Your browser doesn't support javascript.
loading
Cascade synthesis of chiral block copolymers combining lipase catalyzed ring opening polymerization and atom transfer radical polymerization.
Peeters, Joris; Palmans, Anja R A; Veld, Martijn; Scheijen, Freek; Heise, Andreas; Meijer, E W.
Afiliación
  • Peeters J; Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
Biomacromolecules ; 5(5): 1862-8, 2004.
Article en En | MEDLINE | ID: mdl-15360299
ABSTRACT
The enantioselective polymerization of methyl-substituted epsilon-caprolactones using Novozym 435 as the catalyst was investigated. All substituted monomers could be polymerized except 6-methyl-epsilon-caprolactone (6-MeCL), which failed to propagate after ring opening. Interestingly, an odd-even effect in the enantiopreference of differently substituted monomers was observed. The combination of 4-methyl-epsilon-caprolactone with Novozym 435 showed good enantioselectivity also in bulk polymerization and resulted in enantiomerically enriched P((S)-4-MeCL) (eep up to 0.88). Subsequently, a novel initiator combining a primary alcohol to initiate the ring opening polymerization and a tertiary bromide to initiate atom transfer controlled radical polymerization (ATRP) was synthesized, and showed high initiator efficiencies (> 90%) in the ring opening polymerization of 4-methyl-epsilon-caprolactone in bulk. In addition, the enantioselectivity was retained (E = 11). By using Ni(PPh3)2Br2 as the ATRP catalyst, Novozym 435 could be effectively inhibited at the desired conversion of 4-methyl-epsilon-caprolactone, thus ensuring a high enantiomeric excess in the polymer backbone. At the same time, Ni(PPh3)2Br2 catalyzed the ATRP of methyl methacrylate resulting in the formation of P((S)-4-MeCL-b-MMA) block copolymers. By this combination of two inherently different polymerization reactions, chiral P((S)-4-MeCL-b-MMA) block copolymers can be conveniently obtained in one pot without intermediate workup.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polímeros / Lipasa Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2004 Tipo del documento: Article País de afiliación: Países Bajos
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polímeros / Lipasa Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2004 Tipo del documento: Article País de afiliación: Países Bajos