Your browser doesn't support javascript.
loading
A multiuser detector based on artificial bee colony algorithm for DS-UWB systems.
Yin, Zhendong; Liu, Xiaohui; Wu, Zhilu.
Afiliación
  • Yin Z; School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China. zgczr2005@yahoo.com.cn
ScientificWorldJournal ; 2013: 547656, 2013.
Article en En | MEDLINE | ID: mdl-23983638
Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Abejas / Algoritmos / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: ScientificWorldJournal Asunto de la revista: MEDICINA Año: 2013 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Abejas / Algoritmos / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: ScientificWorldJournal Asunto de la revista: MEDICINA Año: 2013 Tipo del documento: Article País de afiliación: China