEW & NOTEWORTHY Using Semliki Forest virus, we efficiently delivered channelrhodopsin into neurons of the locust optic lobe. We demonstrate that laser illumination increases the firing of the medullary neurons expressing channelrhodopsin and elicits excitatory postsynaptic potentials and spiking in an identified postsynaptic target neuron, the lobula giant movement detector neuron. This technique allows the manipulation of neuronal activity in locust neural circuits using optogenetics.


Asunto(s)
Channelrhodopsins/genética , Optogenética/métodos , Células Receptoras Sensoriales/fisiología , Percepción Visual , Animales , Encéfalo/fisiología , Channelrhodopsins/metabolismo , Potenciales Postsinápticos Excitadores , Vectores Genéticos/genética , Saltamontes , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virus de los Bosques Semliki/genética , Células Receptoras Sensoriales/metabolismo
10.
J Virol ; 91(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28077641

RESUMEN

Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain.IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism.


Asunto(s)
Encéfalo/patología , Vesiculovirus/patogenicidad , Vacunas Virales/efectos adversos , Animales , Virus Chikungunya/genética , Virus Chikungunya/inmunología , Interferón Tipo I/metabolismo , Ratones , Virus Nipah/genética , Virus Nipah/inmunología , Orthomyxoviridae/genética , Orthomyxoviridae/inmunología , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/inmunología , Análisis de Supervivencia , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vesiculovirus/genética , Vesiculovirus/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
11.
Virol J ; 15(1): 140, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30217161

RESUMEN

BACKGROUD: Duck Tembusu virus (DTMUV), a pathogenic flavivirus, emerged in China since 2010 and causing huge economic loss in the Chinese poultry industry. Although several vaccines have been reported to control DTMUV disease, few effective vaccines are available and new outbreaks were continuously reported. Thus, it is urgently to develop a new effective vaccine for prevention of this disease. METHODS: In this study, a suicidal DNA vaccine based on a Semliki Forest virus (SFV) replicon and DTMUV E glycoprotein gene was constructed and the efficacy of this new vaccine was assessed according to humoral and cell-mediated immune responses as well as protection against the DTMUV challenge in ducklings. RESULTS: Our results showed that the recombinant SFV replicon highly expressed E glycoprotein in DEF cells. After intramuscular injection of this new DNA vaccine in ducklings, robust humoral and cellular immune responses were observed in all immunized ducklings. Moreover, all ducklings were protected against challenge with the virulent DTMUV AH-F10 strain. CONCLUSIONS: In conclusion, we demonstrate that this suicidal DNA vaccine is a promising candidate facilitating the prevention of DTMUV infection.


Asunto(s)
Infecciones por Flavivirus/veterinaria , Flavivirus/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas de ADN/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , China , Patos , Flavivirus/genética , Infecciones por Flavivirus/prevención & control , Vectores Genéticos , Glicoproteínas/genética , Glicoproteínas/inmunología , Inmunidad Celular , Inmunidad Humoral , Inyecciones Intramusculares , Virus de los Bosques Semliki/genética , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Proteínas del Envoltorio Viral/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-27993855

RESUMEN

As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 µM) and Semliki Forest virus (SFV; EC50 = 0.11 µM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate.


Asunto(s)
Antivirales/farmacología , Virus Chikungunya/efectos de los fármacos , Endosomas/efectos de los fármacos , Lisosomas/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Pirroles/farmacología , Virus de los Bosques Semliki/efectos de los fármacos , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/virología , Virus Chikungunya/genética , Virus Chikungunya/crecimiento & desarrollo , Cricetinae , Farmacorresistencia Viral/genética , Endosomas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Indoles , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutación , Rojo Neutro/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/crecimiento & desarrollo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/crecimiento & desarrollo , Virus de la Fiebre Amarilla/efectos de los fármacos , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/crecimiento & desarrollo , Virus Zika/efectos de los fármacos , Virus Zika/genética , Virus Zika/crecimiento & desarrollo
13.
J Neurovirol ; 23(2): 205-215, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27739033

RESUMEN

Semliki Forest virus (SFV), a neurotropic virus, has been used to deliver heterologous genes into cells in vitro and in vivo. In this study, we constructed a reporter SFV4-FL-EGFP and found that it can deliver EGFP into neurons located at the injection site without disseminating throughout the brain. Lacking of the capsid gene of SFV4-FL-EGFP does not block its life cycle, while forming replication-competent virus-like particles (VLPs). These VLPs hold subviral genome by using the packaging sequence (PS) located within the nsP2 gene, and can transfer their genome into cells. In addition, we found that the G protein of vesicular stomatitis virus (VSVG) can package SFV subviral genome, which is consistent with the previous reports. The G protein of rabies virus (RVG) could also package SFV subviral genome. These pseudo-typed SFV can deliver EGFP gene into neurons. Taken together, these findings may be used to construct various SFV-based delivery systems for virological studies, gene therapy, and neural circuit labeling.


Asunto(s)
Ingeniería Genética , Terapia Genética/métodos , Vectores Genéticos/metabolismo , Hipotálamo/virología , Neuronas/virología , Virus de los Bosques Semliki/genética , Animales , Línea Celular , Cricetulus , Células Epiteliales/ultraestructura , Células Epiteliales/virología , Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipotálamo/ultraestructura , Inyecciones Intraventriculares , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/ultraestructura , Cultivo Primario de Células , Virus de la Rabia/genética , Virus de la Rabia/metabolismo , Virus de los Bosques Semliki/metabolismo , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Virión/genética , Virión/metabolismo , Ensamble de Virus/genética
14.
J Gen Virol ; 97(6): 1395-1407, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26953094

RESUMEN

During virus multiplication, the viral genome is recognized and recruited for replication based on specific cis-acting elements. Here, we dissected the important cis-acting sequence elements in Semliki Forest virus RNA by using a trans-replication system. As the viral replicase is expressed from a separate plasmid, the template RNA can be freely modified in this system. We show that the cis-acting element at the beginning of the non-structural protein 1 (nsP1) coding region together with the end of the 3' UTR are the minimal requirements for minus-strand synthesis. To achieve a high level of replication, the native 5' UTR was also needed. The virus-induced membranous replication compartments (spherules) were only detected when a replication-competent template was present with an active replicase and minus strands were produced. No translation could be detected from the minus strands, suggesting that they are segregated from the cytoplasm. Minus strands could not be recruited directly to initiate the replication process. Thus, there is only one defined pathway for replication, starting with plus-strand recognition followed by concomitant spherule formation and minus-strand synthesis.


Asunto(s)
ARN Viral/biosíntesis , ARN Viral/genética , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/fisiología , Replicación Viral , Animales , Línea Celular , Cricetinae , Unión Proteica , Biosíntesis de Proteínas , ARN Polimerasa Dependiente del ARN/metabolismo , Transcripción Genética
15.
J Virol ; 90(5): 2418-33, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26676771

RESUMEN

UNLABELLED: Alphaviruses represent a diverse set of arboviruses, many of which are important pathogens. Chikungunya virus (CHIKV), an arthritis-inducing alphavirus, is the cause of a massive ongoing outbreak in the Caribbean and South America. In contrast to CHIKV, other related alphaviruses, such as Venezuelan equine encephalitis virus (VEEV) and Semliki Forest virus (SFV), can cause encephalitic disease. E2, the receptor binding protein, has been implicated as a determinant in cell tropism, host range, pathogenicity, and immunogenicity. Previous reports also have demonstrated that E2 contains residues important for host range expansions and monoclonal antibody binding; however, little is known about what role each protein domain (e.g., A, B, and C) of E2 plays on these factors. Therefore, we constructed chimeric cDNA clones between CHIKV and VEEV or SFV to probe the effect of each domain on pathogenicity in vitro and in vivo. CHIKV chimeras containing each of the domains of the E2 (ΔDomA, ΔDomB, and ΔDomC) from SFV, but not VEEV, were successfully rescued. Interestingly, while all chimeric viruses were attenuated compared to CHIKV in mice, ΔDomB virus showed similar rates of infection and dissemination in Aedes aegypti mosquitoes, suggesting differing roles for the E2 protein in different hosts. In contrast to CHIKV; ΔDomB, and to a lesser extent ΔDomA, caused neuron degeneration and demyelination in mice infected intracranially, suggesting a shift toward a phenotype similar to SFV. Thus, chimeric CHIKV/SFV provide insights on the role the alphavirus E2 protein plays on pathogenesis. IMPORTANCE: Chikungunya virus (CHIKV) has caused large outbreaks of acute and chronic arthritis throughout Africa and Southeast Asia and has now become a massive public health threat in the Americas, causing an estimated 1.2 million human cases in just over a year. No approved vaccines or antivirals exist for human use against CHIKV or any other alphavirus. Despite the threat, little is known about the role the receptor binding protein (E2) plays on disease outcome in an infected host. To study this, our laboratory generated chimeric CHIKV containing corresponding regions of the Semliki Forest virus (SFV) E2 (domains A, B, and C) substituted into the CHIKV genome. Our results demonstrate that each domain of E2 likely plays a critical, but dissimilar role in the viral life cycle. Our experiments show that manipulation of E2 domains can be useful for studies on viral pathogenesis and potentially the production of vaccines and/or antivirals.


Asunto(s)
Infecciones por Alphavirus/patología , Virus Chikungunya/patogenicidad , Virus de la Encefalitis Equina Venezolana/patogenicidad , Virus de los Bosques Semliki/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Aedes/virología , Infecciones por Alphavirus/virología , Animales , Encéfalo/patología , Virus Chikungunya/genética , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/genética , Femenino , Masculino , Ratones Endogámicos C57BL , Estructura Terciaria de Proteína , Virus de los Bosques Semliki/genética , Proteínas del Envoltorio Viral/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
J Virol ; 89(21): 11030-45, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26311875

RESUMEN

UNLABELLED: The A7(74) strain of Semliki Forest virus (SFV; genus Alphavirus) is avirulent in adult mice, while the L10 strain is virulent in mice of all ages. It has been previously demonstrated that this phenotypic difference is associated with nonstructural protein 3 (nsP3). Consensus clones of L10 (designated SFV6) and A7(74) (designated A774wt) were used to construct a panel of recombinant viruses. The insertion of nsP3 from A774wt into the SFV6 backbone had a minor effect on the virulence of the resulting recombinant virus. Conversely, insertion of nsP3 from SFV6 into the A774wt backbone or replacement of A774wt nsP3 with two copies of nsP3 from SFV6 resulted in virulent viruses. Unexpectedly, duplication of nsP3-encoding sequences also resulted in elevated levels of nsP4, revealing that nsP3 is involved in the stabilization of nsP4. Interestingly, replacement of nsP3 of SFV6 with that of A774wt resulted in a virulent virus; the virulence of this recombinant was strongly reduced by functionally coupled substitutions for amino acid residues 534 (P4 position of the cleavage site between nsP1 and nsP2) and 1052 (S4 subsite residue of nsP2 protease) in the nonstructural polyprotein. Pulse-chase experiments revealed that A774wt and avirulent recombinant virus were characterized by increased processing speed of the cleavage site between nsP1 and nsP2. A His534-to-Arg substitution specifically activated this cleavage, while a Val1052-to-Glu substitution compensated for this effect by reducing the basal protease activity of nsP2. These findings provide a link between nonstructural polyprotein processing and the virulence of SFV. IMPORTANCE: SFV infection of mice provides a well-characterized model to study viral encephalitis. SFV also serves as a model for studies of alphavirus molecular biology and host-pathogen interactions. Thus far, the genetic basis of different properties of SFV strains has been studied using molecular clones, which often contain mistakes originating from standard cDNA synthesis and cloning procedures. Here, for the first time, consensus clones of SFV strains were used to map virulence determinants. Existing data on the importance of nsP3 for virulent phenotypes were confirmed, another determinant of neurovirulence and its molecular basis was characterized, and a novel function of nsP3 was identified. These findings provide links between the molecular biology of SFV and its biological properties and significantly increase our understanding of the basis of alphavirus-induced pathology. In addition, the usefulness of consensus clones as tools for studies of alphaviruses was demonstrated.


Asunto(s)
Neuronas/virología , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/metabolismo , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/patogenicidad , Proteínas no Estructurales Virales/genética , Sustitución de Aminoácidos/genética , Animales , Línea Celular , ADN Complementario/biosíntesis , Immunoblotting , Ratones , Microscopía Fluorescente , Procesamiento Proteico-Postraduccional/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus de los Bosques Semliki/metabolismo , Estadísticas no Paramétricas , Virulencia
17.
J Virol ; 89(15): 7536-49, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972559

RESUMEN

UNLABELLED: Semliki Forest virus (SFV) provides a well-characterized model system to study the pathogenesis of virus encephalitis. Several studies have used virus derived from the molecular clone SFV4. SFV4 virus does not have the same phenotype as the closely related L10 or the prototype virus from which its molecular clone was derived. In mice, L10 generates a high-titer plasma viremia, is efficiently neuroinvasive, and produces a fatal panencephalitis, whereas low-dose SFV4 produces a low-titer viremia, rarely enters the brain, and generally is avirulent. To determine the genetic differences responsible, the consensus sequence of L10 was determined and compared to that of SFV4. Of the 12 nucleotide differences, six were nonsynonymous; these were engineered into a new molecular clone, termed SFV6. The derived virus, SFV6, generated a high-titer viremia and was efficiently neuroinvasive and virulent. The phenotypic difference mapped to a single amino acid residue at position 162 in the E2 envelope glycoprotein (lysine in SFV4, glutamic acid in SFV6). Analysis of the L10 virus showed it contained different plaque phenotypes which differed in virulence. A lysine at E2 247 conferred a small-plaque avirulent phenotype and glutamic acid a large-plaque virulent phenotype. Viruses with a positively charged lysine at E2 162 or 247 were more reliant on glycosaminoglycans (GAGs) to enter cells and were selected for by passage in BHK-21 cells. Interestingly, viruses with the greatest reliance on binding to GAGs replicated to higher titers in the brain and more efficiently crossed an in vitro blood-brain barrier (BBB). IMPORTANCE: Virus encephalitis is a major disease, and alphaviruses, as highlighted by the recent epidemic of chikungunya virus (CHIKV), are medically important pathogens. In addition, alphaviruses provide well-studied experimental systems with extensive literature, many tools, and easy genetic modification. In this study, we elucidate the genetic basis for the difference in phenotype between SFV4 and the virus stocks from which it was derived and correct this by engineering a new molecular clone. We then use this clone in one comprehensive study to demonstrate that positively charged amino acid residues on the surface of the E2 glycoprotein, mediated by binding to GAGs, determine selective advantage and plaque size in BHK-21 cells, level of viremia in mice, ability to cross an artificial BBB, efficiency of replication in the brain, and virulence. Together with studies on Sindbis virus (SINV), this study provides an important advance in understanding alphavirus, and probably other virus, encephalitis.


Asunto(s)
Infecciones por Alphavirus/virología , Barrera Hematoencefálica/virología , Encefalitis/virología , Virus de los Bosques Semliki/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Encéfalo/virología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Virus de los Bosques Semliki/química , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/patogenicidad , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Viremia/virología , Virulencia
18.
J Virol ; 89(22): 11420-37, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26339054

RESUMEN

UNLABELLED: Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE: SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human pathogen, causing high fever and joint pain, while SFV is a low-pathogenic model virus, albeit neuropathogenic in mice. We show that both SFV and CHIKV activate the prosurvival PI3K-Akt-mTOR pathway in cells but greatly differ in their capacities to do so: Akt is strongly and persistently activated by SFV infection but only moderately activated by CHIKV. We mapped this activation capacity to a region in nonstructural protein 3 (nsP3) of SFV and could functionally transfer this region to CHIKV. Akt activation is linked to the subcellular dynamics of replication complexes, which are efficiently internalized from the cell periphery for SFV but not CHIKV. This difference in signal pathway stimulation and replication complex localization may have implications for pathology.


Asunto(s)
Virus Chikungunya/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/genética , Virus de los Bosques Semliki/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Infecciones por Alphavirus/virología , Androstadienos/farmacología , Animales , Línea Celular Tumoral , Virus Chikungunya/genética , Cricetinae , Activación Enzimática , Humanos , Ratones , Naftiridinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Estructura Terciaria de Proteína/genética , Virus de los Bosques Semliki/genética , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral , Wortmanina
19.
J Virol ; 89(20): 10407-15, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246574

RESUMEN

UNLABELLED: More than 500,000 people die each year from the liver diseases that result from chronic hepatitis B virus (HBV) infection. Therapeutic vaccines, which aim to elicit an immune response capable of controlling the virus, offer a potential new treatment strategy for chronic hepatitis B. Recently, an evolved, high-titer vaccine platform consisting of Semliki Forest virus RNA replicons that express the vesicular stomatitis virus glycoprotein (VSV G) has been described. This platform generates virus-like vesicles (VLVs) that contain VSV G but no other viral structural proteins. We report here that the evolved VLV vector engineered to additionally express the HBV middle surface envelope glycoprotein (MHBs) induces functional CD8 T cell responses in mice. These responses were greater in magnitude and broader in specificity than those obtained with other immunization strategies, including recombinant protein and DNA. Additionally, a single immunization with VLV-MHBs protected mice from HBV hydrodynamic challenge, and this protection correlated with the elicitation of a CD8 T cell recall response. In contrast to MHBs, a VLV expressing HBV core protein (HBcAg) neither induced a CD8 T cell response in mice nor protected against challenge. Finally, combining DNA and VLV-MHBs immunization led to induction of HBV-specific CD8 T cell responses in a transgenic mouse model of chronic HBV infection. The ability of VLV-MHBs to induce a multispecific T cell response capable of controlling HBV replication, and to generate immune responses in a tolerogenic model of chronic infection, indicates that VLV vaccine platforms may offer a unique strategy for HBV therapeutic vaccination. IMPORTANCE: HBV infection is associated with significant morbidity and mortality. Furthermore, treatments for chronic infection are suboptimal and rarely result in complete elimination of the virus. Therapeutic vaccines represent a unique approach to HBV treatment and have the potential to induce long-term control of infection. Recently, a virus-based vector system that combines the nonstructural proteins of Semliki Forest virus with the VSV glycoprotein has been described. In this study, we used this system to construct a novel HBV vaccine and demonstrated that the vaccine is capable of inducing virus-specific immune responses in mouse models of acute and chronic HBV replication. These findings highlight the potential of this new vaccine system and support the idea that highly immunogenic vaccines, such as viral vectors, may be useful in the treatment of chronic hepatitis B.


Asunto(s)
Vacunas contra Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/prevención & control , Inmunidad Celular/efectos de los fármacos , Vacunas de Partículas Similares a Virus/inmunología , Secuencia de Aminoácidos , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Línea Celular , Cricetulus , Ensayo de Immunospot Ligado a Enzimas , Células Epiteliales/inmunología , Células Epiteliales/virología , Ingeniería Genética , Vectores Genéticos/química , Vectores Genéticos/inmunología , Glicoproteínas/genética , Glicoproteínas/inmunología , Antígenos del Núcleo de la Hepatitis B/genética , Antígenos del Núcleo de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/administración & dosificación , Vacunas contra Hepatitis B/genética , Virus de la Hepatitis B/genética , Hepatitis B Crónica/genética , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Inmunización , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Replicación Viral/efectos de los fármacos
20.
Gene Ther ; 22(1): 65-75, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25231172

RESUMEN

In our earlier studies, Semliki Forest virus vector VA7 completely eliminated type I interferon (IFN-I)-unresponsive human U87-luc glioma xenografts, whereas interferon-responsive mouse gliomas proved refractory. Here, we describe in two clones of CT26 murine colon carcinoma, opposed patterns of IFN-I responsiveness and sensitivity to VA7. Both CT26WT and CT26LacZ clones secreted biologically active interferon in vitro upon virus infection but only CT26WT cells were protected. Focal infection of CT26WT cultures was self-limiting but could be rescued using IFN-I pathway inhibitor Ruxolitinib or antibody against IFNß. Whole transcriptome sequencing (RNA-Seq) and protein expression analysis revealed that CT26WT cells constitutively expressed 56 different genes associated with pattern recognition and IFN-I signaling pathways, spanning two reported anti-RNA virus gene signatures and 22 genes with reported anti-alphaviral activity. Whereas CT26WT tumors were strictly virus-resistant in vivo, infection of CT26LacZ tumors resulted in complete tumor eradication in both immunocompetent and severe combined immune deficient mice. In double-flank transplantation experiments, CT26WT tumors grew despite successful eradication of CT26LacZ tumors from the contralateral flank. Tumor growth progressed uninhibited also when CT26LacZ inoculums contained only a small fraction of CT26WT cells, demonstrating dominance of IFN responsiveness when heterogeneous tumors are targeted with interferon-sensitive oncolytic viruses.


Asunto(s)
Neoplasias del Colon/terapia , Viroterapia Oncolítica , Virus Oncolíticos/genética , Virus de los Bosques Semliki/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Efecto Espectador , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Vectores Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Interferón Tipo I/farmacología , Interferón Tipo I/uso terapéutico , Interferón beta/metabolismo , Ratones Endogámicos BALB C , Necrosis , Trasplante de Neoplasias , Factor de Transcripción STAT1/metabolismo , Transfección , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA