Your browser doesn't support javascript.
loading
The glutathione-dependent system of antioxidant defense is not modulated by temperature acclimation in muscle tissues from striped bass, Morone saxatilis.
Grim, Jeffrey M; Simonik, Elizabeth A; Semones, Molly C; Kuhn, Donald E; Crockett, Elizabeth L.
Afiliación
  • Grim JM; Ohio University, Department of Biological Sciences, Athens, OH 45701, USA. jmgrim@presby.edu
Article en En | MEDLINE | ID: mdl-23202656
Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Lubina / Músculo Esquelético / Glutatión / Miocardio Límite: Animals Idioma: En Revista: Comp Biochem Physiol A Mol Integr Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Lubina / Músculo Esquelético / Glutatión / Miocardio Límite: Animals Idioma: En Revista: Comp Biochem Physiol A Mol Integr Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos