Your browser doesn't support javascript.
loading
Eventually periodic solutions of a max-type difference equation.
Sun, Taixiang; Liu, Jing; He, Qiuli; Liu, Xin-He; Tao, Chunyan.
Afiliación
  • Sun T; College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China.
  • Liu J; College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China.
  • He Q; College of Electrical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
  • Liu XH; College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China.
  • Tao C; College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi 530004, China.
ScientificWorldJournal ; 2014: 219437, 2014.
Article en En | MEDLINE | ID: mdl-25101315
We study the following max-type difference equation xn = max{A(n)/x(n-r), x(n-k)}, n = 1,2,…, where {A(n)} n=1 (+∞) is a periodic sequence with period p and k, r ∈ {1,2,…} with gcd(k, r) = 1 and k ≠ r, and the initial conditions x(1-d), x(2-d),…, x 0 are real numbers with d = max{r, k}. We show that if p = 1 (or p ≥ 2 and k is odd), then every well-defined solution of this equation is eventually periodic with period k, which generalizes the results of (Elsayed and Stevic (2009), Iricanin and Elsayed (2010), Qin et al. (2012), and Xiao and Shi (2013)) to the general case. Besides, we construct an example with p ≥ 2 and k being even which has a well-defined solution that is not eventually periodic.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Teóricos Idioma: En Revista: ScientificWorldJournal Asunto de la revista: MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Teóricos Idioma: En Revista: ScientificWorldJournal Asunto de la revista: MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: China