RESUMEN
BACKGROUND: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS: The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS: This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.
Asunto(s)
Endófitos , Genotipo , Olea , Enfermedades de las Plantas , Xylella , Olea/microbiología , Xylella/fisiología , Xylella/genética , Endófitos/fisiología , Endófitos/genética , Enfermedades de las Plantas/microbiología , Microbiota , Bacterias/genética , Bacterias/clasificación , Hongos/fisiología , Hongos/genéticaRESUMEN
Global change is believed to be a major driver of the emergence of invasive pathogens. Yet, there are few documented examples that illustrate the processes that hinder or trigger their geographic spread. Here, we present phylogenetic, epidemiological and historical evidence to explain how European vineyards escaped Xylella fastidiosa (Xf), the vector-borne bacterium responsible for Pierce's disease (PD). Using Bayesian temporal reconstruction, we show that the export of American grapevines to France as rootstocks to combat phylloxera (~1872-1895) preceded the spread of the Xf grapevine lineage in the USA. We found that the time of the most recent common ancestor in California dates to around 1875, which agrees with the emergence of the first PD outbreak and the expansion into the southeastern US around 1895. We also show that between 1870 and 1990, climatic conditions in continental Europe were mostly below the threshold for the development of PD epidemics. However, our model indicates an inadvertent expansion of risk in southern Europe since the 1990s, which is accelerating with global warming. Our temporal approach identifies the biogeographical conditions that have so far prevented PD in southern European wine-producing areas and predicts that disease risk will increase substantially with increasing temperatures.
Asunto(s)
Enfermedades de las Plantas , Vitis , Xylella , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Europa (Continente) , Teorema de Bayes , Filogenia , Filogeografía , Cambio ClimáticoRESUMEN
Xylem-limited bacterial pathogens cause some of the most destructive plant diseases. Though imposed measures to control these pathogens are generally ineffective, even among susceptible taxa, some hosts can limit bacterial loads and symptom expression. Mechanisms by which this resistance is achieved are poorly understood. In particular, it is still unknown how differences in vascular structure may influence biofilm growth and spread within a host. To address this, we developed a novel theoretical framework to describe biofilm behaviour within xylem vessels, adopting a polymer-based modelling approach. We then parameterised the model to investigate the relevance of xylem vessel diameters on Xylella fastidiosa resistance among olive cultivars. The functionality of all vessels was severely reduced under infection, with hydraulic flow reductions of 2-3 orders of magnitude. However, results suggest wider vessels act as biofilm incubators; allowing biofilms to develop over a long time while still transporting them through the vasculature. By contrast, thinner vessels become blocked much earlier, limiting biofilm spread. Using experimental data on vessel diameter distributions, we were able to determine that a mechanism of resistance in the olive cultivar Leccino is a relatively low abundance of the widest vessels, limiting X. fastidiosa spread.
Asunto(s)
Olea , Xylella , Olea/metabolismo , Olea/microbiología , Biopelículas , Xilema , Enfermedades de las Plantas/microbiología , Modelos TeóricosRESUMEN
BACKGROUND AND AIMS: Xylella fastidiosa (Xf) is the xylem-dwelling bacterium associated with Pierce's disease (PD), which causes mortality in agriculturally important species, such as grapevine (Vitis vinifera). The development of PD symptoms in grapevines depends on the ability of Xf to produce cell-wall-degrading enzymes to break up intervessel pit membranes and systematically spread through the xylem vessel network. Our objective here was to investigate whether PD resistance could be mechanistically linked to xylem vessel network local connectivity. METHODS: We used high-resolution X-ray micro-computed tomography (microCT) imaging to identify and describe the type, area and spatial distribution of intervessel connections for six different grapevine genotypes from three genetic backgrounds, with varying resistance to PD (four PD resistant and two PD susceptible). KEY RESULTS: Our results suggest that PD resistance is unlikely to derive from local xylem network connectivity. The intervessel pit area (Ai) varied from 0.07â ±â 0.01 mm2 mm-3 in Lenoir to 0.17â ±â 0.03 mm2 mm-3 in Blanc do Bois, both PD resistant. Intervessel contact fraction (Cp) was not statically significant, but the two PD-susceptible genotypes, Syrah (0.056â ±â 0.015) and Chardonnay (0.041â ±â 0.013), were among the most highly connected vessel networks. Neither Ai nor Cp explained differences in PD resistance among the six genotypes. Bayesian re-analysis of our data shows moderate evidence against the effects of the traits analysed: Ai (BF01â =â 4.88), mean vessel density (4.86), relay diameter (4.30), relay density (3.31) and solitary vessel proportion (3.19). CONCLUSIONS: Our results show that radial and tangential xylem network connectivity is highly conserved within the six different Vitis genotypes we sampled. The way that Xf traverses the vessel network may limit the importance of local network properties to its spread and may confer greater importance on host biochemical responses.
Asunto(s)
Enfermedades de las Plantas , Vitis , Xylella , Xilema , Vitis/microbiología , Vitis/fisiología , Xilema/fisiología , Xilema/microbiología , Xylella/fisiología , Enfermedades de las Plantas/microbiología , Microtomografía por Rayos X , Resistencia a la Enfermedad , GenotipoRESUMEN
All over the world, from America to the Mediterranean Sea, the plant pathogen Xylella fastidiosa represents one of the most difficult challenges with many implications at ecological, agricultural, and economic levels. X. fastidiosa is a rod-shaped Gram-negative bacterium belonging to the family of Xanthomonadaceae. It grows at very low rates and infects a wide range of plants thanks to different vectors. Insects, through their stylets, suck a sap rich in nutrients and inject bacteria into xylem vessels. Since, until now, no antimicrobial treatment has been successfully applied to kill X. fastidiosa and/or prevent its diffusion, in this study, antimicrobial blue light (aBL) was explored as a potential anti-Xylella tool. Xylella fastidiosa subsp. pauca Salento-1, chosen as a model strain, showed a certain degree of sensitivity to light at 410 nm. The killing effect was light dose dependent and bacterial concentration dependent. These preliminary results support the potential of blue light in decontamination of agricultural equipment and/or plant surface; however, further investigations are needed for in vivo applications.
Asunto(s)
Enfermedades de las Plantas , Xylella , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiologíaRESUMEN
Global travel and trade in combination with climate change are expanding the geographic distribution of plant pathogens. The bacterium Xylella fastidiosa is a prime example. Native to the Americas, it has spread to Europe, Asia, and the Middle East. To assess the risk that pathogen introductions pose to crops in newly invaded areas, it is key to survey their diversity, host range, and disease incidence in relation to climatic conditions where they are already present. We performed a survey of X. fastidiosa in grapevine in Virginia using a combination of quantitative PCR, multilocus sequencing, and metagenomics. We also analyzed samples from deciduous trees with leaf scorch symptoms. X. fastidiosa subspecies fastidiosa was identified in grapevines in all regions of the state, even in Northern Virginia, where the temperature was below -9°C for 10 days per year on average in the years preceding sampling. Unexpectedly, we also found for the first time grapevine samples infected with X. fastidiosa subspecies multiplex (Xfm). The Xfm lineage found in grapevines had been previously isolated from blueberries in the Southeastern United States and was distinct from that found in deciduous trees in Virginia. The obtained results will be important for risk assessment of X. fastidiosa introductions in other parts of the world.
Asunto(s)
Enfermedades de las Plantas , Xylella , Virginia , Enfermedades de las Plantas/microbiología , Xylella/genética , Árboles , Productos AgrícolasRESUMEN
An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."
Asunto(s)
Insectos Vectores , Enfermedades de las Plantas , Xylella , Xilema , Xylella/fisiología , Xylella/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Xilema/microbiología , Animales , Insectos Vectores/microbiología , Olea/microbiología , Insectos/microbiología , Estados Unidos , Vitis/microbiologíaRESUMEN
This scientometric study reviews the scientific literature and CABI distribution records published in 2022 to find evidence of major disease outbreaks and first reports of pathogens in new locations or on new hosts. This is the second time we have done this, and this study builds on our work documenting and analyzing reports from 2021. Pathogens with three or more articles identified in 2022 literature were Xylella fastidiosa, Bursaphelenchus xylophilus, Meloidogyne species complexes, 'Candidatus Liberibacter asiaticus', Raffaelea lauricola, Fusarium oxysporum formae specialis, and Puccinia graminis f. sp. tritici. Our review of CABI distribution records found 29 pathogens with confirmed first reports in 2022. Pathogens with four or more first reports were Meloidogyne species complexes, Pantoea ananatis, grapevine red globe virus, and Thekopsora minima. Analysis of the proportion of new distribution records from 2022 indicated that grapevine red globe virus, sweet potato chlorotic stunt virus, and 'Ca. Phytoplasma vitis' may have been actively spreading. As we saw last year, there was little overlap between the pathogens identified by reviewing scientific literature versus distribution records. We hypothesize that this lack of concordance is because of the unavoidable lag between first reports of the type reported in the CABI database of a pathogen in a new location and any subsequent major disease outbreaks being reported in the scientific literature, particularly because the latter depends on the journal policy on types of papers to be considered, whether the affected crop is major or minor, and whether the pathogen is of current scientific interest. Strikingly, too, there was also no overlap between species assessed to be actively spreading in this year's study and those identified last year. We hypothesize that this is because of inconsistencies in sampling coverage and effort over time and delays between the first arrival of a pathogen in a new location and its first report, particularly for certain classes of pathogens causing only minor or non-economically damaging symptoms, which may have been endemic for some time before being reported. In general, introduction of new pathogens and outbreaks of extant pathogens threaten food security and ecosystem services. Continued monitoring of these threats is essential to support phytosanitary measures intended to prevent pathogen introductions and management of threats within a country.
Asunto(s)
Brotes de Enfermedades , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/estadística & datos numéricos , XylellaRESUMEN
Replicated field studies were conducted to evaluate the factors that could influence the efficacy of Paraburkholderia phytofirmans PsJN for the control of Pierce's disease of grape, as well as to determine the extent to which disease control was systemic within plants. Topical applications of PsJN with an organosilicon surfactant was an effective way to introduce this bacterium under field conditions and provided similar levels of disease control as its mechanical inoculation. Disease incidence in inoculated shoots was often reduced two- to threefold when PsJN was inoculated a single time as much as 3 weeks before Xylella fastidiosa and up to 5 weeks after the pathogen. Inoculation of a shoot with PsJN greatly decreased the probability of any symptoms rather than reducing the severity of disease, suggesting a systemic protective response of individual shoots. Although the likelihood of disease symptoms on shoots inoculated with the pathogen on PsJN-treated plants was lower than on control plants inoculated only with the pathogen, the protection conferred by PsJN was not experienced by all shoots on a given plant. This suggested that any systemic resistance was spatially limited. Whereas the population size of PsJN increased to more than 106 cells/g and spread more than 1 m within 12 weeks after its inoculation alone into grape, its population size subsequently decreased greatly after about 5 weeks, and its distal dispersal in stems was restricted when co-inoculated with X. fastidiosa. PsJN may experience collateral damage from apparent host responses induced when both species are present.
Asunto(s)
Burkholderiaceae , Vitis , Xylella , Vitis/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Burkholderiaceae/fisiologíaRESUMEN
Plant diseases significantly impact food security and food safety. It was estimated that food production needs to increase by 50% to feed the projected 9.3 billion people by 2050. Yet, plant pathogens and pests are documented to cause up to 40% yield losses in major crops, including maize, rice, and wheat, resulting in annual worldwide economic losses of approximately US$220 billion. Yield losses due to plant diseases and pests are estimated to be 21.5% (10.1 to 28.1%) in wheat, 30.3% (24.6 to 40.9%) in rice, and 22.6% (19.5 to 41.4%) in maize. In March 2023, The American Phytopathological Society (APS) conducted a survey to identify and rank key challenges in plant pathology in the next decade. Phytopathology subsequently invited papers that address those key challenges in plant pathology, and these were published as a special issue. The key challenges identified include climate change effect on the disease triangle and outbreaks, plant disease resistance mechanisms and its applications, and specific diseases including those caused by Candidatus Liberibacter spp. and Xylella fastidiosa. Additionally, disease detection, natural and man-made disasters, and plant disease control strategies were explored in issue articles. Finally, aspects of open access and how to publish articles to maximize the Findability, Accessibility, Interoperability, and Reuse of digital assets in plant pathology were described. Only by identifying the challenges and tracking progress in developing solutions for them will we be able to resolve the issues in plant pathology and ultimately ensure plant health, food security, and food safety.
Asunto(s)
Productos Agrícolas , Enfermedades de las Plantas , Patología de Plantas , Enfermedades de las Plantas/microbiología , Productos Agrícolas/microbiología , Resistencia a la Enfermedad , Cambio Climático , XylellaRESUMEN
Outbreak response to quarantine pathogens and pests in the European Union (EU) is regulated by the EU Plant Health Law, but the performance of outbreak management plans in terms of their effectiveness and efficiency has been quantified only to a limited extent. As a case study, the disease dynamics of almond leaf scorch, caused by Xylella fastidiosa, in the affected area of Alicante, Spain, were approximated using an individual-based spatial epidemiological model. The emergence of this outbreak was dated based on phylogenetic studies, and official surveys were used to delimit the current extent of the disease. Different survey strategies and disease control measures were compared to determine their effectiveness and efficiency for outbreak management in relation to a baseline scenario without interventions. One-step and two-step survey approaches were compared with different confidence levels, buffer zone sizes, and eradication radii, including those set by the EU legislation for X. fastidiosa. The effect of disease control interventions was also considered by decreasing the transmission rate in the buffer zone. All outbreak management plans reduced the number of infected trees (effectiveness), but large differences were observed in the number of susceptible trees not eradicated (efficiency). The two-step survey approach, high confidence level, and the reduction in the transmission rate increased the efficiency. Only the outbreak management plans with the two-step survey approach removed infected trees completely, but they required greater survey efforts. Although control measures reduced disease spread, surveillance was the key factor in the effectiveness and efficiency of the outbreak management plans. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Asunto(s)
Brotes de Enfermedades , Enfermedades de las Plantas , Prunus dulcis , Xylella , Xylella/fisiología , Xylella/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/estadística & datos numéricos , España , Prunus dulcis/microbiología , Hojas de la Planta/microbiología , FilogeniaRESUMEN
This research focused on studying the dynamics of the bacterial pathogen Xylella fastidiosa in almond trees across different developmental stages. The objective was to understand the seasonal distribution and concentration of X. fastidiosa within almond trees. Different tree organs, including leaves, shoots, branches, fruits, flowers, and roots, from 10 X. fastidiosa-infected almond trees were sampled over 2 years. The incidence and concentration of X. fastidiosa were determined using qPCR and isolation. Throughout the study, X. fastidiosa was consistently absent from fruits, flowers, and roots, whereas it was detected in leaves as well as in shoots and branches. We demonstrate that the absence of X. fastidiosa in the roots is likely linked to the inability of this isolate to infect the peach-almond hybrid rootstock GF677. X. fastidiosa incidence in shoots and branches remained consistent throughout the year, whereas in leaf petioles, it varied across developmental stages, with lower detection during the early and late stages of the season. Similarly, viable X. fastidiosa cells were isolated from shoots and branches at all developmental stages, but no successful isolations were achieved from leaf petioles during the vegetative and nut growth stage. Studying the progression of almond leaf scorch symptoms in trees with initial infections showed that once symptoms emerged on one branch, symptomless branches were likely already infected by the bacterium. Therefore, selectively pruning symptomatic branches is unlikely to cure the tree. This study enhances our understanding of X. fastidiosa dynamics in almond trees and may have practical applications for its detection and control.
Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Prunus dulcis , Estaciones del Año , Xylella , Xylella/fisiología , Xylella/genética , Enfermedades de las Plantas/microbiología , Prunus dulcis/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Árboles/microbiología , Brotes de la Planta/microbiología , Flores/microbiología , Frutas/microbiologíaRESUMEN
Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subsp. fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of Olea europaea plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on Nicotiana tabacum cultivar SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.
Asunto(s)
Quitosano , Nanopartículas , Nicotiana , Enfermedades de las Plantas , Xylella , Xylella/fisiología , Xylella/efectos de los fármacos , Quitosano/farmacología , Quitosano/química , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Olea/microbiologíaRESUMEN
KEY MESSAGE: AOX gene family in motion marks in-born efficiency of respiration adjustment; can serve for primer screening, genotype ranking, in vitro-plant discrimination and a SMART perspective for multiple-resilient plant holobiont selection. The bacteria Xylella fastidiosa (Xf) is a climate-dependent, global threat to many crops of high socio-economic value, including grapevine. Currently designed breeding strategies for Xf-tolerant or -resistant genotypes insufficiently address the danger of biodiversity loss by focusing on selected threats, neglecting future environmental conditions. Thus, breeding strategies should be validated across diverse populations and acknowledge temperature changes and drought by minimizing the metabolic-physiologic effects of multiple stress-induced oxygen shortages. This research hypothesizes that multiple-resilient plant holobionts achieve lifelong adaptive robustness through early molecular and metabolic responses in primary stress target cells, which facilitate efficient respiration adjustment and cell cycle down-regulation. To validate this concept open-access transcriptome data were analyzed of xylem tissues of Xf-tolerant and -resistant Vitis holobionts from diverse trials and genetic origins from early hours to longer periods after Xf-inoculation. The results indicated repetitive involvement of alternative oxidase (AOX) transcription in episodes of down-regulated transcripts of cytochrome c oxidase (COX) at various critical time points before disease symptoms emerged. The relation between transcript levels of COX and AOX ('relCOX/AOX') was found promising for plant discrimination and primer screening. Furthermore, transcript levels of xylem-harbored bacterial consortia indicated common regulation with Xf and revealed stress-induced early down-regulation and later enhancement. LPS priming promoted the earlier increase in bacterial transcripts after Xf-inoculation. This proof-of-principle study highlights a SMART perspective for AOX-assisted plant selection towards multiple-resilience that includes Xf-tolerance. It aims to support timely future plant diagnostics and in-field substitution, sustainable agro-management, which protects population diversity and strengthens both conventional breeding and high-tech, molecular breeding research. Furthermore, the results suggested early up-regulation of bacterial microbiota consortia in vascular-enriched tissues as a novel additional trait for future studies on Xf-tolerance.
Asunto(s)
Proteínas Mitocondriales , Oxidorreductasas , Enfermedades de las Plantas , Proteínas de Plantas , Vitis , Xylella , Xylella/genética , Xylella/fisiología , Vitis/microbiología , Vitis/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Xilema/microbiología , Xilema/genéticaRESUMEN
KEY MESSAGE: New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Péptidos , Enfermedades de las Plantas , Prunus dulcis , Xylella , Xylella/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Prunus dulcis/microbiología , Péptidos/farmacología , Péptidos/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad , Hojas de la Planta/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Hojas de la Planta/genéticaRESUMEN
The spittlebug Philaenus spumarius (Hemiptera: Aphrophoridae) is the predominant vector of Xylella fastidiosa (Xanthomonadales: Xanthomonadaceae) in Apulia, Italy and the rest of Europe. Current control strategies of the insect vector rely on mechanical management of nymphal stages and insecticide application against adult populations. Entomopathogenic fungi (EPF) are biological control agents naturally attacking spittlebugs and may effectively reduce population levels of host species. Different experimental trials in controlled conditions have been performed to i) identify naturally occurring EPF on P, spumarius in Northwestern Italy, and ii) evaluate the potential for biocontrol of the isolated strains on both nymphal and adult stages of the spittlebug. Four EPF species were isolated from dead P. spumarius collected in semi-field conditions: Beauveria bassiana, Conidiobolus coronatus, Fusarium equiseti and Lecanicillium aphanocladii. All the fungal isolates showed entomopathogenic potential against nymphal stages of P. spumarius (≈ 45 % mortality), except for F. equiseti, in preliminary trials. No induced mortality was observed on adult stage. Lecanicillium aphanocladii was the most promising fungus and its pathogenicity against spittlebug nymphs was further tested in different formulations (conidia vs blastospores) and with natural adjuvants. Blastospore formulation was the most effective in killing nymphal instars and reducing the emergence rate of P, spumarius adults, reaching mortality levels (90%) similar to those of the commercial product Naturalis®, while no or adverse effect of natural adjuvants was recorded. The encouraging results of this study pave way for testing EPF isolates against P, spumarius in field conditions and find new environmentally friendly control strategies against insect vectors of X. fastidiosa.
Asunto(s)
Hemípteros , Ninfa , Control Biológico de Vectores , Animales , Ninfa/microbiología , Ninfa/crecimiento & desarrollo , Control Biológico de Vectores/métodos , Hemípteros/microbiología , Beauveria/patogenicidad , Beauveria/fisiología , Insectos Vectores/microbiología , Fusarium , Italia , Xylella/fisiología , Hypocreales/fisiología , Hypocreales/patogenicidadRESUMEN
Current practices for structural analysis of extremely large-molecular-weight polysaccharides via solution-state nuclear magnetic resonance (NMR) spectroscopy incorporate partial depolymerization protocols that enable polysaccharide solubilization in suitable solvents. Non-specific depolymerization techniques utilized for glycosidic bond cleavage, such as chemical degradation or ultrasonication, potentially generate structural fragments that can complicate complete and accurate characterization of polysaccharide structures. Utilization of appropriate enzymes for polysaccharide degradation, on the other hand, requires prior structural knowledge and optimal enzyme activity conditions that are not available to an analyst working with novel or unknown compounds. Herein, we describe an application of a permethylation strategy that allows the complete dissolution of intact polysaccharides for NMR structural characterization. This approach is utilized for NMR analysis of Xylella fastidiosa extracellular polysaccharide (EPS), which is essential for the virulence of the plant pathogen that affects multiple commercial crops and is responsible for multibillion dollar losses each year.
Asunto(s)
Xylella , Xylella/química , Xylella/metabolismo , Polisacáridos/metabolismo , Espectroscopía de Resonancia MagnéticaRESUMEN
Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, has been found in all major grape-growing regions in California, U.S.A. Large collections of X. fastidiosa isolates are available from these areas, which enable comparative studies of pathogen genetic traits and virulence. Owing to the significant resource requirements for experiments with X. fastidiosa in grapevine, however, most studies use only a single isolate to evaluate disease, and it is not clear how much variability between isolates impacts disease development in experimental or natural settings. In this study, a comprehensive panel of X. fastidiosa isolates from all California grape-growing regions was tested for virulence in susceptible grapevine and in the model host plant, tobacco. Seventy-one isolates were tested, 29 in both grapevine and tobacco. The results of this study highlight the inherent variability of inoculation experiments with X. fastidiosa, including variation in disease severity in plants inoculated with a single isolate, and variability between experimental replicates. There were limited differences in virulence between isolates that were consistent across experimental replicates, or across different host plants. This suggests that choice of isolate within the X. fastidiosa subsp. fastidiosa Pierce's disease group may not make any practical difference when testing in susceptible grape varieties, and that pathogen evolution has not significantly changed virulence of Pierce's disease isolates within California. The location of isolation also did not dictate relative disease severity. This information will inform experimental design for future studies of X. fastidiosa in grapevine and provide important context for genomic research.
Asunto(s)
Enfermedades de las Plantas , Vitis , Xylella , Xylella/genética , Xylella/patogenicidad , Vitis/microbiología , Enfermedades de las Plantas/microbiología , California , Virulencia , Nicotiana/microbiologíaRESUMEN
Xylella fastidiosa causes bacterial leaf scorch in southern highbush (Vaccinium corymbosum interspecific hybrids) and is also associated with a distinct disease phenotype in rabbiteye blueberry (V. virgatum) cultivars in the southeastern United States. Both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex have been reported to cause problems in southern highbush blueberry, but so far only X. fastidiosa subsp. multiplex has been reported in rabbiteye cultivars in Louisiana. In this study, we report detection of X. fastidiosa in rabbiteye blueberry plants in association with symptoms of foliar reddening and shoot dieback. High throughput sequencing of an X. fastidiosa-positive plant sample and comparative analyses identified the strain in one of these plants as being X. fastidiosa subsp. fastidiosa. We briefly discuss the implications of these findings, which may spur research into blueberry as a potential inoculum source that could enable spread to other susceptible fruit crops in South Carolina.
Asunto(s)
Arándanos Azules (Planta) , Enfermedades de las Plantas , Xylella , Xylella/genética , Xylella/aislamiento & purificación , Xylella/fisiología , Arándanos Azules (Planta)/microbiología , Enfermedades de las Plantas/microbiología , South Carolina , Hojas de la Planta/microbiologíaRESUMEN
Strains of the bacterial pathogen Xylella fastidiosa subspecies multiplex (Xfm) and pauca (Xfp) isolated from symptomatic almond and olive plants in Spain and Italy were used in this study. Because of the risk of host jump and considering the importance of southern highbush blueberry production in Spain, we tested a small set of these strains for their potential to infect and cause disease symptoms in blueberries under greenhouse experiments. Xfm IVIA5901 (isolated from almonds in Alicante, Spain) caused symptoms similar to those caused by Xfm AlmaEm3 (isolated from blueberries in Georgia, U.S.A., and used as a reference strain capable of inducing severe symptoms in blueberry). Nevertheless, bacterial populations of Xfm IVIA5901 in planta were significantly lower than those of Xfm AlmaEm3. Xfm ESVL (isolated from almonds, Alicante, Spain) and Xfp XYL1961/18 (isolated from olives, Ibiza Island, Spain) caused limited symptoms, while Xfm XYL466/19 (isolated from wild olives, Mallorca Island, Spain) and Xfm XF3348 (isolated from almonds, Mallorca Island, Spain) and Xfp De Donno (isolated from olives, Puglia, Italy, and representative of the devastating olive quick decline syndrome) did not cause symptoms nor colonize blueberries. This study suggests that certain strains already found in Europe could infect blueberry if conditions conducive for a host jump in this region are met, such as proximity of blueberries to other infected hosts and presence of insect vectors that feed on these crops. Surveys on the presence of X. fastidiosa in blueberries in Spain and other European countries are needed to anticipate possible issues.